1
|
Ahn J, Nam YS. Assessing Barrier Function in Psoriasis and Cornification Models of Artificial Skin Using Non-Invasive Impedance Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400111. [PMID: 38995098 DOI: 10.1002/advs.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Reconstructed epidermal equivalents (REEs) consist of two distinct cell layers - the stratum corneum (SC) and the keratinocyte layer (KL). The interplay of these layers is particularly crucial in pruritic inflammatory disorders, like psoriasis, where a defective SC barrier is associated with immune dysregulation. However, independent evaluation of the skin barrier function of the SC and KL in REEs is highly challenging because of the lack of quantitative methodologies that do not disrupt the counter layer. Here, a non-invasive impedance spectroscopy technique is introduced for dissecting the distinct contributions of the SC and KL to overall skin barrier function without disrupting the structure. These findings, inferred from the impedance spectra, highlight the individual barrier resistances and maturation levels of each layer. Using an equivalent circuit model, a correlation between impedance parameters and specific skin layers, offering insights beyond traditional impedance methods that address full-thickness skin only is established. This approach successfully detects subtle changes, such as increased paracellular permeability due to mild irritants and the characterization of an immature SC in psoriatic models. This research has significant implications, paving the way for detailed mechanistic investigations and fostering the development of therapies for skin irritation and inflammatory disorders.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Suh JH, Lee Y, Jin SP, Kim EJ, Seo EY, Li N, Oh JH, Kim SJ, Lee SH, Lee DH, Cho S, Chung JH. Adiponectin Prevents Skin Inflammation in Rosacea by Suppressing S6 Phosphorylation in Keratinocytes. J Invest Dermatol 2024:S0022-202X(24)01982-1. [PMID: 39122145 DOI: 10.1016/j.jid.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Numerous recent evidence highlights epidemiological connections between rosacea and metabolic disorders. However, the precise path through which metabolic factors impact rosacea risk is still unclear. Therefore, this study aims to investigate the role of adiponectin, a crucial adipokine that regulates metabolic homeostasis, in the pathogenesis of rosacea. We elucidated a detrimental feedback loop between rosacea-like skin inflammation and decreased levels of skin adiponectin. To elaborate, rosacea lesional skin exhibits diminished adiponectin expression compared with nonlesional areas in the same patients. Induction of rosacea-like inflammation reduced adiponectin levels in the skin by generating inflammatory cytokines that suppress adiponectin production from subcutaneous adipocytes. Conversely, complete depletion of adiponectin exacerbated rosacea-like features in the mouse model. Mechanistically, adiponectin deficiency led to heightened S6 phosphorylation, a marker of the mTORC1 signaling pathway, in the epidermis. Adiponectin significantly inhibited S6 phosphorylation in cultured keratinocytes. Notably, replenishing adiponectin whole protein or topically applying an agonist for adiponectin receptor 1 successfully improved rosacea-like features in mice. This study contributes to understanding the role of adiponectin in skin inflammation associated with rosacea pathophysiology, suggesting that restoring adiponectin function in the skin could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Young Seo
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea; Institute of Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang S, Zhang B, Liu Y, Li L. Adipokines in atopic dermatitis: the link between obesity and atopic dermatitis. Lipids Health Dis 2024; 23:26. [PMID: 38263019 PMCID: PMC10804547 DOI: 10.1186/s12944-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic skin condition with intense pruritus, eczema, and dry skin. The recurrent intense pruritus and numerous complications in patients with AD can profoundly affect their quality of life. Obesity is one of its comorbidities that has been confirmed to be the hazard factor of AD and also worsen its severity. Nevertheless, the specific mechanisms that explain the connection between obesity and AD remain incompletely recognized. Recent studies have built hopes on various adipokines to explain this connection. Adipokines, which are disturbed by an obese state, may lead to immune system imbalances in people with AD and promote the development of the disease. This review focuses on the abnormal expression patterns of adipokines in patients with AD and their potential regulatory molecular mechanisms associated with AD. The connection between AD and obesity is elucidated through the involvement of adipokines. This conduces to the in-depth exploration of AD pathogenesis and provides a new perspective to develop therapeutic targets.
