1
|
Hanif T, Ivaska LE, Ahmad F, Tan G, Mikola E, Puhakka T, Palomares O, Akdis CA, Toppila-Salmi S, Jartti T. Tonsillar transcriptional profiles in atopic and non-atopic subjects. Allergy 2023; 78:522-536. [PMID: 35899482 PMCID: PMC10087516 DOI: 10.1111/all.15458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Emerging research suggests that local lymphatic tissue such as tonsils have important role in regulating the immune responses. However, allergen sensitization-induced alterations in transcriptome of tonsils are not known. OBJECTIVES To examine the key differences in tonsillar gene expression between atopic and non-atopic subjects and further by type of sensitization. METHODS RNA-sequencing was performed on 52 tonsillar samples from atopic and non-atopic tonsillectomy patients. Sensitization to common food- and aero-allergen was defined by allergen specific IgE. Following groups were studied: (1) aero- and food-allergen sensitized (AS+FS) versus non-sensitized (NS), (2) aeroallergen-sensitized (AS) versus food-allergen sensitized (FS), (3) AS versus NS, (4) FS versus NS. Bioinformatics analysis was done using DESeq2(v3.10.2), WGCNA and GATK pipeline in R software (v3.3.1). Protein-protein interaction network was made from String database. RESULTS We studied 13 aeroallergen-sensitized, 6 food-allergen sensitized, 4 both food-and aero-allergen-sensitized and 29 non-sensitized tonsillectomy patients. Overall, 697 unique differentially expressed genes (DEGs) were detected in all sensitized subgroups including chemokines (CXCL2, CXCL8, CXCL10, CXCL11), IL-20RA, MUC1 and MUC20. When comparing different groups, the gene expression profiles overlapped except the AS versus FS group comparison, suggesting significantly different gene expression between the two sensitization subgroups. Furthermore, aeroallergen-sensitized subjects had more prominent immune responses compared with non-sensitized and food-allergen sensitized subjects including gene expression for IL-17 pathway and Toll-like receptor signalling pathway. CONCLUSION Allergic sensitization is associated with extensive tonsillar transcriptomic alterations and changes in immune related genes and pathways. Distinct differences were found between aero-allergen and food-allergen sensitization.
Collapse
Affiliation(s)
- Tanzeela Hanif
- Department of Pediatrics and Adolescent Medicine, University of Turku, Turku, Finland.,Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lotta E Ivaska
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Freed Ahmad
- Department of Biology University of Turku, Turku, Finland
| | - Ge Tan
- Functional Genomics Center Zurich, ETH Zürich/University of Zürich, Zurich, Switzerland.,Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Mikola
- Department of Otorhinolaryngology, Satakunta Central Hospital, Pori, Finland
| | - Tuomo Puhakka
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Oscar Palomares
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kuhne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki & Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, University of Turku, Turku, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Bao Y, Zhu X. Role of Chemokines and Inflammatory Cells in Respiratory Allergy. J Asthma Allergy 2022; 15:1805-1822. [PMID: 36575714 PMCID: PMC9790160 DOI: 10.2147/jaa.s395490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The idea of "one airway, one disease" has been gaining importance in the last decade. In the upper and lower airways, allergic mechanisms interact with each other. In the initial stage of respiratory allergic inflammation, allergens contact the respiratory epithelium, which produces chemokines and inflammatory factors, which cause allergic reactions by binding to the corresponding receptors and chemotactic various inflammatory cells to reach the epithelium and tissues. It also drives inflammatory cells to activate and produce more inflammatory factors, thus producing a cascade amplification effect. Inflammatory cell aggregation and activation are very complex and interact with each other in a lattice structure. By blocking the action of various chemokines, inflammatory cell aggregation is reduced, and ultimately the symptoms of respiratory allergy are alleviated. Chemokines can serve as cues for coordinated recruitment of immune cells into and out of tissues, as well as directing the spatial organization of immune cells within tissues and cellular interactions. Chemokines are critical in directing immune cell migration and thus have an important role in the direction of respiratory allergy: however, chemokines are also involved in the production and recruitment of immune cells that contribute to respiratory allergy. In this article, linking the upper and lower respiratory tracts. We review the role of the chemokine system in the respiratory immune response and discuss how respiratory disease modulates overall chemokines to shape the type and outcome of the immune response to the treatment of respiratory allergic disease so that we can further deepen our knowledge of chemokines in the direction of respiratory allergy. In the future, we can do drug research and development based on this network structure and explore new research directions.
