1
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612090. [PMID: 39314428 PMCID: PMC11419018 DOI: 10.1101/2024.09.09.612090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Introduction Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. Methods We acclimated rats to remain awake, still, and minimally stressed during MRI. We scanned 14 Sprague-Dawley rats in both awake and anesthetized conditions after voluntarily consuming a contrast-enhanced test meal. Results Awake rats remained physiologically stable during MRI, showed gastric emptying of 23.7±1.4% after 48 minutes, and exhibited strong peristaltic contractions propagating through the antrum with a velocity of 0.72±0.04 mm/s, a relative amplitude of 40.7±2.3%, and a frequency of 5.1±0.1 cycles per minute. In the anesthetized condition, gastric emptying was about half of that in the awake condition, likely due to the effect of anesthesia in halving the amplitudes of peristaltic contractions rather than their frequency (not significantly changed) or velocity. In awake rats, the intestine filled more quickly and propulsive contractions were more occlusive. Conclusion We demonstrated the effective acquisition and analysis of GI MRI in awake rats. Awake rats show faster gastric emptying, stronger gastric contraction with a faster propagation speed, and more effective intestinal filling and transit, compared to anesthetized rats. Our protocol is expected to benefit future preclinical studies of GI physiology and pathophysiology.
Collapse
|
2
|
Bonmatí-Carrión MÁ, Rol MA. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants (Basel) 2023; 13:34. [PMID: 38247459 PMCID: PMC10812647 DOI: 10.3390/antiox13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the role played by melatonin on the gut microbiota has gained increasingly greater attention. Additionally, the gut microbiota has been proposed as an alternative source of melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the gut microbiota and the host. This review analyses the available scientific literature about possible mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this interaction. In addition, we also review the available knowledge on the effects of melatonin on gut microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or chronodisruptive conditions. The melatonin-gut microbiota relationship has also been discussed in terms of its role in the development of different disorders, from inflammatory or metabolic disorders to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen species-scavenging properties of melatonin as the main factors mediating this relationship.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Gao WT, Liu JX, Wang DH, Sun HJ, Zhang XY. Melatonin reduced colon inflammation but had no effect on energy metabolism in ageing Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109731. [PMID: 37611884 DOI: 10.1016/j.cbpc.2023.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.
Collapse
Affiliation(s)
- Wen-Ting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Peña-Mercado E, Garcia-Lorenzana M, Huerta-Yepez S, Cruz-Ledesma A, Beltran-Vargas NE. Effect of melatonin on electrical impedance and biomarkers of damage in a gastric ischemia/reperfusion model. PLoS One 2022; 17:e0273099. [PMID: 35972989 PMCID: PMC9380938 DOI: 10.1371/journal.pone.0273099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
The damage to the gastrointestinal mucosa induced by ischemia/reperfusion (I/R) is closely related to high mortality in critically ill patients, which is attributable, in part, to the lack of an early method of diagnosis to show the degree of ischemia-induced injury in this type of patients. Electrical Impedance Spectroscopy (EIS) has been shown to be a tool to early diagnose gastric mucosal damage induced by ischemia. A therapeutic alternative to reduce this type of injury is melatonin (MT), which has gastroprotective effects in I/R models. In this work, the effect of treatment with MT on the electrical properties of gastric tissue, biomarkers of inflammatory (iNOS and COX-2), proliferation, and apoptotic process under I/R conditions in male Wistar rats was evaluated through EIS, histological and immunohistochemical analysis. Treatment with MT prevents gastric mucosa damage, causing a decrease in gastric impedance parameters related to the inflammatory process and cellular damage. This suggests that EIS could be used as a tool to diagnose and monitor the evolution of gastric mucosal injury, as well as in the recovery process in critically ill patients.
