1
|
Li X, Yin W, Li A, Li D, Gao X, Wang R, Cui B, Qiu S, Li R, Jia L, Zuo C, Zhang L, Li M. ACE2 PET to reveal the dynamic patterns of ACE2 recovery in an infection model with pseudocorona virus. J Med Virol 2023; 95:e28470. [PMID: 36606602 DOI: 10.1002/jmv.28470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023]
Abstract
Due to the COVID-19 pandemic, a series of sequelae, such as fatigue, tachypnea, and ageusia, appeared in long COVID patients, but the pathological basis was still uncertain. The targeted radiopharmaceuticals were of potential to systemically and dynamically trace the pathological changes. For the key ACE2 protein in the virus-host interaction, 68 Ga-cyc-DX600 was developed on the basis of DX600 as a PET tracer of ACE2 fluctuation and maintained the ability in differentiating ACE and ACE2. In the temporary infection model inhaled with the radio-traceable pseudovirus in the upper respiratory tract of male humanized ACE2 (hACE2) mice, organ-specific ACE2 dysfunction in acute period and the following ACE2 recovery in a relatively long period was visualized and quantified by ACE2 PET, revealing a complex pattern of virus concentration-dependent degree and time period-dependent tendency of ACE2 recovery, mainly a sudden decrease of apparent ACE2 in the heart, liver, kidneys, lungs, and so on, but the liver was of a quick functional compensation on ACE2 expression after a temporary decrease. ACE2 expression of most organs has recovered to a normal level at 15 days post inhalation, with brain and genitals still of a decreased SUVACE2 ; meanwhile, kidneys were of an increased SUVACE2 . These findings on ACE2 PET were further verified by western blot. When compared with high-resolution computed tomography on structural changes and FDG PET on glycometabolism, ACE2 PET was superior in an earlier diagnostic window during infection and more comprehensive understanding of functional dysfunction post-infection. In the respective ACE2 PET/CT and ACE2 PET/MR scans of a volunteer, the repeatability of SUVACE2 and the ACE2 specificity were further confirmed. In conclusion, 68 Ga-cyc-DX600 was developed as an ACE2-specific tracer, and the corresponding ACE2 PET revealed the dynamic patterns of functional ACE2 recovery and provided a reference and approach to explore the ACE2-related pathological basis of sequelae in long COVID.
Collapse
Affiliation(s)
- Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Wei Yin
- Department of Radiology, Shanghai Changhai Hospital, Shanghai, China
| | - Ao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Baoshan District, Shanghai, China
| | - Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Bin Cui
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Shuang Qiu
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Lina Jia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sun X, Wang M, Xu C, Wang S, Li L, Zou S, Yu J, Wei Y. Positive Effect of a Pea-Clam Two-Peptide Composite on Hypertension and Organ Protection in Spontaneously Hypertensive Rats. Nutrients 2022; 14:4069. [PMID: 36235721 PMCID: PMC9571109 DOI: 10.3390/nu14194069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
In the present study, we prepared pea peptides with high angiotensin-converting enzyme (ACE) inhibitory activity in vitro using an enzymatic hydrolysis of pea protein and compounded them with clam peptides to obtain a pea-clam double peptide. The effects of the two-peptide composite and pea peptides on hypertension and the damage-repair of corresponding organs were studied in spontaneously hypertensive rats (SHRs). We found that both pea peptides and the two-peptide composite significantly reduced the blood pressure upon a single or long-term intragastric administration, with the two-peptide composite being more effective. Mechanistically, we found that the two-peptide composite could regulate the renal renin-angiotensin system (RAS), rebalance gut microbial dysbiosis, decrease renal and myocardial fibrosis, and improve renal and cardiac function and vascular remodeling. Additionally, hippocampal lesions caused by hypertension were also eliminated after two-peptide composite administration. Our research provides a scientific basis for the use of this two-peptide composite as a safe antihypertension ingredient in functional foods.
