1
|
Mazzetto R, Miceli P, Tartaglia J, Ciolfi C, Sernicola A, Alaibac M. Role of IL-4 and IL-13 in Cutaneous T Cell Lymphoma. Life (Basel) 2024; 14:245. [PMID: 38398754 PMCID: PMC10889933 DOI: 10.3390/life14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The interleukins IL-4 and IL-13 are increasingly recognized contributors to the pathogenesis of cutaneous T cell lymphomas (CTCLs), and their role in disease-associated pruritus is accepted. The prevailing Th2 profile in advanced CTCL underscores the significance of understanding IL-4/IL-13 expression dynamics from the early stages of disease, as a shift from Th1 to Th2 may explain CTCL progression. Targeted agents blocking key cytokines of type 2 immunity are established therapeutics in atopic disorders and have a promising therapeutic potential in CTCL, given their involvement in cutaneous symptoms and their contribution to the pathogenesis of disease. IL-4, IL-13, and IL-31 are implicated in pruritus, offering therapeutic targets with dupilumab, tralokinumab, lebrikizumab, and nemolizumab. This review analyzes current knowledge on the IL-4/IL-13 axis in mycosis fungoides and Sezary syndrome, the most common types of CTCL, examining existing literature on the pathogenetic implications with a focus on investigational treatments. Clinical trials and case reports are required to shed light on novel uses of medications in various diseases, and ongoing research into the role of IL-4/IL-13 axis blockers in CTCL therapy might not only improve the management of disease-related pruritus but also provide in-depth insights on the pathophysiologic mechanisms of CTCL.
Collapse
Affiliation(s)
| | | | | | | | - Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padova, Italy; (R.M.); (P.M.); (J.T.); (C.C.); (M.A.)
| | | |
Collapse
|
2
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
3
|
Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The "itchy" cytokine in inflammation and therapy. Allergy 2021; 76:2982-2997. [PMID: 33629401 DOI: 10.1111/all.14791] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
The cytokine interleukin-31 has been implicated in the pathophysiology of multiple atopic disorders such as atopic dermatitis (AD), allergic rhinitis, and airway hyper-reactivity. In AD, IL-31 has been identified as one of the main "drivers" of its cardinal symptom, pruritus. Here, we summarize the mechanisms by which IL-31 modulates inflammatory and allergic diseases. TH 2 cells play a central role in AD and release high levels of TH 2-associated cytokines including IL-31, thereby mediating inflammatory responses, initiating immunoregulatory circuits, stimulating itch, and neuronal outgrowth through activation of the heterodimeric receptor IL-31 receptor A (IL31RA)/Oncostatin M receptor (OSMRβ). IL31RA expression is found on human and murine dorsal root ganglia neurons, epithelial cells including keratinocytes and various innate immune cells. IL-31 is a critical cytokine involved in neuroimmune communication, which opens new avenues for cytokine modulation in neuroinflammatory diseases including AD/pruritus, as validated by recent clinical trials using an anti-IL-31 antibody. Accordingly, inhibition of IL-31-downstream signaling may be a beneficial approach for various inflammatory diseases including prurigo. However, as to whether downstream JAK inhibitors directly block IL-31-mediated-signaling needs to be clarified. Targeting the IL-31/IL31RA/OSMRβ axis appears to be a promising approach for inflammatory, neuroinflammatory, and pruritic disorders in the future.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics University Hospital Düsseldorf Düsseldorf Germany
| | - Martin Steinhoff
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
- Department of Dermatology Weill Cornell Medicine‐Qatar Doha Qatar
- Qatar UniversityCollege of Medicine Doha Qatar
| | - Fareed Ahmad
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Majid Alam
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| |
Collapse
|
4
|
Belmesk L, Muntyanu A, Cantin E, AlHalees Z, Jack CS, Le M, Sasseville D, Iannattone L, Ben-Shoshan M, Litvinov IV, Netchiporouk E. Prominent Role of Type 2 Immunity in Skin Diseases-Beyond Atopic Dermatitis. J Cutan Med Surg 2021; 26:33-49. [PMID: 34261335 DOI: 10.1177/12034754211027858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 immunity, illustrated by T helper 2 lymphocytes (Th2) and downstream cytokines (IL-4, IL-13, IL-31) as well as group 2 innate lymphoid cells (ILC2), is important in host defense and wound healing.1 The hallmark of type 2 inflammation is eosinophilia and/or high IgE counts and is best recognized in atopic diathesis. Persistent eosinophilia, such as seen in hypereosinophilic syndromes, leads to fibrosis and hence therapeutic Type 2 inhibition in fibrotic diseases is of high interest. Furthermore, as demonstrated in cutaneous T cell lymphoma, advanced disease is characterized by Th1 to Th2 switch allowing cancer progression and immunosuppression. Development of targeted monoclonal antibodies against IL-4Rα (eg, dupilumab) led to a paradigm shift for the treatment of atopic dermatitis (AD) and stimulated research to better understand the role of Type 2 inflammation in other skin conditions. In this review, we summarize up to date knowledge on the role of Type 2 inflammation in skin diseases other than AD and highlight whether the use of Type 2 targeted therapies has been documented or is being investigated in clinical trials. This manuscript reviews the role of Type 2 inflammation in dermatitis, neurodermatitis, IgE-mediated dermatoses (eg, bullous pemphigoid, chronic spontaneous urticaria), sclerodermoid conditions and skin neoplasms.