Collapse
Affiliation(s)
- Shiyun Zhang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730.
| |
Collapse
|
4
|
Liana D, Eurtivong C, Phanumartwiwath A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants (Basel) 2024; 13:74. [PMID: 38247498 PMCID: PMC10812521 DOI: 10.3390/antiox13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the anti-staphylococcal, and antioxidant potentials of several medicinal plants bio-prospected from traditional medicine related to AD pathogenesis. Essential oils and hexane fractions were prepared and analyzed using gas chromatography-mass spectrometry. Boesenbergia rotunda hexane extract displayed anti-Staphylococcus aureus (MIC = 10 µg/mL) and antioxidant activities (IC50 = 557.97 and 2651.67 µg/mL against DPPH and NO radicals, respectively). A major flavonoid, pinostrobin, was further nonchromatographically isolated. Pinostrobin was shown to be a potent 5-LOX inhibitor (IC50 = 0.499 µM) compared to nordihydroguaiaretic acid (NDGA; IC50 = 5.020 µM) and betamethasone dipropionate (BD; IC50 = 2.077 µM) as the first-line of AD treatment. Additionally, pinostrobin inhibited COX-2 (IC50 = 285.67 µM), which was as effective as diclofenac sodium (IC50 = 290.35 µM) and BD (IC50 = 240.09 µM). This kinetic study and molecular modeling showed the mixed-type inhibition of NDGA and pinostrobin against 5-LOX. This study suggests that B. rotunda and its bioactive pinostrobin have promising properties for AD therapy.
Collapse
Affiliation(s)
- Desy Liana
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand;
| | | |
Collapse
|
5
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
6
|
Yu J, Song P, Bai Y, Dang E, Luo Y, Chen J, Fu M, Zhang J, Qiao P, Guo W, Wang G, Shao S. CD36-SREBP1 Axis Mediates TSLP Production in Obesity-Exacerbated Atopic Dermatitis. J Invest Dermatol 2023; 143:2153-2162.e12. [PMID: 37209865 DOI: 10.1016/j.jid.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Obesity is associated with an increased risk of atopic dermatitis (AD) and may accelerate its development. Keratinocyte dysfunction has been observed in obesity-related skin diseases, including psoriasis and acanthosis nigricans, but is not fully understood in AD. In this study, we found that high-fat diet-induced obesity exacerbated AD-like dermatitis in mice, with elevated inflammatory molecules and increased CD36-SREBP1-related fatty acid accumulation in the lesional skin. Blocking CD36 or SREBP1 with chemical inhibitors effectively alleviated AD-like inflammation, decreased fatty acid accumulation, and downregulated TSLP expression in obese calcipotriol (MC903)-treated mice. Moreover, palmitic acid treatment induced TSLP overexpression in keratinocytes through the activation of the CD36-SREBP1 signaling pathway. The chromatin immunoprecipitation assay further revealed increased binding of SREBP1 to the TSLP promoter region. Our findings provide compelling evidence that obesity triggers the activation of the CD36-SREBP1-TSLP axis in keratinocytes, leading to epidermal lipid disorders and the aggravation of AD-like inflammation. By targeting CD36 or SREBP1, future combination therapies or modified treatment strategies could be developed to help manage patients with both obesity and AD.
Collapse
Affiliation(s)
- Jinlei Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Souza-Silva IM, Steckelings UM, Assersen KB. The role of vasoactive peptides in skin homeostasis-focus on adiponectin and the kallikrein-kinin system. Am J Physiol Cell Physiol 2023; 324:C741-C756. [PMID: 36745527 DOI: 10.1152/ajpcell.00269.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).
Collapse
Affiliation(s)
- Igor M Souza-Silva
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - U Muscha Steckelings
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kasper Bostlund Assersen
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Dermatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
8
|
Krajewski PK, Matusiak Ł, Szepietowski JC. Adipokines as an important link between hidradenitis suppurativa and obesity: a narrative review. Br J Dermatol 2023; 188:320-327. [PMID: 36641766 DOI: 10.1093/bjd/ljac107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 01/16/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, debilitating disorder of the pilosebaceous unit. Although its pathophysiology is not fully explained, inflammation seems to play an essential role in the development of HS. A link between obesity - often considered a state of chronic inflammation - and a higher prevalence of HS has been described. Nevertheless, the exact association is not well understood. Adipose tissue is a highly active endocrine organ that produces and secretes a variety of metabolically and immunologically active molecules called adipokines. The imbalances in concentrations of several adipokines in patients with HS have already been described. A shift towards the overproduction of proinflammatory adipokines (including leptin, resistin and visfatin) with the suppression of anti-inflammatory ones (adiponectin) has been noted. We conducted a review of the available data on adipokines in HS, concentrating on the described imbalances in adipokine concentrations, as well as possible implications in HS pathogenesis. Moreover, new, unstudied adipokines with possible implications in the development of HS are proposed.
