1
|
Kuret S, Kalajzic N, Ruzdjak M, Grahovac B, Jezina Buselic MA, Sardelić S, Delic A, Susak L, Sutlovic D. Real-Time PCR Method as Diagnostic Tool for Detection of Periodontal Pathogens in Patients with Periodontitis. Int J Mol Sci 2024; 25:5097. [PMID: 38791137 PMCID: PMC11121222 DOI: 10.3390/ijms25105097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The most common type of periodontal disease is chronic periodontitis, an inflammatory condition caused by pathogenic bacteria in subgingival plaque. The aim of our study was the development of a real-time PCR test as a diagnostic tool for the detection and differentiation of five periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Treponema denticola, in patients with periodontitis. We compared the results of our in-house method with the micro-IDent® semiquantitative commercially available test based on the PCR hybridization method. DNA was isolated from subgingival plaque samples taken from 50 patients and then analyzed by both methods. Comparing the results of the two methods, they show a specificity of 100% for all bacteria. The sensitivity for A. actinomycetemcomitans was 97.5%, for P. gingivalis 96.88%, and for P. intermedia 95.24%. The sensitivity for Tannerella forsythia and T. denticola was 100%. The Spearman correlation factor of two different measurements was 0.976 for A. actinomycetemcomitans, 0.967 for P. gingivalis, 0.949 for P. intermedia, 0.966 for Tannerella forsythia, and 0.917 for T. denticola. In conclusion, the in-house real-time PCR method developed in our laboratory can provide information about relative amount of five bacterial species present in subgingival plaque in patients with periodontitis. It is likely that such a test could be used in dental diagnostics in assessing the efficacy of any treatment to reduce the bacterial burden.
Collapse
Affiliation(s)
- Sendi Kuret
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Nina Kalajzic
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Matija Ruzdjak
- Department of Biology, Faculty of Natural Science, University of Zagreb, 10000 Zagreb, Croatia;
| | | | | | - Sanda Sardelić
- Department of Microbiology, University Hospital Centre Split, 21000 Split, Croatia;
| | - Anja Delic
- Polyclinic Analysis, 21000 Split, Croatia; (A.D.); (L.S.)
| | - Lana Susak
- Polyclinic Analysis, 21000 Split, Croatia; (A.D.); (L.S.)
| | - Davorka Sutlovic
- Department of Health Studies, University of Split, 21000 Split, Croatia;
- Department of Toxicology and Pharmacogenetics, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
2
|
Fusobacterium Nucleatum Is a Risk Factor for Metastatic Colorectal Cancer. Curr Med Sci 2022; 42:538-547. [DOI: 10.1007/s11596-022-2597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
|
3
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Wirth R, Pap B, Maróti G, Vályi P, Komlósi L, Barta N, Strang O, Minárovits J, Kovács KL. Toward Personalized Oral Diagnosis: Distinct Microbiome Clusters in Periodontitis Biofilms. Front Cell Infect Microbiol 2022; 11:747814. [PMID: 35004342 PMCID: PMC8727345 DOI: 10.3389/fcimb.2021.747814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is caused by pathogenic subgingival microbial biofilm development and dysbiotic interactions between host and hosted microbes. A thorough characterization of the subgingival biofilms by deep amplicon sequencing of 121 individual periodontitis pockets of nine patients and whole metagenomic analysis of the saliva microbial community of the same subjects were carried out. Two biofilm sampling methods yielded similar microbial compositions. Taxonomic mapping of all biofilms revealed three distinct microbial clusters. Two clinical diagnostic parameters, probing pocket depth (PPD) and clinical attachment level (CAL), correlated with the cluster mapping. The dysbiotic microbiomes were less diverse than the apparently healthy ones of the same subjects. The most abundant periodontal pathogens were also present in the saliva, although in different representations. The single abundant species Tannerella forsythia was found in the diseased pockets in about 16–17-fold in excess relative to the clinically healthy sulcus, making it suitable as an indicator of periodontitis biofilms. The discrete microbial communities indicate strong selection by the host immune system and allow the design of targeted antibiotic treatment selective against the main periodontal pathogen(s) in the individual patients.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Gergely Maróti
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Péter Vályi
- Department of Periodontology, University of Szeged, Szeged, Hungary
| | - Laura Komlósi
- Department of Oral Surgery, University of Szeged, Szeged, Hungary
