1
|
Zhao J, Wang R, Song L, Han H, Wang P, Zhao Y, Zhang Y, Zhang H. Causal association between lipid-lowering drugs and female reproductive endocrine diseases: a drug-targeted Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1295412. [PMID: 38027179 PMCID: PMC10668027 DOI: 10.3389/fendo.2023.1295412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The relationship between dyslipidemia and female reproductive endocrine diseases has been increasingly studied. The use of lipid-lowering drugs in treating various related diseases, including coronary heart disease, may affect female reproductive endocrine diseases. Therefore, our study aims to investigate the effects of lipid-lowering drugs on female reproductive endocrine diseases and provide a basis for the appropriate selection of drugs. Methods In this study, we focused on three drug targets of statins, namely HMG-CoA reductase (HMGCR) inhibitors, proprotein convertase kexin 9 (PCSK9) inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors. To identify potential inhibitors for these targets, we collected single nucleotide polymorphisms (SNPs) associated with HMGCR, PCSK9, and NPC1L1 from published genome-wide association study statistics. Subsequently, we conducted a drug target Mendelian randomization (MR) analysis to investigate the effects of these inhibitors on reproductive endocrine diseases mediated by low-density lipoprotein cholesterol (LDL-C) levels. Alongside coronary heart disease as a positive control, our main outcomes of interest included the risk of polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), premenstrual syndrome (PMS), abnormal uterine bleeding (including menorrhagia and oligomenorrhea), and infertility. Results PCSK9 inhibitors significantly increased the risk of infertility in patients (OR [95%CI] = 1.14 [1.06, 1.23], p<0.05). In contrast, HMGCR inhibitors significantly reduced the risk of menorrhagia in female patients (OR [95%CI] = 0.85 [0.75, 0.97], p<0.05), but had no statistical impact on patients with oligomenorrhea. Conclusion The findings suggest that PCSK9 inhibitors may significantly increase the risk of infertility in patients. On the other hand, HMGCR inhibitors could potentially offer protection against menorrhagia in women. However, no effects of lipid-lowering drugs have been observed on other reproductive endocrine disorders, such as PCOS, POF, PMS and oligomenorrhea.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Runfang Wang
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang, China
| | - Liyun Song
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Hua Han
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Pei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Yuan Zhao
- Department of Clinical Laboratories, Kunhua Affiliated Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yunxia Zhang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Katsiki N, Vrablik M, Banach M, Gouni-Berthold I. Inclisiran, Low-Density Lipoprotein Cholesterol and Lipoprotein (a). Pharmaceuticals (Basel) 2023; 16:ph16040577. [PMID: 37111334 PMCID: PMC10143414 DOI: 10.3390/ph16040577] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Dyslipidemia treatment is of major importance in reducing the risk of atherosclerotic cardiovascular disease (ASCVD), which is still the most common cause of death worldwide. During the last decade, a novel lipid-lowering drug category has emerged, i.e., proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Apart from the two available anti-PCSK9 monoclonal antibodies (alirocumab and evolocumab), other nucleic acid-based therapies that inhibit or "silence" the expression of PCSK9 are being developed. Among them, inclisiran is the first-in-class small interfering RNA (siRNA) against PCSK9 that has been approved by both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of hypercholesterolemia. Importantly, inclisiran therapy may improve low-density lipoprotein cholesterol (LDL-C) target achievement by offering a prolonged and significant LDL-C-lowering effect with the administration of only two doses per year. The present narrative review discusses the ORION/VICTORION clinical trial program that has been designed to investigate the impact of inclisiran on atherogenic lipoproteins and major adverse cardiac events in different patient populations. The results of the completed clinical trials are presented, focusing on the effects of inclisiran on LDL-C and lipoprotein (a) (Lp(a)) levels as well as on other lipid parameters such as apolipoprotein B and non-high-density lipoprotein cholesterol (non-HDL-C). Ongoing clinical trials with inclisiran are also discussed.