Collapse
Affiliation(s)
- Piotr K Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
De Simoni E, Rizzetto G, Molinelli E, Lucarini G, Mattioli-Belmonte M, Capodaglio I, Ferretti G, Bacchetti T, Offidani A, Simonetti O. Metabolic Comorbidities in Pediatric Atopic Dermatitis: A Narrative Review. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010002. [PMID: 36675951 PMCID: PMC9866487 DOI: 10.3390/life13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Atopic dermatitis (AD) is an itchy dermatitis with multifactorial aetiology, chronic-recurrent course, and typical distribution of lesions according to the age, affecting the 10-20% of pediatric population. Patients with AD, including children, suffer from many metabolic comorbidities, including metabolic syndrome, being overweight, obesity, dyslipidaemia, and arterial hypertension, all of which had a prevalence that was demonstrated to be higher than in healthy patients. The association between AD and metabolic comorbidities is multifactorial and involves the deregulation of immune system. In fact, hypertrophic adipose tissue produces soluble adipokines involved in inflammation and immunity, which stimulate the production of pro-inflammatory cytokines, responsible for a chronic low-grade inflammatory state and a higher predisposition to hypersensitivity reactions. Especially in pediatric population with AD, these metabolic disorders are usually underestimated and are associated with long term sequelae and an increased risk of a cardiovascular event, which may also occur later in adult age. Therefore, metabolic comorbidities should be carefully evaluated and early treated in children with AD, to minimize the long-term risk of cardiovascular events.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences-Histology, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206075
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences-Histology, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Gianna Ferretti
- Research Center of Health Education and Health Promotion, Department of Clinical Experimental Science and Odontostomatology-Biochemistry, 60126 Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Swindell WR, Bojanowski K, Chaudhuri RK. Isosorbide Fatty Acid Diesters Have Synergistic Anti-Inflammatory Effects in Cytokine-Induced Tissue Culture Models of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms232214307. [PMID: 36430783 PMCID: PMC9696169 DOI: 10.3390/ijms232214307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic disease in which epidermal barrier disruption triggers Th2-mediated eruption of eczematous lesions. Topical emollients are a cornerstone of chronic management. This study evaluated efficacy of two plant-derived oil derivatives, isosorbide di-(linoleate/oleate) (IDL) and isosorbide dicaprylate (IDC), using AD-like tissue culture models. Treatment of reconstituted human epidermis with cytokine cocktail (IL-4 + IL-13 + TNF-α + IL-31) compromised the epidermal barrier, but this was prevented by co-treatment with IDL and IDC. Cytokine stimulation also dysregulated expression of keratinocyte (KC) differentiation genes whereas treatment with IDC or IDL + IDC up-regulated genes associated with early (but not late) KC differentiation. Although neither IDL nor IDC inhibited Th2 cytokine responses, both compounds repressed TNF-α-induced genes and IDL + IDC led to synergistic down-regulation of inflammatory (IL1B, ITGA5) and neurogenic pruritus (TRPA1) mediators. Treatment of cytokine-stimulated skin explants with IDC decreased lactate dehydrogenase (LDH) secretion by more than 50% (more than observed with cyclosporine) and in vitro LDH activity was inhibited by IDL and IDC. These results demonstrate anti-inflammatory mechanisms of isosorbide fatty acid diesters in AD-like skin models. Our findings highlight the multifunctional potential of plant oil derivatives as topical ingredients and support studies of IDL and IDC as therapeutic candidates.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| | | | | |
Collapse
|
11
|
Lee SH, Bae Y, Park YL. Clinical Implication of Serum Adiponectin Levels in Adult Patients with Atopic Dermatitis. J Clin Med 2022; 11:6255. [PMID: 36362483 PMCID: PMC9656570 DOI: 10.3390/jcm11216255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by chronic, relapsing, pruritic inflammatory skin disease. Adiponectin has been reported to have anti-inflammatory effects not only on metabolic disorders but also on various inflammatory disorders. The study aimed to validate adiponectin as a potential biomarker for AD disease severity and treatment response. Seventy-five patients with AD and 28 healthy volunteers were enrolled in the study. Patient information, including Eczema Area and Severity Index (EASI) scores and pruritus numeric rating scales (NRSs), were collected. An enzyme linked immunosorbent assay (ELISA) was conducted to measure levels of serum adiponectin. Additionally, sera of patients treated with dupilumab were collected and measured at 16 and 52 weeks from baseline. Serum adiponectin levels were significantly lower in moderate and severe AD patients than in the control and mild AD patients. Serum adiponectin level was negatively correlated with the EASI score and pruritus NRS. However, no significant changes were observed according to biologic treatment for AD. Low serum adiponectin levels are associated with moderate to severe AD, suggesting a potential role for adiponectin as a biomarker for severity assessment of AD.
