1
|
Mendonça CDD, Mata ADSPD, Azevedo LFR, Marques JF, Silveira JML, Marques DNDS. Probiotics in the non-surgical treatment of periodontitis: a systematic review and network meta-analysis. BMC Oral Health 2024; 24:1224. [PMID: 39407177 PMCID: PMC11481756 DOI: 10.1186/s12903-024-05027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
This systematic review and network meta-analysis aimed to assess the impact of combining professional mechanical plaque removal (PMPR) with probiotics compared to PMPR + placebo on probing pocket depth (PPD) and clinical attachment level (CAL). Randomized controlled trials published until November 2023 were searched across electronic databases, peer-reviewed journals, and grey literature. Two authors independently selected, extracted data, and assessed bias risk. Primary outcomes were mean changes in PPD and CAL. Secondary outcomes included mean changes in bleeding on probing (BOP), plaque index, and colony-forming units. Network meta-analysis with the frequentist weighted least squares approach evaluated the data quantitatively, and CINeMA framework evaluated the quality of evidence. In 33 articles involving 1290 patients, results were stratified by follow-up period (short and long-time studies) and sensitivity analyses conducted based on probiotic therapy duration (1 month reference). Network meta-analysis revealed significant mean differences in PPD for nine probiotic interventions, CAL for eighteen interventions, and BOP for eight interventions, with Lactobacillus demonstrating the most substantial effects. Combining PMPR with probiotics as adjuvants to subgingival instrumentation may be more effective in improving PPD and CAL. Lactobacillus emerged as the most comprehensive and effective among the studied probiotic.
Collapse
Affiliation(s)
- Carlota Duarte de Mendonça
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - António Duarte Sola Pereira da Mata
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - Luís Filipe Ribeiro Azevedo
- Faculty of Medicine, Department of Community Medicine, Information and Decision in Health (MEDCIDS@FMUP), University of Porto, Porto, 4200-450, Portugal
- Center for Health Technology and Services Research & Associate Laboratory - Health Research Network (CINTESIS@RISE), Porto, 4200-450, Portugal
| | - Joana Faria Marques
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - João Miguel Lourenço Silveira
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - Duarte Nuno da Silva Marques
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
| |
Collapse
|
2
|
Wei X, Qian S, Yang Y, Mo J. Microbiome-based therapies for periodontitis and peri-implantitis. Oral Dis 2024; 30:2838-2857. [PMID: 37890080 DOI: 10.1111/odi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES Periodontitis and peri-implantitis are oral infectious-inflammatory diseases associated with oral microbial dysbiosis. Microbiome-based therapies, characterized by manipulation of the microbiota, are emerging as promising therapeutic approaches to resolve the microbial dysbiosis and associated dysregulation of immune system. This review aims at summarizing recent progress on microbiome-based therapies in periodontitis and peri-implantitis, promoting a further understanding of the related therapeutic mechanisms. SUBJECTS AND METHODS Pertinent literatures focused on microbiome-based therapies for periodontitis and peri-implantitis are obtained from PubMed and Web of Science. RESULTS In this article, we review the roles and therapeutic mechanisms of four microbiome-based therapies, including probiotics, postbiotics, predatory bacteria and phages, and microbiota transplantation, in the management of periodontitis and peri-implantitis. Challenges facing this field are also discussed, highlighting the areas that require more attention and investigation. CONCLUSIONS Microbiome-based therapies may serve as effective treatment for periodontitis and peri-implantitis. This review presents a new viewpoint to this field.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaji Mo
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Lee Y, Jung BH, Yoo KY, Lim HJ, Shin KJ, Lee JK. Lactobacillus fermentum attenuates the alveolar bone loss in ligature-induced periodontitis in mice. Oral Dis 2024; 30:3328-3335. [PMID: 37724481 DOI: 10.1111/odi.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE This study investigated the effects of Lactobacillus fermentum BELF11 on periodontitis in mice (LIP). METHODS Sixty mice were randomly assigned to a control group (CTL), LIP/PBS group (LIP and PBS applied), or LIP/BELF11 group (LIP and L. fermentum BELF11 applied). For 14 days, PBS or L. fermentum BELF11 was applied twice daily to the mice in the LIP/PBS or LIP/BELF11 group, respectively. After 14 days, radiographic, histological, and pro-inflammatory cytokine assessments were conducted. RESULTS The LIP/PBS and LIP/BELF11 groups demonstrated greater alveolar bone loss than the CTL group (p < 0.05). The LIP/BELF11 group showed significantly reduced alveolar bone loss on the mesial side compared to the LIP/PBS group. Histologically, the LIP/BELF11 group showed consistent patterns of connective tissue fiber arrangement, lower levels of inflammatory infiltration, less alveolar bone loss, and higher alveolar bone density than the LIP/PBS group, despite showing more signs of destruction than the CTL group. The LIP/BELF11 group also exhibited significantly lower levels of pro-inflammatory cytokines than the LIP/PBS group. CONCLUSIONS L. fermentum BELF11 inhibits alveolar bone loss and periodontitis progression by regulating pro-inflammatory cytokine production. These findings suggest that L. fermentum BELF11 may be a potential adjunctive therapy in periodontal treatment.