Collapse
Affiliation(s)
- Xiaopeng Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Min Wang
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Chuanjin Xu
- The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266071, China
| | | | - Li Li
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Shengcan Zou
- Chenland Nutritionals, Inc., Invine, CA 92614, USA
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Saccharomyces boulardii exerts renoprotection by modulating oxidative stress, renin angiotensin system and uropathogenic microbiota in a murine model of diabetes. Life Sci 2022; 301:120616. [PMID: 35533758 DOI: 10.1016/j.lfs.2022.120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
AIMS We aimed to investigate whether Saccharomyces boulardii strain might exert renoprotective effects by modulating renal renin angiotensin system, oxidative stress and intestinal microbiota in streptozotocin-diabetic mice. MAIN METHODS Thirty-six C57BL/6 male mice were divided into four groups: control (C), control + probiotic (CP), diabetes (D), diabetes + probiotic (DP). Diabetes was induced by one intraperitoneal injection of streptozotocin and Saccharomyces boulardii was administered by oral gavage for 8 weeks. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7) and the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined, besides that, renal morphology, serotonin and dopamine levels and also microbiota composition were analyzed. KEY FINDINGS Probiotics significantly increased C-peptide secretion and reduced blood glucose of diabetic animals. Saccharomyces boulardii also improved renal antioxidant defense, restored serotonin and dopamine concentration, and activated the renin-angiotensin system (RAS) vasodilator and antifibrotic axis. The modulation of these markers was associated with a beneficial impact on glomerular structure and renal function of diabetic treated animals. The phenotypic changes induced by Saccharomyces boulardii were also related to modulation of intestinal microbiota, evidenced by the decreased abundance of Proteus and Escherichia-Shigella, considered diabetic nephropathy biomarkers. SIGNIFICANCE Therefore, probiotic administration to streptozotocin-induced diabetic mice improves kidney structure and function in a murine model and might represent a reasonable strategy to counteract nephropathy-associated maladaptive responses in diabetes.
Collapse
|
4
|
Resistance exercise shifts the balance of renin-angiotensin system toward ACE2/Ang 1-7 axis and reduces inflammation in the kidney of diabetic rats. Life Sci 2021; 287:120058. [PMID: 34673118 DOI: 10.1016/j.lfs.2021.120058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS We aimed to determine whether resistance training (RT) regulates renal renin-angiotensin system (RAS) components and inflammatory mediators in diabetic rats. MAIN METHODS Male Wistar rats (3 months old) were randomly assigned into four groups: non-trained (NT), trained (T), non-trained + diabetes (NTD) and trained +diabetes (TD). Diabetes was induced by streptozotocin (50 mg/kg, Sigma Chemical Co., St. Louis, MO, USA), before RT protocol. Trained rats performed RT protocol on a 110-cm ladder (8 ladder climbs, once/day, 5 days/week, 8 weeks), carrying a load corresponding to 50-80% of maximum carrying capacity. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7), inflammatory markers, and also the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined. KEY FINDINGS Blood glucose and urinary volume were elevated in diabetic animals, and RT decreased albuminuria, renal Ang I and Ang II levels in diabetic rats. RT shifted the balance of renal RAS toward ACE2/Ang 1-7 axis in TD group, and mitigated the high levels of interleukin (IL)-10, IL-1β and cytokine-induced neutrophil chemoattractant 1 (CINC) in the context of diabetes. Strong positive correlations were found between albuminuria and Ang II, IL-10 and IL-1β. On the other hand, intrarenal Ang 1-7 levels were negatively correlated with IL-10 and IL-1β levels. SIGNIFICANCE RT improved kidney function by modulating intrarenal RAS toward ACE2/Ang 1-7 axis and inflammatory cytokines. RT represents a reasonable strategy to improve the renal complications induced by diabetes, counteracting nephropathy-associated maladaptive responses.
Collapse
|
5
|
Gao J, Liu Q, Zhao L, Yu J, Wang S, Cao T, Gao X, Wei Y. Identification and Antihypertension Study of Novel Angiotensin I-Converting Enzyme Inhibitory Peptides from the Skirt of Chlamys farreri Fermented with Bacillus natto. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:146-158. [PMID: 33356234 DOI: 10.1021/acs.jafc.0c04232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to isolate the angiotensin I-converting enzyme (ACE) inhibitory peptides from the skirt of Chlamys farreri fermented with Bacillus natto and to explore the antihypertension effect through in vivo studies. ACE inhibitory peptides were purified from the fermentation mixture by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography sequentially. The amino acids' sequence of the five novel ACE inhibitory peptides were identified by liquid chromatography-tandem mass spectrometry. Animal experiments demonstrated that the novel ACE inhibitory peptides significantly reduced the blood pressure in spontaneously hypertensive rats after a single or long-time treatment. Potential mechanisms were explored, and the results indicated that the novel peptides could regulate the renal renin-angiotensin system, improve vascular remodeling, inhibit myocardial fibrosis, and rebalance the gut microbial dysbiosis. Our results suggest that the fermentation products of the Chlamys farreri skirt by B. natto are potential sources of active peptides processing antihypertension activities.