Collapse
Affiliation(s)
- Sul-Hee Lee
- Department of Dermatology, Soon Chun Hyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Youin Bae
- Department of Dermatology, College of Medicine, Hallym University, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea
| | - Young-Lip Park
- Department of Dermatology, Soon Chun Hyang University Bucheon Hospital, Bucheon 14584, Korea
| |
Collapse
|
12
|
Rout AN, Das A. Does weight loss lead to improvement of dermatological conditions: What is the evidence? Clin Exp Dermatol 2022; 47:1446-1453. [PMID: 35384013 DOI: 10.1111/ced.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Obese and overweight individuals may have a wide gamut of cutaneous features and can have more severe manifestations of multiple dermatological conditions. There have been multiple expert opinions on the favorable effects of weight reduction in improving skin conditions. Over the past decade, there have been few studies evaluating the response of exercise and other modes of weight loss on various dermatoses such as psoriasis, acne, hidradenitis suppurativa, acanthosis nigricans. In this review, we have attempted to provide a summary of the benefits of reduction of body weight on various skin aliments.
Collapse
Affiliation(s)
- Arpita Nibedita Rout
- Department of Dermatology, Venereology, and Leprosy; All India Institute of Medical Sciences, Bhopal, India
| | - Anupam Das
- Department of Dermatology, Venereology, and Leprosy; KPC Medical College & Hospital, Kolkata, India
| |
Collapse
|
13
|
Emerging Roles of Adipose Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in Obesity. JID INNOVATIONS 2022; 2:100064. [PMID: 35024685 PMCID: PMC8659781 DOI: 10.1016/j.xjidi.2021.100064] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- AT, adipose tissue
- BAT, brown adipose tissue
- BMI, body mass index
- CI, confidence interval
- DC, dendritic cell
- DIO, diet-induced obesity
- FFA, free fatty acid
- HFD, high-fat diet
- KC, keratinocyte
- OA, oleic acid
- PA, palmitic acid
- PSO, psoriasis
- SCORAD, SCORing Atopic Dermatitis
- TC, total cholesterol
- TEWL, transepidermal water loss
- TG, triglyceride
- TLR, toll-like receptor
- Th, T helper
- WAT, white adipose tissue
- dFB, dermal fibroblast
- dWAT, dermal white adipose tissue
- sWAT, subcutaneous white adipose tissue
Collapse
|
14
|
Bouwstra JA, Helder RW, El Ghalbzouri A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv Drug Deliv Rev 2021; 175:113802. [PMID: 34015420 DOI: 10.1016/j.addr.2021.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
To advance drug development representative reliable skin models are indispensable. Animal skin as test model for human skin delivery is restricted as their properties greatly differ from human skin. In vitro 3D-human skin equivalents (HSEs) are valuable tools as they recapitulate important aspects of the human skin. However, HSEs still lack the full barrier functionality as observed in native human skin, resulting in suboptimal screening outcome. In this review we provide an overview of established in-house and commercially available HSEs and discuss in more detail to what extent their skin barrier biology is mimicked in vitro focusing on the lipid properties and cornified envelope. Further, we will illustrate how underlying factors, such as culture medium improvements and environmental factors affect the barrier lipids. Lastly, potential improvements in skin barrier function will be proposed aiming at a new generation of HSEs that may replace animal skin delivery studies fully.
Collapse
|
15
|
Jung MJ, Kim HR, Kang SY, Kim HO, Chung BY, Park CW. Effect of Weight Reduction on Treatment Outcomes for Patients with Atopic Dermatitis. Ann Dermatol 2020; 32:319-326. [PMID: 33911759 PMCID: PMC7992650 DOI: 10.5021/ad.2020.32.4.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several epidemiological studies have shown that the atopic tendency increases in the obese population. OBJECTIVE The aim of this study was to confirm the effect of weight reduction on improvement of atopic dermatitis (AD) symptoms and to investigate the relationship between AD severity and the level of serum adipokines. METHODS Forty subjects who were AD outpatients were recruited for this study. Obese patients were divided into a weight maintenance group and weight reduction group. During the study period, patient information was collected that included measured body mass index (BMI), Eczema Area and Severity Index (EASI), and visual analogue scale for pruritus. Adiponectin, leptin, eosinophil count, and total immunoglobulin E were also tested. RESULTS In the weight reduction group, there was a significant improvement in the EASI score, however, no significant improvement was determined in the weight maintenance group. BMI and EASI showed positive correlation. The adiponectin level was lower in AD patients compared to healthy controls, and it was significantly lower in obese patients compared with normal weight patients. Serum levels of leptin were significantly different among control, obese patient group, and normal weight patient group. There was no statistically significant relationship between serum adipokine level and EASI. CONCLUSION In our study, weight reduction was associated with significant improvement of AD symptoms. Related adipokine levels were significantly different among the control, normal weight AD patient group, and obese AD patient group.
Collapse
Affiliation(s)
- Min Je Jung
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye Ran Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Seok Young Kang
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Lee YS, Han SB, Ham HJ, Park JH, Lee JS, Hwang DY, Jung YS, Yoon DY, Hong JT. IL-32γ suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J Allergy Clin Immunol 2020; 146:156-168. [DOI: 10.1016/j.jaci.2019.12.905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
|