Collapse
Affiliation(s)
- Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 574 00 Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Michal Vrablik
- Third Department of Medicine-Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz and Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
3
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
4
|
Ward J, Lyall LM, Strawbridge RJ, Stanciu I, Veldsman M, Garfield V, Celis‐Morales C, Newby D, Stewart W, Pell JP, Sattar N, Lyall DM. Testing for association between exonic glucagon-like peptide 1 receptor mutation with physical and brain health traits in UK Biobank. Diabetes Obes Metab 2023; 25:623-627. [PMID: 36181450 PMCID: PMC10092514 DOI: 10.1111/dom.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Joey Ward
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
| | - Laura M. Lyall
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
| | - Rona J. Strawbridge
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
- Cardiovascular Medicine Unit, Department of Medicine SolnaKarolinska InstituteStockholmSweden
| | - Ioana Stanciu
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
| | - Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordOxfordUK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and AgeingInstitute of Cardiovascular Science, University College LondonLondonLondonUK
| | - Carlos Celis‐Morales
- Education, Physical Activity and Health Research UnitUniversity Católica del MauleTalcaChile
- School of Cardiovascular and Metabolic Health, University of GlasgowGlasgowScotlandUK
| | - Danielle Newby
- Department of PsychiatryUniversity of OxfordOxfordOxfordUK
| | - William Stewart
- Department of NeuropathologyQueen Elizabeth University HospitalGlasgowScotlandUK
| | - Jill P. Pell
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of GlasgowGlasgowScotlandUK
| | - Donald M. Lyall
- School of Health & WellbeingUniversity of GlasgowGlasgowScotlandUK
| |
Collapse
|
5
|
Ataei S, Ganjali S, Banach M, Karimi E, Sahebkar A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with the PCSK9/LDLR pathway. Arch Med Sci 2023; 19:203-208. [PMID: 36817686 PMCID: PMC9897094 DOI: 10.5114/aoms/152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a class of gene expression epigenetic regulators that play roles in regulating genes involved in cholesterol homeostasis, including low-density lipoprotein receptor (LDLR) and PCSK9; therefore, miRNAs have been suggested as potential therapeutic targets for treating cardiometabolic disorders. Thus, the present study aimed to assess the effect of immunotherapy with the PCSK9 peptide vaccine on the hepatic expression levels of microRNAs associated with the LDLR pathway, including miRNA-27a, miRNA-30c, and miRNA-191, in normal vaccinated mice. MATERIAL AND METHODS PCSK9 immunogenic peptide and 0.4% alum adjuvant were mixed at a 1 : 1 ratio and used as a vaccine formulation. Male albino mice were randomly assigned to the vaccine or control group. Mice in the vaccine group were injected four times at two-week intervals with a PCSK9 peptide vaccine, and mice in the control group were injected with phosphate-buffered saline (PBS). Animal livers were sampled 2 weeks after the last injection to assess miRNA expression levels. The hepatic expression levels of miRNA-27a, miRNA-30c, and miRNA-191 were evaluated by SYBR Green real-time PCR, quantified by a comparative (2- Δ Δ CT) method (fold change (FC)) and normalized to U6 small nuclear RNA (U6snRNA) expression as an internal control. RESULTS The hepatic expression level of miRNA-27a was significantly lower in mice following immunotherapy with the PCSK9 peptide vaccine compared to the control group (FC: 0.731 ±0.1, p = 0.027). Also, there was a borderline significantly lower hepatic expression level of miRNA-30c in the vaccinated group compared to the control (FC: 0.569 ±0.1, p = 0.078). However, no significant differences were found in the hepatic expression level of miRNA-191 between the two studied groups (FC: 0.852 ±0.1, p = 0.343). CONCLUSIONS According to the findings, the PCSK9 peptide vaccine could effectively reduce the hepatic expression level of miRNA-27a and may be helpful in the management of LDL-C level and atherosclerosis, which may be mediated through the LDLR pathway.