Collapse
Affiliation(s)
| | - Anastasiya Muntyanu
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Zeinah AlHalees
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Carolyn S Jack
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Michelle Le
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Denis Sasseville
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Lisa Iannattone
- 60301 Division of Dermatology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy Immunology and Dermatology, Department of Pediatrics, McGill University Health Center, Montreal, QC, Canada
| | - Ivan V Litvinov
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Elena Netchiporouk
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Maglie R, Ugolini F, De Logu F, Nassini R, Simi S, Nardiello P, Pasqualini E, Baroni G, Del Bianco E, Massi D, Antiga E. Overexpression of helper T cell type 2-related molecules in the skin of patients with eosinophilic dermatosis of hematologic malignancy. J Am Acad Dermatol 2021; 87:761-770. [PMID: 34265409 DOI: 10.1016/j.jaad.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Eosinophilic dermatosis of hematologic malignancy (EDHM) is a rare dermatosis associated with blood tumors. OBJECTIVE To characterize the expression of T-cell and B-cell markers and pruritogenic mediators in EDHM skin. METHODS Immunohistochemical and immunofluorescence analysis were performed in 12 skin samples of EDHM, 11 samples of bullous pemphigoid (BP), and 5 samples from healthy controls (HC). Serum levels of interleukin (IL) 4 were analyzed in 11 patients with EDHM, 11 BP patients, and 5 HC by enzyme-linked immunosorbent assay. RESULTS T-cell markers, including clusters of differentiation (CD) 3, CD4, CD8, and CD5 were significantly overexpressed in EDHM and BP skin compared to HC. A predominance of CD4+ over CD8+ cells and GATA3+ (helper T cell type 2 [Th2] marker) over T-bet+ (Th1 marker) cells were observed. FOXP3 expression was increased but the FOXP3/CD4 ratio was low. B-cell markers were under-represented, without significant differences between the 3 groups. IL-4 and IL-31 were significantly overexpressed in EDHM and BP compared to HC and colocalized with the Th2-associated marker GATA3. Eotaxin-1 was significantly overexpressed in EDHM compared to BP and HC. IL-4 serum concentration was significantly increased in EDHM and BP compared to HC. LIMITATIONS Small sample size; retrospective design. CONCLUSIONS Targeting Th2-related molecules, in particular IL-4, holds promise for EDHM management.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy.
| | - Filippo Ugolini
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Simi
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Pamela Nardiello
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Elisa Pasqualini
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Gianna Baroni
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Elena Del Bianco
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Daniela Massi
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, Florence, Italy
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Di Salvo E, Allegra A, Casciaro M, Gangemi S. IL-31, itch and hematological malignancies. Clin Mol Allergy 2021; 19:8. [PMID: 34118946 PMCID: PMC8199420 DOI: 10.1186/s12948-021-00148-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Pruritus is one of the most common symptoms experienced by neoplastic patients. The pathogenesis of neoplastic itch is complex and multifactorial and could be due to an unbalanced production of humoral mediators by altered immune effector cells. IL-31 is a pro-inflammatory cytokine produced by CD4 + T helper cells. The aim of this review was to evaluate the role of this Th2 cytokine and its receptor IL-31RA, in the onset of neoplastic pruritus. We analysed scientific literature looking for the most relevant original articles linking IL-31to itch in oncologic diseases. Interleukin-31 seems to be a main itch mediator in several hematologic disease such as Cutaneous T cells lymphomas. In these patients IL-31 was positively linked to itch level, and IL-31 matched with disease stage. IL-31 seems to play an important role in the signalling pathway involved in pruritus, but it is also suggested to play a proinflammatory and immunomodulatory role which could play a part in the progression of the neoplastic disease. Further studies will be fundamental in facing pruritus in oncologic patients, since this problem compromise their quality of life worsening an already critic picture.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| |
Collapse
|
7
|
Kabashima K, Irie H. Interleukin-31 as a Clinical Target for Pruritus Treatment. Front Med (Lausanne) 2021; 8:638325. [PMID: 33644103 PMCID: PMC7906974 DOI: 10.3389/fmed.2021.638325] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, the published literature has suggested the key involvement of the cytokine interleukin-31 (IL-31) in the symptomatology of pruritus, and both IL-31 and its receptor have become potential therapeutic targets for a range of pruritic diseases. Elevated levels of IL-31 or its receptor have been reported in the tissue or serum of patients with pruritic skin diseases, such as atopic dermatitis, prurigo nodularis, and psoriasis. Pruritus places a heavy burden on patients, and can have a negative impact on daily life, sleep, and mental health. Since current anti-pruritic treatments are often ineffective, affected patients are in urgent need of new therapies. As a result, drug development targeting the IL-31 pathway is evolving rapidly. To date, only nemolizumab, a humanized monoclonal antibody targeting the IL-31 receptor, has successfully completed late-stage clinical studies. This article will highlight our current clinical understanding of the role of IL-31 in pruritic disease, and explore recent progress in drug development as well as the anticipated future advances in this field.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Irie
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|