Collapse
Affiliation(s)
- Eduardo Peña-Mercado
- Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, CDMX, Mexico
| | - Mario Garcia-Lorenzana
- Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana, Unidad Iztapalapa, CDMX, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Hematooncologicas, Hospital Infantil de Mexico, Federico Gomez, CDMX, Mexico
| | | | - Nohra E. Beltran-Vargas
- Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, CDMX, Mexico
- * E-mail:
| |
Collapse
|
5
|
Song S, Qiu R, Jin X, Zhou Z, Yan J, Ou Q, Liu X, Li W, Mao Y, Yao W, Lu T. Mechanism exploration of ancient pharmaceutic processing (Paozhi) improving the gastroprotective efficacy of Aucklandiae Radix. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114911. [PMID: 34902533 DOI: 10.1016/j.jep.2021.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Processing, also called Paozhi in Chinese, is an ancient Chinese pharmaceutic processing technique developed along with the Chinese herbal medicines (CHMs). The understanding of the mechanism of Paozhi has been investigated for several decades. Aucklandiae Radix (CAR) and its roasted processed products are all used in indigestion as a kind of CHMs. Processed Aucklandiae Radix (PAR) had a stronger effect to protect gastric mucosa than CAR, while the main compounds in CAR were reduced sharply after being processed. The underlying mechanism of this phenomenon is still unclear. AIM OF THE STUDY This study was aimed to evaluate whether PAR have a stronger gastroprotective effect than CAR and the underlying mechanisms of such circumstance. MATERIALS AND METHODS Ultra-fast liquid chromatography coupled with quadrupole time of flight mass spectrometry (UFLC-QTOF-MS/MS) coupled with multivariate statistical analyses was employed to explore chemical compounds which had a relatively stable content in PAR. Based on the compounds selected as the research object, network pharmacology was applied to visualize the relationships between the selected components and the gastroprotective-related targets from disease database, at the same time the possible intervention path of CAR/PAR which might be responsible for the effect of CAR/PAR on gastritis-induced rats was also built. Then, the key proteins were detected by western blotting to verify and compare the pharmacological effects of CAR/PAR. RESULTS Through UFLC-QTOF-MS/MS and orthogonal partial least squares discriminant analysis (OPLS-DA), sixteen compounds stable in PAR were discovered, of which saussureamine C and saussureamine B were estimated as the core compounds to exert gastroprotective in PAR predicted by network pharmacology analysis. Under the guide of KEGG pathway enrichment analysis, PI3K/AKT, p38 MAPK (Mitogen-activated protein kinase) and nuclear factor-kappa B (NF-κB) signaling pathways were forecasted as the possible healing mechanisms of CAR/PAR, and that result was verified by the experiments in vivo. PAR performed a stronger ability to reduce the level of p38 MAPK and NF-κB p65 than CAR, which may partially explain the different ability of CAR/PAR against gastric mucosa damage. CONCLUSION This study clarified that although Paozhi entailed a sharp decrease on the main compounds of CAR, there were some compounds which were not sensitive to high temperature and preserved in PAR and had a relative higher content in PAR than in CAR. PAR has stronger influence on MAPKs/NF-κB signaling pathway than CAR, which may reveal that the stronger gastroprotective effect of PAR perhaps rely on the constitutions with a higher relative abundance after Paozhi. The present research combined UFLC-QTOF-MS/MS and network pharmacology deeply investigated the impact of the roasted processing on the chemical constitutions and gastroprotective effect of CAR and offered reference for the clinical application of CAR/PAR.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaodan Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yiqing Mao
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Assortment of kaempferol and zinc gluconate improves noise-induced biochemical imbalance and deficits in body weight gain. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
This study investigated the effects of pretreatment with antioxidants, kaempferol, and zinc gluconate on serum biochemical changes and impairment in body weight gain following noise-exposure in Wistar rats. Thirty-five animals were evenly grouped into five cohorts: Groups II, III, IV, and V were exposed to noise stress, induced by exposing rats to 100 dB (4 hr/day) for 15 days, from days 33 to 48 after starting the drug treatments. Treatment with kaempferol and/or zinc mitigated noise-induced deficits in body weight gain, and levels of serum lipid and protein fractions. The combined treatment significantly (p < .05) decreased malondialdehyde concentration in kaempferol + zinc gluconate treated group, compared to the group administered deionized water + noise. This result demonstrates that biochemical dyshomeostasis and lipid peroxidation may be involved in the molecular mechanism underlying noise stress and the assortment of kaempferol and zinc gluconate produced an improved mitigating outcome in Wistar rats.
Collapse
|
7
|
Gut Hormones as Potential Therapeutic Targets or Biomarkers of Response in Depression: The Case of Motilin. Life (Basel) 2021; 11:life11090892. [PMID: 34575041 PMCID: PMC8465535 DOI: 10.3390/life11090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Recent research has identified the gut–brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (1) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, based on a literature search of three scientific databases, and (2) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression based on allele frequency data after correction for potential confounders. It was observed that (1) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (2) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required and that these molecular pathways represent potential future mechanisms for antidepressant drug development.