Collapse
Affiliation(s)
- Sarina Ataei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Feng Z, Li X, Tong WK, He Q, Zhu X, Xiang X, Tang Z. Real-world safety of PCSK9 inhibitors: A pharmacovigilance study based on spontaneous reports in FAERS. Front Pharmacol 2022; 13:894685. [PMID: 36506552 PMCID: PMC9729267 DOI: 10.3389/fphar.2022.894685] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: We aimed to evaluate alirocumab- and evolocumab-related adverse events (AEs) in real-world compared with all other drugs, overall and by gender and age subgroups; we also aimed to compare their risks of cognitive impairment, musculoskeletal disorders and diabetes with various statins and ezetimibe. Methods: We retrospectively extracted AE reports from the FDA Adverse Event Reporting System (FAERS) database during July 2015-June 2021. Disproportionality analyses were performed using reporting odds ratios (RORs) to detect AE signals of alirocumab and evolocumab in the overall population and in different age and gender subgroups, respectively. Results: Compared with all other drugs, both alirocumab and evolocumab had a significant signal in "musculoskeletal and connective tissue disorders" (ROR1 = 2.626, 95% CI 2.552-2.702; ROR2 = 2.575, 95% CI 2.538-2.613). The highest ROR value of 2.311 (95% CI 2.272-2.351) was for "injury, poisoning and procedural complications" and was found in patients aged ≥65 years on evolocumab. The most frequent AEs were "general disorders and administration site conditions" and "musculoskeletal and connective tissue disorders" for all subpopulations. At the preferred term level, the most frequent AE signal was myalgia for alirocumab and injection site pain for evolocumab, overall and by subgroups. Compared with statins/ezetimibe, PCSK9 inhibitors exhibited lower ROR values for adverse events associated with SOC "nervous system disorders", "psychiatric disorders" and "metabolism and nutrition disorders" (all RORs < 1), but mixed results for musculoskeletal disorders. Compared with all other drugs, undocumented AEs, such as acute cardiac event (ROR = 30.0, 95% CI 9.4-95.3) and xanthoma (ROR = 9.3, 95% CI 3.4-25.5), were also reported. Conclusion: Real-world evidence showed that PCSK9 inhibitors were associated with an increased risk of musculoskeletal and connective tissue disorders and general disorders and administration site conditions, overall and by subgroups. Muscle toxicity, injection site reactions, and influenza-like illness were significant AE signals. Compared with various statins and ezetimibe, PCSK9 inhibitors have shown a favorable safety profile in muscle-related events, cognitive impairment and diabetes. Some undocumented AE signals were also reported. Due to the limitations of spontaneous reporting databases, further studies are still needed to establish causality and validate our results.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoye Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wai Kei Tong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China,*Correspondence: Zhijia Tang,
| |
Collapse
|
7
|
Banach M, Reiner Z, Cicero AF, Sabouret P, Viigimaa M, Sahebkar A, Postadzhiyan A, Gaita D, Pella D, Penson PE. 2022: the year in cardiovascular disease - the year of upfront lipid lowering combination therapy. Arch Med Sci 2022; 18:1429-1434. [PMID: 36457968 PMCID: PMC9710261 DOI: 10.5114/aoms/156147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research institute (PMMHRI), Lodz, Poland
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Arrigo F.G. Cicero
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Pierre Sabouret
- Heart Institute and Action Group, Pitié-Salpétrière, Sorbonne University Paris, Paris, France
| | - Margus Viigimaa
- Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- The North Estonia Medical Centre, Tallinn, Estonia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Postadzhiyan
- Department of General Medicine, Emergency University Hospital “St. Anna”, Medical University of Sofia, Sofia, Bulgaria
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
- Clinica de Cardiologie, Institutul de Boli Cardiovasculare Timisoara, Romania
| | - Daniel Pella
- 2 Department of Cardiology of the East Slovak Institute of Cardiovascular Disease and Faculty of Medicine PJ Safarik University, Kosice, Slovak Republic
| | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| |
Collapse
|
8
|