| | - Nikolett Barta
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Gujar AN, Al-Hazmi A, Raj AT, Patil S. Microbial profile in different orthodontic appliances by checkerboard DNA-DNA hybridization: An in-vivo study. Am J Orthod Dentofacial Orthop 2020; 157:49-58. [PMID: 31901280 DOI: 10.1016/j.ajodo.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The design of the orthodontic bracket or appliance is 1 of the most important factors for creating retentive areas for biofilm formation. In orthodontics, this would be the first study to compare the microbial level changes in 3 different types of orthodontic appliances using checkerboard DNA-DNA hybridization technique. The purpose of this study was to evaluate and compare the extent of appearance of orange and red microbial complexes in patients undergoing orthodontic treatment using aligners, conventional metallic fixed labial appliances, and lingual fixed appliances. METHODS A total of 60 patients, of which 20 patients were undergoing treatment with aligners, 20 patients with labial fixed appliances, and 20 patients with lingual fixed appliances, were included in our study. After 30 days, debonded brackets and rinsed aligners were stored and processed for analysis with checkerboard DNA-DNA hybridization. RESULTS Most bacterial species showed moderate counts, with the exception of Treponema denticola, which showed a higher count in all 3 types of appliances. Fusobacterium nucleatum, Porphyromonas gingivalis, and T denticola were present in a higher percentage in the lingual appliance. Fusobacterium periodontium and Prevotella intermedia were present in a higher percentage in the labial fixed appliance. Campylobacter rectus, Tannerella forsythia, and Prevotella melaninogenica counts were moderate in all 3 appliances, with the first 2 microbes showing slightly higher counts in aligners. The association between all the microorganisms were statistically insignificant, with the exception of F nucleatum, which showed a strong statistically significant association in all 3 types of appliances. CONCLUSIONS The microbial contamination in metallic brackets was higher than that of aligners, when used for a month. Lingual fixed appliances showed more microbial contamination than labial fixed appliances followed by aligners.
Collapse
Affiliation(s)
- Anadha N Gujar
- Department of Orthodontics, KLES Institute of Dental Sciences, Bangalore, India
| | - Anwar Al-Hazmi
- Department of Preventive Dental Science, Division of Orthodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara, Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
6
|
Idrissi Janati A, Karp I, Sabri H, Emami E. Is a fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer?: a systematic review and meta-analysis protocol. Syst Rev 2019; 8:114. [PMID: 31077259 PMCID: PMC6511124 DOI: 10.1186/s13643-019-1031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite a considerable amount of epidemiological research for identification of risk factors involved in the development of colorectal cancer, the current understanding of the etiology of this disease remains rather poor. Accumulating evidence suggests a potentially important role of infection with Fusobacterium nucleatum in the colon in colorectal carcinogenesis. The objective of this systematic review is to synthesize the epidemiological evidence on the association between infection with Fusobacterium nucleatum in the colon and colorectal cancer. METHODS This systematic review will include observational studies (cohort, case-control, cross-sectional) in humans in which the role of Fusobacterium nucleatum in the etiology of colorectal cancer was investigated. MEDLINE, EMBASE, Web of Science, and Cochrane Database of Systematic Reviews will be searched using a comprehensive search strategy and manual screening of references. Two reviewers will independently identify eligible studies and extract the data from the included studies. The quality of studies will be assessed by using the Newcastle-Ottawa scale. Random-effects models will be used to estimate pooled measures of association (where feasible). Meta-regression and subgroup analyses will be conducted to explore the potential sources of heterogeneity. The Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement will be followed for reporting. DISCUSSION Deepening knowledge regarding the etiology of colorectal cancer and the potential implications of Fusobacterium nucleatum in this disease is instrumental for prevention, diagnosis, and treatment of this often-fatal disease. This review will produce summarized current evidence on this topic. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 10 July 2018 (registration number CRD42018095866).