Collapse
|
8
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in murine "restraint stress"-induced dysfunction of colonic microbiota. J Microbiol 2021; 59:500-512. [PMID: 33630247 DOI: 10.1007/s12275-021-0305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Intestinal diseases caused by physiological stress have become a severe public health threat worldwide. Disturbances in the gut microbiota-host relationship have been associated with irritable bowel disease (IBD), while melatonin (MT) has anti-inflammatory and antioxidant effects. The objective of this study was to investigate the mechanisms by which MT-mediated protection mitigated stress-induced intestinal microbiota dysbiosis and inflammation. We successfully established a murine restraint stress model with and without MT supplementation. Mice subjected to restraint stress had significantly elevated corticosterone (CORT) levels, decreased MT levels in their plasma, elevated colonic ROS levels and increased bacterial abundance, including Bacteroides and Tyzzerella, in their colon tract, which led to elevated expression of Toll-like receptor (TLR) 2/4, p-P65 and p-IKB. In contrast, supplementation with 20 mg/kg MT reversed the elevation of the plasma CORT levels, downregulated the colon ROS levels and inhibited the changes in the intestinal microbiota induced by restraint stress. These effects, in turn, inhibited the activities of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory reaction induced by restraint stress. Our results suggested that MT may mitigate "restraint stress"-induced colonic microbiota dysbiosis and intestinal inflammation by inhibiting the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Rutao Lin
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Gao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
9
|
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a Potential Multitherapeutic Agent. J Pers Med 2021; 11:jpm11040274. [PMID: 33917344 PMCID: PMC8067360 DOI: 10.3390/jpm11040274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone produced by the pineal gland that was discovered many years ago. The physiological roles of this hormone in the body are varied. The beneficial effects of MEL administration may be related to its influence on mitochondrial physiology. Mitochondrial dysfunction is considered an important factor in various physiological and pathological processes, such as the development of neurodegenerative and cardiovascular diseases, diabetes, various forms of liver disease, skeletal muscle disorders, and aging. Mitochondrial dysfunction induces an increase in the permeability of the inner membrane, which leads to the formation of a permeability transition pore (mPTP) in the mitochondria. The long-term administration of MEL has been shown to improve the functional state of mitochondria and inhibit the opening of the mPTP during aging. It is known that MEL is able to suppress the initiation, progression, angiogenesis, and metastasis of cancer as well as the sensitization of malignant cells to conventional chemotherapy and radiation therapy. This review summarizes the studies carried out by our group on the combined effect of MEL with chemotherapeutic agents (retinoic acid, cytarabine, and navitoclax) on the HL-60 cells used as a model of acute promyelocytic leukemia. Data on the effects of MEL on oxidative stress, aging, and heart failure are also reported.
Collapse
|
10
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in intestinal mucosal injury induced by restraint stress in mice. PHARMACEUTICAL BIOLOGY 2020; 58:342-351. [PMID: 32298156 PMCID: PMC7178821 DOI: 10.1080/13880209.2020.1750659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Context: A growing body of evidence demonstrates that gastrointestinal motility disorder (GIMD) and gastric stress ulcers can be induced by restraint stress, while melatonin (MT) elicits anti-inflammation and antioxidant effects.Objective: The present study investigated the mechanisms of MT-mediated protection effects on restraint stress-induced GIMD.Materials and methods: 144 8-week-old male ICR mice were divided into four groups: control, restraint stress, restraint stress + MT and MT (positive control). 20 mg/kg MT or vehicle were intraperitoneally injected 60 min before restraint stress (10 h/day) once daily for 3 days. Biochemical parameters, intestinal mucosal integrity, tissues antioxidant ability and autophagic proteins levels were determined.Results: Mice subjected to restraint stress elevated NE level by 141.41% and decreased MT content by 38.82% in plasma. Consistent with the decrease in MT level, we observed a reduction in the antioxidant ability and an increase in autophagic proteins by 14.29-46.74% in the gut, resulting in injury to intestinal mucosa which was manifested by reductions in villus height and villus height/crypt depth (V/C) ratio, number of goblet and PCAN-positive cells, and expression of tight junction protein (ZO-1, occludin and claudin-1). In contrast, MT reversed these changes caused by restraint stress and improved the intestinal mucosal injury. However, there was no significant difference between MT (positive control) and control group.Discussion and conclusion: Our results suggest that MT effectively mitigates psychological stress-induced injury to intestinal mucosa, providing evidence demonstrating the potential for using MT as therapy against intestinal impairment associated with psychological stress.