Bell AS, Rosoff DB, Mavromatis LA, Jung J, Wagner J, Lohoff FW. Comparing the Relationships of Genetically Proxied PCSK9 Inhibition With Mood Disorders, Cognition, and Dementia Between Men and Women: A Drug-Target Mendelian Randomization Study. J Am Heart Assoc 2022; 11:e026122. [PMID: 36285785 PMCID: PMC9673626 DOI: 10.1161/jaha.122.026122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Background PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors are important therapeutic options for reducing cardiovascular disease risk; however, questions remain regarding potential differences in the neuropsychiatric impact of long-term PCSK9 inhibition between men and women. Methods and Results Using PCSK9 gene single-nucleotide polymorphisms from European ancestry-based genome-wide association studies of low-density lipoprotein cholesterol (N=1 320 016), circulating PCSK9 protein levels (N=10 186), tissue-specific PCSK9 gene expression, sex-specific genome-wide association studies of anxiety, depression, cognition, insomnia, and dementia (ranging from 54 321 to 194 174), we used drug-target inverse variance-weighted Mendelian randomization (MR) and complementary MR methods (MR Egger, weighted median, and weighted mode) to investigate potential neuropsychiatric consequences of genetically proxied PCSK9 inhibition in men and women. We failed to find evidence surpassing correction for multiple comparisons of relationships between genetically proxied PCSK9 inhibition and the risk for the 12 neuropsychiatric end points in either men or women. Drug-target analyses were generally well-powered to detect effect estimates at several hypothesized thresholds for both combined-sex and sex-specific end points, especially analyses using PCSK9 instruments derived from protein and expression quantitative trait loci. Further, MR estimates across complementary MR methods and additional models using genetic instruments derived from circulating PCSK9 protein levels and tissue-specific PCSK9 expression were in alignment, strengthening causal inference. Conclusions Genetically proxied PCSK9 inhibition showed a neutral neuropsychiatric side effect profile with no major sex-specific differences. Given statistical power considerations, replication with larger samples, as well as data from other ancestral populations, are necessary. These findings may have important clinical implications for lipid-lowering drug-prescribing practices and side effect monitoring of approved and future PCSK9 therapies.
Collapse
Affiliation(s)
- Andrew S. Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
| | - Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
- NIH‐Oxford‐Cambridge Scholars Program, Nuffield Department of Population HealthUniversity of OxfordUK
| | - Lucas A. Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMD
| |
Collapse
|
9
|
Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, Lohoff FW. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function. J Am Coll Cardiol 2022; 80:653-662. [PMID: 35953131 DOI: 10.1016/j.jacc.2022.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lipid-lowering therapy with statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition are effective strategies in reducing cardiovascular disease risk; however, concerns remain about potential long-term adverse neurocognitive effects. OBJECTIVES This genetics-based study aimed to evaluate the relationships of long-term PCSK9 inhibition and statin use on neurocognitive outcomes. METHODS We extracted single-nucleotide polymorphisms in 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and PCSK9 from predominantly European ancestry-based genome-wide association studies summary-level statistics of low-density lipoprotein cholesterol and performed drug-target Mendelian randomization, proxying the potential neurocognitive impact of drug-based PCSK9 and HMGCR inhibition using a range of outcomes to capture the complex facets of cognition and dementia. RESULTS Using data from a combined sample of ∼740,000 participants, we observed a neutral cognitive profile related to genetic PCSK9 inhibition, with no significant effects on cognitive performance, memory performance, or cortical surface area. Conversely, we observed several adverse associations for HMGCR inhibition with lowered cognitive performance (beta: -0.082; 95% CI: -0.16 to -0.0080; P = 0.03), reaction time (beta = 0.00064; 95% CI: 0.00030-0.00098; P = 0.0002), and cortical surface area (beta = -0.18; 95% CI: -0.35 to -0.014; P = 0.03). Neither PCSK9 nor HMGCR inhibition impacted biomarkers of Alzheimer's disease progression or Lewy body dementia risk. Consistency of findings across Mendelian randomization methods accommodating different assumptions about genetic pleiotropy strengthens causal inference. CONCLUSIONS Using a wide range of cognitive function and dementia endpoints, we failed to find genetic evidence of an adverse PCSK9-related impact, suggesting a neutral cognitive profile. In contrast, we observed adverse neurocognitive effects related to HMGCR inhibition, which may well be outweighed by the cardiovascular benefits of statin use, but nonetheless may warrant pharmacovigilance.