Collapse
Affiliation(s)
- Amal Idrissi Janati
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7 Canada
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151, Richmond St., Kresge Building, Room K214, London, Ontario N6A 5C1 Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Hisham Sabri
- Department of Psychology, Concordia University, Montreal, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, Canada
- Department of Restorative Dentistry, Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC H3A 1G1 Canada
| |
Collapse
|
7
|
Choi H, Kim E, Kang J, Kim HJ, Lee JY, Choi J, Joo JY. Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults. J Periodontal Implant Sci 2018; 48:261-271. [PMID: 30202609 PMCID: PMC6125667 DOI: 10.5051/jpis.2018.48.4.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose Few studies have examined periodontal pathogens from saliva samples in periodontally healthy young adults. The purposes of this study were to determine the prevalence of periodontopathic bacteria and to quantify periodontal pathogens in saliva samples using real-time polymerase chain reaction (PCR) assays in periodontally healthy Korean young adults under 35 years of age. Methods Nine major periodontal pathogens were analyzed by real-time PCR in saliva from 94 periodontally healthy young adults. Quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus anaerobius, and Eikenella corrodens was performed by DNA copy number measurement. Results F. nucleatum and E. corrodens were detected in all subjects; the numbers of positive samples were 87 (92.6%), 91 (96.8%), and 90 (95.7%) for P. gingivalis, P. anaerobius, and C. rectus, respectively. Other pathogens were also detected in periodontally healthy subjects. Analysis of DNA copy numbers revealed that the most abundant periodontal pathogen was F. nucleatum, which was significantly more prevalent than all other bacteria (P<0.001), followed by P. anaerobius, P. gingivalis, E. corrodens, C. rectus, and T. denticola. There was no significant difference in the prevalence of each bacterium between men and women. The DNA copy number of total bacteria was significantly higher in men than in women. Conclusions Major periodontal pathogens were prevalent in the saliva of periodontally healthy Korean young adults. Therefore, we suggest that the development of periodontal disease should not be overlooked in periodontally healthy young people, as it can arise due to periodontal pathogen imbalance and host susceptibility.
Collapse
Affiliation(s)
- Heeyoung Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | | | | | - Hyun-Joo Kim
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| |
Collapse
|
8
|
Pan S, Liu Y, Zhang L, Li S, Zhang Y, Liu J, Wang C, Xiao S. Profiling of subgingival plaque biofilm microbiota in adolescents after completion of orthodontic therapy. PLoS One 2017; 12:e0171550. [PMID: 28158292 PMCID: PMC5291508 DOI: 10.1371/journal.pone.0171550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022] Open
Abstract
Background Fixed orthodontic treatment is the most common method for malocclusion but has the potential risk of periodontal complication with unclear outcomes of whether microbiologic and clinical changes could be reversible in adolescents after orthodontic therapy. Methods Twenty adolescents with orthodontic treatment were enrolled in the study as the case group at end of the therapy, while 19 periodontally healthy adolescents were involved in the control group. At baseline (T0), clinical parameters including gingival index, probing depth and sulcus bleeding index were tested, and subgingival plaque samples were collected from the lower incisors. The counts of A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia and total bacteria were determined by real-time PCR. All parameters were reassessed after 1 month (T1) and 3 months (T2) in the case group and compared with that of the controls. Results At baseline (T0), clinical parameters (including GI, PD, SBI) of the test sites in the case group were significantly higher than that of the control group (P<0.05 or P<0.01). At 3 months (T2), no differences were noticed in GI and SBI between two groups. The prevalence and counts of periodontopathogens tend to be normal (P>0.05), while PD and the amount of P.intermedia were still significantly higher compared with that of the control group (P<0.05 or P<0.01). Conclusion After removal of appliances, the periodontal changes induced by orthodontic therapy are only partially reversible at 3 months after removal.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Li Zhang
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Shuxiang Li
- Department of Stomatology, Hospital of Zhangqiu, Jinan, China
| | - Yujie Zhang
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Jianwei Liu
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Chunling Wang
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
- * E-mail: (CW); (SX)
| | - Shuiqing Xiao
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
- Department of Oral Medicine, Shandong Medical College, Jinan, China
- * E-mail: (CW); (SX)
| |
Collapse
|
9
|
Kim K, Jung WS, Cho S, Ahn SJ. Changes in salivary periodontal pathogens after orthodontic treatment: An in vivo prospective study. Angle Orthod 2016; 86:998-1003. [PMID: 26606331 PMCID: PMC8597347 DOI: 10.2319/070615-450.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To analyze the initial changes in salivary levels of periodontal pathogens after orthodontic treatment with fixed appliances. MATERIALS AND METHODS The subjects consisted of 54 adult patients. The Simplified Oral Hygiene Index, Plaque Index, and Gingival Index were measured as periodontal parameters. Both the plaque and gingival indexes were obtained from the central and lateral incisors and first molars of both arches. Whole saliva and periodontal parameters were obtained at the following four time points: immediately before debonding (T1), 1 week after debonding (T2), 5 weeks after debonding (T3), and 13 weeks after debonding (T4). Repeated measures analysis of variance was used to determine salivary bacterial levels and periodontal parameters among the four time points after quantifying salivary levels of Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria using the real-time polymerase chain reaction. RESULTS All periodontal parameters were significantly decreased immediately after debonding (T2). The salivary levels of total bacteria and Pg were decreased at T3, while Pi and Tf levels were decreased at T4. However, the amount of Aa and Fn remained at similar levels in saliva during the experimental period. Interestingly, Aa and Fn were present in saliva at higher levels than were Pg, Pi, and Tf. CONCLUSION The higher salivary levels of Aa and Fn after debonding suggests that the risk of periodontal problems cannot be completely eliminated by the removal of fixed orthodontic appliances during the initial retention period, despite improved oral hygiene.