Collapse
Affiliation(s)
- Rutao Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Zixu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Jing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Ting Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Yulan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Yaoxing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| |
Collapse
|
11
|
Chronic REM-sleep deprivation induced laryngopharyngeal reflux in rats: A preliminary study. Auris Nasus Larynx 2020; 48:683-689. [PMID: 33143936 DOI: 10.1016/j.anl.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship of chronic REM-sleep deprivation with laryngopharyngeal reflux (LPR) and its mechanism. METHODS Forty healthy male SD rats (body weight 250-280 g) were randomly divided into four groups. The first three ones were test group, which underwent REM-sleep deprivation with different duration of time by modified multiplatform water surface method. The last group was the control one having normal sleep. All the animals were performed Dx-pH monitoring when finishing sleep deprivation, and sacrificed to study the gastric residual rate (GRR) and small intestine peristalsis (SPR) rate by charcoal meal method. RESULTS At prone position, the reflux incidence in the test groups fairly increased with the duration of sleep deprivation (p<0.05). The total number of reflux episodes at prone position in the test group rats with 3 months duration of sleep deprivation was significantly increased compared with that in the control ones (p<0.05). GRR in rats experiencing sleep deficiency for different duration all reduced significantly when compared to the control group (p<0.05). GRR and SPR presented continuous decline tendency with the duration of sleep deprivation (p>0.05). CONCLUSIONS It is suggested that chronic sleep deficiency could cause LPR in rats, which might result from the uncoordinated digestive tract motility caused by dysfunction of central nervous system after chronic REM-sleep deprivation. Our results implied that chronic REM-sleep deprivation might be one of the causes of LPR. Addressing sleep problems might help to decrease the prevalence of LPR and enhance its treatment efficacy.
Collapse
|
12
|
Akefe IO, Ayo JO, Sinkalu VO. Kaempferol and zinc gluconate mitigate neurobehavioral deficits and oxidative stress induced by noise exposure in Wistar rats. PLoS One 2020; 15:e0236251. [PMID: 32692754 PMCID: PMC7373279 DOI: 10.1371/journal.pone.0236251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of kaempferol and zinc gluconate on neurobehavioural and oxidative stress changes in Wistar rats exposed to noise. Thirty (30) rats were randomly divided into five groups: Groups I and II were administered with deionized water (DW); Group III, kaempferol (K); Group IV, zinc gluconate (Zn); Group V, kaempferol + zinc gluconate. Groups II, III, IV, and V were subjected to noise stress (N) induced by exposing rats to 100 dB (4 h/day) for 15 days, from day 33 to day 48 after starting the drug treatments. Neuromuscular coordination, motor coordination, motor strength, sensorimotor reflex, and learning and memory, were evaluated using standard laboratory methods. Levels of nitric oxide (NO), malondialdehyde (MDA) and activities of glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD) were evaluated in the hippocampus. Exposure of rats to noise, induced significant neurobehavioural deficits and oxidative stress while the combined administration of kaempferol and zinc gluconate significantly (P < 0.05) improved open-field performance, motor coordination, motor strength, sensorimotor reflex, and learning and memory. Co-administration of kaempferol and zinc gluconate ameliorated noise-induced oxidative stress as demonstrated by the significantly increased activities of GPx, catalase, and SOD, and decreased levels of NO and MDA (P < 0.05 and P < 0.01 respectively), compared to the DW + N group. Our results suggest that oxidative stress, evidenced by increased NO and MDA concentration and decreased activities of GPx, catalase and SOD, were involved in the molecular mechanism underlying neurobehavioural impairment in Wistar rats, exposed to noise stress. Single treatment of kaempferol exerted a more potent mitigative effect than zinc gluconate, while their combination produced an improved outcome.
Collapse
Affiliation(s)
- Isaac Oluwatobi Akefe
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
- * E-mail:
| | - Joseph Olusegun Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Victor Olusegun Sinkalu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
13
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
14
|
Balmus IM, Ilie-Dumitru O, Ciobica A, Cojocariu RO, Stanciu C, Trifan A, Cimpeanu M, Cimpeanu C, Gorgan L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise-Searching for Gap Fillers in the Oxidative Stress Way of Thinking. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E38. [PMID: 31963795 PMCID: PMC7023055 DOI: 10.3390/medicina56010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Irritable bowel syndrome (IBS) remains to date an intriguing functional gastrointestinal disorder. Recent studies described a multitude of exogenous factors that work together in IBS, gradually impairing intestinal lining cellular metabolism, including oxidative status balance, with or without a genetic background. Although the current biomarkers support the differentiation between IBS subtypes and other functional gastrointestinal disorder, they are mostly non-specific, referring to clinical, biochemical, and inflammatory imbalances. Since IBS could be also the result of deficient signaling pathways involving both gastrointestinal secretion and neuro-vegetative stimulation, IBS makes no exception from the oxidative hypothesis in the pathological mechanisms. Regarding the oxidative stress implication in IBS, the previous research efforts showed controversial results, with some animal models and patient studies reporting clear oxidative imbalance both on systemic and local levels, but still with no concrete evidence to point to a direct correlation between oxidative stress and IBS. Additionally, it seems that a major role could be also attributed to gut microbiota and their ability to shape our bodies and behaviors. Moreover, the genetic features study in IBS patients showed that several genetic similarities point to a possible correlation of IBS with affective spectrum disorders. Thus, we focus here the discussion on the assumption that IBS could in fact be more likely a stress-related disorder rather than a gastrointestinal one.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, No. 11, 700506 Iasi, Romania;