Collapse
Affiliation(s)
- Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA; NIH-Oxford-Cambridge Scholars Program, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Monogenic and polygenic causes of low and extremely low LDL-C levels in patients referred to specialty lipid clinics: Genetics of low LDL-C. J Clin Lipidol 2021; 15:658-664. [PMID: 34340953 DOI: 10.1016/j.jacl.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In clinical setting, current standard-of-care does not include genetic testing for patients with low (<50 mg/dL) and extremely low (<20 mg/dL) levels of serum low-density lipoprotein-cholesterol (LDL-C). OBJECTIVE We aimed identify the underlying molecular cause - both monogenic and polygenic - of low and extremely low LDL-C levels in a cohort of patients presenting to specialty lipid clinics. METHODS Whole exome sequencing was done in patients with low or extremely low LDL-C not due to any secondary causes. RESULTS Nine patients (4 women), ranging in age from 25 to 63 years old, with low or extremely low LDL-C levels were evaluated. Median LDL-C was 16 mg/dL (range undetectable - 43), total cholesterol 82 mg/dL (42 - 101), triglycerides 35 mg/dL (19-239), and high-density lipoprotein-cholesterol 45 mg/dL (24-81). Of nine patients, two carried known pathogenic variants in APOB (one stop-gain, one deletion; LDL-C range undetectable -10 mg/dL); three patients had novel APOB heterozygous mutations (two frameshift deletions and one splice site; LDL-C range undectable-13 mg/dL); two had heterozygous APOB frameshift deletions previously reported as variants of unknown significance (LDL-C 18 mg/dL in both patients); one (LDL-C 43 mg/dL) had two heterozygous mutations in PCSK9, both previously reported to be benign; and one patient (LDL-C 16 mg/dL) had the APO E2/E2 genotype along with several variants of unknown significance in genes associated with triglycerides. No patients had an LDL-C polygenic risk score below the 5th percentile (range 26th percentile to 93rd percentile). CONCLUSION We found APOB mutations to be the most common molecular defect in patients presenting to lipid clinics with low or extremely low LDL-C . Whether clinical genetic testing and LDL-C polygenic risk scores have any utility - other than diagnostic purposes - for such patients remains unclear. In addition, further efforts may be needed to better reclassify pathogenicity of variants of unknown significance.
Collapse
|
11
|
Macchi C, Ferri N, Sirtori CR, Corsini A, Banach M, Ruscica M. Proprotein Convertase Subtilisin/Kexin Type 9: A View beyond the Canonical Cholesterol-Lowering Impact. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1385-1397. [PMID: 34019847 DOI: 10.1016/j.ajpath.2021.04.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), mainly synthetized and released by the liver, represents one of the key regulators of low-density lipoprotein cholesterol. Although genetic and interventional studies have demonstrated that lowering PCSK9 levels corresponds to a cardiovascular benefit, identification of non-cholesterol-related processes has emerged since its discovery. Besides liver, PCSK9 is also expressed in many tissues (eg, intestine, endocrine pancreas, and brain). The aim of the present review is to describe and discuss PCSK9 pathophysiology and possible non-lipid-lowering effects whether already extensively characterized (eg, inflammatory burden of atherosclerosis, triglyceride-rich lipoprotein metabolism, and platelet activation), or to be unraveled (eg, in adipose tissue). The identification of novel transcriptional factors in the promoter region of human PCSK9 (eg, ChREBP) characterizes new mechanisms explaining how controlling intrahepatic glucose may be a therapeutic strategy to reduce cardiovascular risk in type 2 diabetes. Finally, the evidence describing PCSK9 as involved in cell proliferation and apoptosis raises the possibility of this protein being involved in cancer risk.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy; Istituti di Ricovero e Cura a Carattere Scientifico MultiMedica, Sesto San Giovanni/Milan, Italy
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| |
Collapse
|