Collapse
Affiliation(s)
- Kyungsun Kim
- Graduate Student, Dental Research Institute and Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Woo-Sun Jung
- Clinical Lecturer, Department of Orthodontics, Seoul National University Gwanak Dental Hospital, Seoul, Korea
| | - Soha Cho
- Research Assistant, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sug-Joon Ahn
- Professor, Dental Research Institute and Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Shet U, Oh HK, Chung HJ, Kim YJ, Kim OS, Lim HJ, Shin MH, Lee SW. Humoral immune responses to periodontal pathogens in the elderly. J Periodontal Implant Sci 2015; 45:178-83. [PMID: 26550526 PMCID: PMC4635439 DOI: 10.5051/jpis.2015.45.5.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Elderly people are thought to be more susceptible to periodontal disease due to reduced immune function associated with aging. However, little information is available on the nature of immune responses against putative periodontal pathogens in geriatric patients. The purpose of this study was to evaluate the serum IgG antibody responses to six periodontal pathogens in geriatric subjects. METHODS The study population consisted of 85 geriatric patients and was divided into three groups: 29 mild (MCP), 27 moderate (MoCP) and 29 severe (SCP) chronic periodontitis patients. Serum levels of IgG antibody to Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Prevotella intermedia were measured by enzyme-linked immunosorbent assay (ELISA) and compared among the groups. RESULTS All three groups showed levels of serum IgG in response to P. gingivalis, A. actinomycetemcomitans, and P. intermedia that were three to four times higher than levels of IgG to T. forsythia, T. denticola, and F. nucleatum. There were no significant differences among all three groups in IgG response to P. gingivalis (P=0.065), T. forsythia (P=0.057), T. denticola (P=0.1), and P. intermedia (P=0.167), although the IgG levels tended to be higher in patients with SCP than in those with MCP or MoCP (with the exception of those for P. intermedia). In contrast, there were significant differences among the groups in IgG levels in response to F. nucleatum (P=0.001) and A. actinomycetemcomitans (P=0.003). IgG levels to A. actinomycetemcomitans were higher in patients with MCP than in those with MoCP or SCP. CONCLUSIONS When IgG levels were compared among three periodontal disease groups, only IgG levels to F. nucleatum significantly increased with the severity of disease. On the contrary, IgG levels to A. actinomycetemcomitans decreased significantly in patients with SCP compared to those with MCP. There were no significant differences in the IgG levels for P. gingivalis, T. forsythia, T. denticola, and P. intermedia among geriatric patients with chronic periodontitis.
Collapse
Affiliation(s)
- Uttom Shet
- Department of Oral & Maxillofacial Surgery, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Hee-Kyun Oh
- Department of Oral & Maxillofacial Surgery, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Hyun-Ju Chung
- Department of Periodontology, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Young-Joon Kim
- Department of Periodontology, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Hoi-Jeong Lim
- Department of Orthodontics, Chonnam National University School of Dentistry, Gwangju, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seok-Woo Lee
- Department of Periodontology, Chonnam National University School of Dentistry, Gwangju, Korea. ; Department of Dental Education, Dental Science Research Institute, Chonnam National University School of Dentistry, Gwangju, Korea
| |
Collapse
|
11
|
Yamanaka K, Sekine S, Uenoyama T, Wada M, Ikeuchi T, Saito M, Yamaguchi Y, Tamiya E. Quantitative Detection forPorphyromonas gingivalisin Tooth Pocket and Saliva by Portable Electrochemical DNA Sensor Linked with PCR. ELECTROANAL 2014. [DOI: 10.1002/elan.201400447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|