| | - Ovidiu Ilie-Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Roxana-Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Carol Stanciu
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania
| | - Mirela Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Cristian Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| |
Collapse
|
15
|
Farooqi ZUR, Sabir M, Latif J, Aslam Z, Ahmad HR, Ahmad I, Imran M, Ilić P. Assessment of noise pollution and its effects on human health in industrial hub of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2819-2828. [PMID: 31836979 DOI: 10.1007/s11356-019-07105-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Faisalabad is one of the major industrial cities of Pakistan, which may cause noise pollution to the local residents due to the development of robust industrial and transport systems. This study aimed at (i) mapping the noise pollution levels at various locations of Faisalabad city; (ii) comparing noise pollution levels in the morning, the afternoon, and the evening for each source; and (iii) assessing nonauditory effects of noise on human health. Two industries and 43 famous/busy locations of Faisalabad Sadar were selected to study noise pollution by using the sound level meter for the period of 24 h. A questionnaire-based survey was carried out near the sampling points to get a public perception about the health impacts of noise pollution. The measured equivalent sound pressure levels (SPLeq) were higher than the permissible limits at all the sampling locations during morning, afternoon, and evening hours. The maximum sound pressure level (SPLmax) was 102 dB inside the production unit in the afternoon at Mian Muhammad Siddiq Textile Loom industry. The average SPL was found at State Bank road (102 dB), Children's Hospital (101 dB), Jhang Bazar (100 dB) in the afternoon and at Punjab Medical College in the evening (97 dB). Based on the survey, 94% of respondents reported headache, 76% sleeplessness, 74% hypertension, 74% physiological stress, 64% elevated blood pressure levels, and 60% dizziness due to noise. Noise pollution is higher than the standard limits and causes auditory as well as nonauditory effects on humans. The vehicles and industrial machinery should be maintained, and sound proofing and protection equipment should be provided to the workforce in order to protect them from extreme noise levels.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Junaid Latif
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- North West A&F University, Shaanxi Sheng, 712100, China
| | - Zubair Aslam
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Predrag Ilić
- Institute for Protection and Ecology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
16
|
Balmus IM, Lefter R, Ciobica A, Cojocaru S, Guenne S, Timofte D, Stanciu C, Trifan A, Hritcu L. Preliminary Biochemical Description of Brain Oxidative Stress Status in Irritable Bowel Syndrome Contention-Stress Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:medicina55120776. [PMID: 31817740 PMCID: PMC6956041 DOI: 10.3390/medicina55120776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023]
Abstract
Background and objectives: Oxidative stress and inflammation have been implicated in the etiology of irritable bowel syndrome (IBS), a common gastrointestinal functional disease. This study aimed to further characterize the contention-stress rat model by exploring a possible correlation between oxidative stress markers measured in brain tissues with behavioral components of the aforementioned model. Thus, it is hereby proposed a possible IBS animal model relevant to pharmacological and complementary medicine studies. Materials and Methods: Wild-type male Wistar rats (n = 5/group) were chronically exposed to 6-hour/day contention, consisting of isolating the animals in small, vital space-granting plastic devices, for seven consecutive days. Following contention exposure, temporal lobes were extracted and subjected to biochemical analyses to assess oxidative stress-status parameters. Results: Our results show increased brain oxidative stress in contention-stress rat model: decreased superoxide dismutase and glutathione peroxidase activities and increased malondialdehyde production in the IBS group, as compared to the control group. Furthermore, the biochemical ratios which are used to evaluate the effectiveness of an antioxidant system on oxidative stress could be described in this model. Conclusions: The correlations between the behavioral patterns and biochemical oxidative stress features could suggest that this may be a complex model, which can successfully mimic IBS symptomatology further providing evidence of a strong connection between the digestive system, enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Interdisciplinary Research Department–Field Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
| | - Radu Lefter
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
- Romanian Academy, Iasi Branch, Nr. 8, Carol I Avenue, no. 8, 700490 Iasi, Romania;
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
- Correspondence: or (A.C.); (D.T.)
| | - Sabina Cojocaru
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
| | - Samson Guenne
- Department of Biochemistry and Microbiology, University Ouaga I Pr Joseph KI-ZERBO, Dagnöen Nord, Ouagadougou BP 7021, Burkina Faso;
| | - Daniel Timofte
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania
- Correspondence: or (A.C.); (D.T.)