Collapse
Affiliation(s)
- Jie Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qi Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shanglong Wang
- Chenland Nutritionals, Incorporated, Invine, California 92614, United States
| | - Tingfeng Cao
- Chenland Nutritionals, Incorporated, Invine, California 92614, United States
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Stein RA, Young LM. From ACE2 to COVID-19: A multiorgan endothelial disease. Int J Infect Dis 2020; 100:425-430. [PMID: 32896660 PMCID: PMC7832810 DOI: 10.1016/j.ijid.2020.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; LaGuardia Community College, Department of Natural Sciences, City University of New York, New York, NY 11101, USA.
| | - Lauren M Young
- University of Chicago, Department of Internal Medicine, 5841 S Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Huang W, Tang L, Cai Y, Zheng Y, Zhang L. Effect and mechanism of the Ang-(1-7) on human mesangial cells injury induced by low density lipoprotein. Biochem Biophys Res Commun 2014; 450:1051-7. [PMID: 24978313 DOI: 10.1016/j.bbrc.2014.06.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
Abstract
Hyperlipidemia is an independent risk factor for renal disease, and lipid deposition is associated with glomerulosclerosis. The angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis (ACE2-Ang-(1-7)-Mas axis) has been reported to participate in lipid metabolic regulation but its mechanism remains unclear. We hypothesized Ang-(1-7) would reduce lipid uptake in human mesangial cells (HMCs) by regulating the low density lipoprotein receptor-sterol regulatory element binding proteins 2-SREBP cleavage activating protein (LDLr-SREBP2-SCAP) negative feedback system, and improve glomerulosclerosis by regulating the transforming growth factor-β1 (TGF-β1). In this study we found that ACE2 was undetected in HMCs. The administration of LDL caused normal LDLr-SREBPs-SCAP negative feedback effect. Exogenous Ang-(1-7) enhanced this negative feedback effect via down-regulating LDLr, SREBP2, and SCAP expression, and effectively inhibited LDL-induced lipid deposition and cholesterol increases. This enhanced inhibitory effect was reversed by the Mas receptor antagonist A-779. Meanwhile, Ang-(1-7) significantly decreased the high LDL-induced production of TGF-β1, an effect blocked by A-779. Interestingly, HMCs treated with Ang-(1-7) alone activated the TGF-β1 expression. Our results suggested that Ang-(1-7) inhibits LDL accumulation and decreases cholesterol levels via modulating the LDLr-SREBPs-SCAP negative feedback system through the Mas receptor. Moreover, Ang-(1-7) exhibits a dual regulatory effect on TGF-β1 in HMCs.
Collapse
Affiliation(s)
- Wenhan Huang
- Department of Nephrology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Tang
- Department of Nephrology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Ying Cai
- Department of Nephrology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yaning Zheng
- Department of Nephrology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ling Zhang
- Department of Nephrology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
8
|
Anti-inflammatory effects of ω-3 polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol 2014; 62:285-97. [PMID: 23676336 DOI: 10.1097/fjc.0b013e318298e460] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying the anti-inflammatory and antihypertensive effects of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid epoxyeicosatrienoic acids also exhibit antihypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may lower the blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for 3 weeks in a murine model of angiotensin-II-dependent hypertension. Also, because EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of an sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II, increased the blood pressure, further increased the renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (ie, prostaglandins and MCP-1), downregulated an epithelial sodium channel, and upregulated angiotensin-converting enzyme-2 message and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering systolic blood pressure and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by upregulation of angiotensin-converting enzyme-2 in angiotensin-II-dependent hypertension.
Collapse
|
9
|
Topete-Reyes JF, Soto-Vargas J, Morán-Moguel MC, Dávalos-Rodríguez IP, Chávez-González EL, García-de la Torre I, Parra-Michel R, Medina-Pérez M, Jalomo-Martínez B, Salazar-Páramo M. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene in lupus nephritis among Mexicans. Immunopharmacol Immunotoxicol 2012; 35:174-80. [DOI: 10.3109/08923973.2012.739175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|