Collapse
Affiliation(s)
- Yuni Lee
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea
| | - Bo Hyun Jung
- Department of Anatomy and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea
| | - Ki-Yeon Yoo
- Department of Anatomy and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea
| | - Hye Ji Lim
- R&D Center, Hecto Healthcare Co., Ltd, Seoul, Republic of Korea
| | - Kum-Joo Shin
- R&D Center, Hecto Healthcare Co., Ltd, Seoul, Republic of Korea
| | - Jae-Kwan Lee
- Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea
| |
Collapse
|
4
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev 2024; 40:381-408. [PMID: 36856460 DOI: 10.1080/02648725.2023.2183617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Chronic periodontitis is a common oral disorder caused by pathogenic bacteria. Despite the wide use of antibiotics as the conventional adjunctive treatment, the challenges of increased antibiotic resistance and limited therapeutic effect receive considerable attention and the developments of alternative treatments gain increasing consideration. Growing evidence showed that Lactobacillus reuteri (LR) may represent a promising alternative adjunct for chronic periodontitis. It can attenuate inflammation and reduce tissue disruption. LR-assisted treatment has been shown to be effective and relatively safe in multiple clinical trials, and accumulating evidence suggests its significant biological roles. In the current review, we focus on capturing the underlying mechanisms of LR involved in chronic periodontitis, thereby representing a scientific foundation for LR-assisted therapy. Furthermore, we point out the challenges and future directions for further clinical trials to improve the clinical applicability for LR.
Collapse
Affiliation(s)
- Keyi Zhou
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jiaman Xie
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Yuan Su
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
6
|
The Use of Probiotics as Adjuvant Therapy of Periodontal Treatment: A Systematic Review and Meta-Analysis of Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14051017. [PMID: 35631603 PMCID: PMC9143599 DOI: 10.3390/pharmaceutics14051017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
For many years, the use of probiotics in periodontitis treatment was reflected in their abilities to control the immune response of the host to the presence of pathogenic microorganisms and to upset periodontopathogens. Accordingly, the aim of the present study was to assess the use of probiotics as adjuvant therapy on clinical periodontal parameters throughout a systematic review and meta-analysis. The literature was screened, up to 4 June 2021, by two independent reviewers (L.H. and R.B.) in four electronic databases: PubMed (MedLine), ISI Web of Science, Scielo, and Scopus. Only clinical trials that report the effect of the use of probiotics as adjuvants in the treatment of periodontal disease were included. Comparisons were carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). A total of 21 studies were considered for the meta-analysis. For the index plaque, the use of probiotics did not improve this clinical parameter (p = 0.16). On the other hand, for the periodontal pocket depth, the clinical attachment loss, the bleeding on probing, and the use of probiotics as adjuvant therapy resulted in an improvement of these parameters, since the control group achieved statistically higher values of this parameter (p < 0.001; p < 0.001; and p = 0.005, respectively). This study suggests that the use of probiotics led to an improvement in periodontal pocket depth, clinical attachment loss, and bleeding on probing parameters. On the other hand, this protocol seems to not be beneficial for the index plaque parameter.
Collapse
|