| | - Carol Stanciu
- Romanian Academy, Iasi Branch, Nr. 8, Carol I Avenue, no. 8, 700490 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania;
| | - Luminita Hritcu
- Department of Clinics, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| |
Collapse
|
17
|
Gao T, Wang Z, Dong Y, Cao J, Lin R, Wang X, Yu Z, Chen Y. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J Pineal Res 2019; 67:e12574. [PMID: 30929267 DOI: 10.1111/jpi.12574] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Intestinal diseases caused by sleep deprivation (SD) are severe public health threats worldwide. This study focuses on the effect of melatonin on intestinal mucosal injury and microbiota dysbiosis in sleep-deprived mice. Mice subjected to SD had significantly elevated norepinephrine levels and decreased melatonin content in plasma. Consistent with the decrease in melatonin levels, we observed a decrease of antioxidant ability, down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines in sleep-deprived mice, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, expression of MUC2 and tight junction proteins and elevated expression of ATG5, Beclin1, p-P65 and p-IκB. High-throughput pyrosequencing of 16S rRNA demonstrated that the diversity and richness of the colonic microbiota were decreased in sleep-deprived mice, especially in probiotics, including Akkermansia, Bacteroides and Faecalibacterium. However, the pathogen Aeromonas was markedly increased. By contrast, supplementation with 20 and 40 mg/kg melatonin reversed these SD-induced changes and improved the mucosal injury and dysbiosis of the microbiota in the colon. Our results suggest that the effect of SD on intestinal barrier dysfunction might be an outcome of melatonin suppression rather than a loss of sleep per se. SD-induced intestinal barrier dysfunction involved the suppression of melatonin production and activation of the NF-κB pathway by oxidative stress.
Collapse
Affiliation(s)
- Ting Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Zixu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Yulan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Jing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Rutao Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Xintong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yaoxing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Min JY, Min KB. Cumulative exposure to nighttime environmental noise and the incidence of peptic ulcer. ENVIRONMENT INTERNATIONAL 2018; 121:1172-1178. [PMID: 30366660 DOI: 10.1016/j.envint.2018.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Exposure to noise poses auditory and non-auditory effects on health. The gastrointestinal tract is considered as the site of adverse reactions to noise-induced stress; little attention has been paid to a potential link between noise and peptic ulcers. OBJECTIVES The aim of this study was to investigate whether cumulative exposure to environmental noise affects the incidence of peptic ulcer in adults. METHODS We analyzed the data from the National Health Insurance Service-National Sample Cohort (2002-2013). The final study sample comprised 217,308 adults assessed for gastric ulcer and 249,514 adults assessed for duodenal ulcer. The diagnosis of gastric (ICD-10: K25) and duodenal (ICD-10: K26) ulcers during an 8-year follow-up (2006-2013). Environmental noise data was obtained from the National Noise Information System, a nationwide monitors system of noise. RESULTS During the follow-up period, gastric ulcers occurred in 32.1% subjects and duodenal ulcers occurred in 10.7% subjects. The rate of diagnosis for gastric and duodenal ulcers was increased with the increases in cumulative mean levels of nighttime environmental noise. With increases in the increase in interquartile range (IQR) of nighttime noise, the hazard ratio (HR) was significantly increased by 12% (HR = 1.12; 95% CI, 1.10-1.13) for gastric ulcer and 17% (HR = 1.17; 95% CI, 1.15-1.20) for duodenal ulcer based on the fully adjusted model. CONCLUSION Our finding supports previous reports on the damaging effect of environmental noise on the gastrointestinal tract and suggests that cumulative exposure to environmental nighttime noise affects the development of peptic ulcers.
Collapse
Affiliation(s)
- Jin-Young Min
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Holinger M, Früh B, Stoll P, Graage R, Wirth S, Bruckmaier R, Prunier A, Kreuzer M, Hillmann E. Chronic intermittent stress exposure and access to grass silage interact differently in their effect on behaviour, gastric health and stress physiology of entire or castrated male growing-finishing pigs. Physiol Behav 2018; 195:58-68. [DOI: 10.1016/j.physbeh.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
|
20
|
Zhang C, Yang XZ, Xu MJ, Huang GY, Zhang Q, Cheng YX, He L, Ren HY. Melatonin Promotes Cheliped Regeneration, Digestive Enzyme Function, and Immunity Following Autotomy in the Chinese Mitten Crab, Eriocheir sinensis. Front Physiol 2018; 9:269. [PMID: 29623051 PMCID: PMC5875391 DOI: 10.3389/fphys.2018.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
In the pond culture of juvenile Eriocheir sinensis, a high limb-impairment rate seriously affects the culture success. Therefore, it is particularly important to artificially promote limb regeneration. This study evaluated the effects of melatonin on cheliped regeneration, digestive ability, and immunity, as well as its relationship with the eyestalk. It was found that the injection of melatonin significantly increased the limb regeneration rate compared with the saline group (P < 0.05). The qRT-PCR results of growth-related genes showed that the level of EcR-mRNA (ecdysteroid receptor) and Chi-mRNA (chitinase) expression was significantly increased following the melatonin injection, while the expression of MIH-mRNA (molt-inhibiting hormone) was significantly decreased (P < 0.05). Melatonin significantly increased lipase activity (P < 0.05). We observed that the survival rates of limb-impaired and unilateral eyestalk-ablated crabs were substantially improved following melatonin treatment, whereas the survival of the unilateral eyestalk-ablated crabs was significantly decreased compared with the control group (P < 0.05). Furthermore, the results of serum immune and antioxidant capacity revealed that melatonin significantly increased the total hemocyte counts (THC), hemocyanin content, total antioxidant capacity (T-AOC), acid phosphatase (ACP), and glutathione peroxidase activity (GSH-Px), whereas the immune-related parameters were significantly decreased in eyestalk-ablated crabs (P < 0.05). Therefore, these findings indicate that melatonin exerts a protective effect on organism injury, which could promote limb regeneration by up-regulating the expression of growth-related genes, improve digestive enzyme activity, and strengthen the immune response, particularly antioxidant capacity.
Collapse
Affiliation(s)
- Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Min-Jie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qian Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hong-Yu Ren
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
21
|
Sgambato D, Capuano A, Sullo MG, Miranda A, Federico A, Romano M. Gut-Brain Axis in Gastric Mucosal Damage and Protection. Curr Neuropharmacol 2017; 14:959-966. [PMID: 26903151 PMCID: PMC5333589 DOI: 10.2174/1570159x14666160223120742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/18/2015] [Accepted: 02/07/2016] [Indexed: 02/03/2023] Open
Abstract
Abstract: Background The gut-brain axis plays a potential role in numerous physiological and pathological conditions. Several substances link stomach with central nervous system. In particular, hypothalamo-pituitary-adrenocortical axis, thyrotropin-releasing factor-containing nerve fibers and capsaicin-sensitive nerves are principal mediators of the harmful and protective central nervous system-mediated effects on gastric mucosa. Also, existing evidence indicates that nitric oxide, prostaglandins and calcitonin gene-related peptide play a role as final effectors of gastric protection. Methods We undertook a structured search of bibliographic databases for peer-reviewed research literature with the aim of focusing on the role of gut-brain axis in gastric damage and protection. In particular, we examined manuscripts dealing with the role of steroids, thyrotropin-releasing hormone, prostaglandins, melatonin, hydrogen sulfide and peptides influencing food intake (i.e. leptin, cholecystokinin, peptide YY, central glucagon–like peptide-1, and ghrelin). Also, the role of GABAergic and glutamatergic pathways in gastric mucosal protection have been examined. Results We found and reviewed 61 peer-reviewed papers dealing with the major aspects related to the role of gut brain axis in gastric mucosal damage and protection. Conclusions A dense neuronal network links stomach with central nervous system and a number of neurotransmitters and peptides functionally and anatomically related to central nervous system play a major role in contributing to gastric mucosal integrity. Exploiting the mechanisms underlying the connection between brain and gut may lead to a better understanding of the pathophysiology of gastric mucosal injury and to an improvement in the prevention and, eventually, management of gastric damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Romano
- Division of Hepato-Gastroenterology, Department of Clinical and Experimental Medicine, Second University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
22
|
Ahmed E, Anwar N, Galal O, El-sabahy M, Taha M. Gastroprotective potential of melatonin versus melatonin loaded niosomes on gastric ulcer healing in rats. COMPARATIVE CLINICAL PATHOLOGY 2017; 26:35-50. [DOI: 10.1007/s00580-016-2344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Pal PK, Hasan KN, Maitra SK. Temporal relationship between the daily profiles of gut melatonin, oxidative status and major digestive enzymes in carpCatla catla. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1191697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Shahrokhi N, Khaksari M, Nourizad S, Shahrokhi N, Soltani Z, Gholamhosseinian A. Protective effects of an interaction between vagus nerve and melatonin on gastric ischemia/reperfusion: the role of oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:72-9. [PMID: 27096067 PMCID: PMC4823619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Vagal pathways in gastrointestinal tract are the most important pathways that regulate ischemia/reperfusion (I/R). Gastrointestinal tract is one of the important sources of melatonin production. The aim of this study was to investigate probable protective effect of the interaction between vagus nerve and melatonin after I/R. MATERIALS AND METHODS This study was performed in male rats that were divided into six groups. Cervical vagus nerve was cut bilaterally after induction of I/R and the right one was stimulated by stimulator. Melatonin or vehicle was injected intraperitoneally. The stomach was removed for histopathological and biochemical investigations. RESULTS A significant decrease in infiltration of gastric neutrophils and malondialdehyde (MDA) level after I/R was induced by melatonin and was disappeared after vagotomy. The stimulation of vagus nerve significantly enhanced these effects of melatonin. However, a stimulation of vagus nerve alone increased neutrophils infiltration and MDA level. Melatonin significantly increased the activities of catalase, glutathione peroxidase (GPx), superoxide dismutases (SOD). Unlike stimulation of vagus nerve, vagotomy decreased these effects of melatonin. CONCLUSION According to these results, it is probable that protective effects of melatonin after I/R may be mediated by vagus nerve. Therefore, there is an interaction between melatonin and vagus nerve in their protective effects.
Collapse
Affiliation(s)
- Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author: Mohammad Kaksari. Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran. ;
| | | | - Nava Shahrokhi
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Dept. of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Gholamhosseinian
- Department of Biochemistry, Medical School of Afzalipour, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Berstad A, Raa J, Valeur J. Indole - the scent of a healthy 'inner soil'. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:27997. [PMID: 26282698 PMCID: PMC4539392 DOI: 10.3402/mehd.v26.27997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022]
Abstract
Tryptophan is an essential amino acid with an indole nucleus. Humans cannot produce this amino acid themselves, but must obtain it through their diet. Much attention is currently paid to the wide physiological and clinical implications of the tryptophan-derived substances, serotonin and kynurenines, generated by human enzymes following the intestinal absorption of tryptophan. However, even before being absorbed, several microbial metabolites of tryptophan are formed, mainly from ‘malabsorbed’ (incompletely digested) proteins within the colon. The normal smell of human faeces is largely due to indole, one of the major metabolites. Recent studies indicate that this foul-smelling substance is also of utmost importance for our health.
Collapse
Affiliation(s)
- Arnold Berstad
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway;
| | - Jan Raa
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| |
Collapse
|
26
|
Heitkemper MM, Han CJ, Jarrett ME, Gu H, Djukovic D, Shulman RJ, Raftery D, Henderson WA, Cain KC. Serum Tryptophan Metabolite Levels During Sleep in Patients With and Without Irritable Bowel Syndrome (IBS). Biol Res Nurs 2015; 18:193-8. [PMID: 26156003 DOI: 10.1177/1099800415594251] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poor sleep and stress are more frequently reported by women with irritable bowel syndrome (IBS) than by healthy control (HC) women. The pathophysiology linking poor sleep and stress to gastrointestinal symptoms remains poorly understood. We used a metabolomic approach to determine whether tryptophan (TRP) metabolites differ between women with and without IBS and whether the levels are associated with sleep indices and serum cortisol levels. This study sample included 38 women with IBS and 21 HCs. The women were studied in a sleep laboratory for three consecutive nights. On the third night of the study, a social stressor was introduced, then blood samples were drawn every 20 min and sleep indices were measured. Metabolites were determined by targeted liquid chromatography tandem mass spectrometry in a sample collected 1 hr after the onset of sleep. The ratios of each metabolite to TRP were used for analyses. Correlations were controlled for age and oral contraceptive use. Melatonin/TRP levels were lower (p = .005) in the IBS-diarrhea group versus the IBS-constipation and HC groups, and kynurenine/TRP ratios tended to be lower (p = .067) in the total IBS and IBS-diarrhea groups compared to HCs. Associations within the HC group included melatonin/TRP with polysomnography-sleep efficiency (r = .61, p = .006) and weaker positive correlations with the other ratios for either sleep efficiency or percentage time in rapid eye movement sleep (r > .40, p = .025-.091). This study suggests that reductions in early nighttime melatonin/TRP levels may be related to altered sleep quality in IBS, particularly those with diarrhea.
Collapse
Affiliation(s)
- Margaret M Heitkemper
- Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA
| | - Claire Jungyoun Han
- Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA
| | - Monica E Jarrett
- Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA
| | - Haiwei Gu
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Robert J Shulman
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wendy A Henderson
- Digestive Disorders Unit, Biobehavioral Branch, Division of Intramural Research, NINR, NIH, DHHS, Bethesda, MD, USA
| | - Kevin C Cain
- Department of Biostatistics and Office of Nursing Research, University of Washington, Seattle, WA, USA
| |
Collapse
|