Collapse
Affiliation(s)
- Youwei Bao
- Department of Otolaryngology Head & Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xinhua Zhu
- Department of Otolaryngology Head & Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China,Correspondence: Xinhua Zhu, Email
| |
Collapse
|
3
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
4
|
Venn-Watson S, Reiner J, Jensen ED. Pentadecanoylcarnitine is a newly discovered endocannabinoid with pleiotropic activities relevant to supporting physical and mental health. Sci Rep 2022; 12:13717. [PMID: 35999445 PMCID: PMC9399118 DOI: 10.1038/s41598-022-18266-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
As an emerging dietary essential fatty acid, pentadecanoic acid (C15:0) is expected to have bioactive metabolites with broad health benefits. Here, we evaluated pentadecanoylcarnitine, an endogenous C15:0 metabolite, for dose dependent cell-based activities, including measurement of its effects on 148 clinically relevant biomarkers across twelve primary human cell systems mimicking various disease states. Mechanisms of action for pentadecanoylcarnitine were also assessed across 78 cell-based target assays. Pentadecanoylcarnitine had dose-dependent anti-inflammatory activities, including lower IL-1α, ITAC, MCP-1, and IP-10, across five cell systems relevant to treating cardiovascular, immune, neoplastic, pulmonary, and skin diseases. Targeted assays showed pentadecanoylcarnitine as a full-acting cannabinoid 1 and 2 receptor agonist (EC50 3.7 and 3.2 µM, 111% and 106% maximum activity compared to the positive control, respectively). Pentadecanoylcarnitine also had 5-HT1A and 5-HT1B receptor agonist and histamine H1 and H2 receptor antagonist activities. In summary, pentadecanoylcarnitine, a second discovered full-acting endocannabinoid, had broad pleiotropic activities relevant to regulating inflammation, pain, mood, and sleep. This study's findings further the need to evaluate the potential health impacts of C15:0 nutritional deficiencies caused by population-wide avoidance of all dietary saturated fats, including C15:0.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Epitracker Inc., San Diego, CA, 92106, USA. .,Seraphina Therapeutics, Inc., San Diego, CA, 92106, USA.
| | | | - Eric D Jensen
- US Navy Marine Mammal Program, Naval Warfare Information Center Pacific, San Diego, CA, 92106, USA
| |
Collapse
|
5
|
Chemokines and chemokine receptors in allergic rhinitis: from mediators to potential therapeutic targets. Eur Arch Otorhinolaryngol 2022; 279:5089-5095. [PMID: 35732904 DOI: 10.1007/s00405-022-07485-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Allergic rhinitis (AR) is an immune-mediated inflammatory condition characterized by immune cell infiltration of the nasal mucosa, with symptoms of rhinorrhea, sneezing, nasal obstruction, and itchiness. Currently, common medication for AR is anti-inflammatory treatment including intranasal steroids, oral, or intranasal anti-histamines, and immunotherapy. These strategies are effective to the majority of patients with AR, but some patients under medication cannot achieve symptom relieve and suffer from bothersome side effects, indicating a demand for novel anti-inflammatory treatment as alternatives. Chemokines, a complex superfamily of small, secreted proteins, were initially recognized for their chemotactic effects on various immune cells. Chemokines constitute both physiological and inflammatory cell positioning systems and mediate cell localization to certain sites via interaction with their receptors, which are expressed on responding cells. Chemokines and their receptors participate in the sensitization, early phase response, and late phase response of AR by promoting inflammatory cell recruitment, differentiation, and allergic mediator release. In this review, we first systemically summarize chemokines and chemokine receptors that are important in AR pathophysiology and then discuss potential strategies targeting chemokines and their receptors for AR therapy.
Collapse
|
6
|
Circulating SSEA-1 + stem cell-mediated tissue repair in allergic airway inflammation. Cell Mol Life Sci 2022; 79:347. [PMID: 35670856 PMCID: PMC9174110 DOI: 10.1007/s00018-022-04366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Structural changes known as airway remodeling characterize chronic/severe asthma and contribute to lung dysfunction. We previously reported that neonatal SSEA-1+ pulmonary stem/progenitor cells (PSCs) ameliorated airway inflammation in asthmatic mice. However, the molecular mechanisms by which endogenous SSEA-1+ PSC of adult mice afford beneficial effects in alveolar homeostasis and lung repair after allergen challenge remain incompletely understood. To analyze the expression profile and clarify the biological significance of endogenous adult lung SSEA-1+ cells in asthmatic mice. Lung SSEA-1+ cells and circulating SSEA-1+ cells in peripheral blood were determined by confocal microscopy and cytometric analysis. GFP chimeric mice were used to trace cell lineage in vivo. The roles of circulating SSEA-1+ cells were verified in ovalbumin-induced and house dust mite-induced allergic asthmatic models. In asthmatic mice, endogenous lung SSEA-1+ cells almost disappeared; however, a unique population of circulating SSEA-1+ cells was enriched after the challenge phase. In asthmatic mice, adoptive transfer of circulating SSEA-1+ cells had a specific homing preference for the lung in response to inhaled antigen through upregulating CXCR7–CXCL11 chemokine axis. Circulating SSEA-1+ cells can transdifferentiate in the alveolar space and ameliorate lung inflammation and structural damage through inhibiting the infiltration of inflammatory cells into peribronchovascular and goblet cell hyperplasia areas, reducing the thickened smooth muscle layers and PAS-positive mucus-containing goblet cells. Reinforcing bone marrow-derived circulating SSEA-1+ cells from peripheral blood into lung tissue which create a rescue mechanism in maintaining alveolar homeostasis and tissue repair to mediate lung protection for emergency responses after allergen challenge in asthmatic conditions.
Collapse
|
7
|
Chen G, Chen D, Feng Y, Wu W, Gao J, Chang C, Chen S, Zhen G. Identification of Key Signaling Pathways and Genes in Eosinophilic Asthma and Neutrophilic Asthma by Weighted Gene Co-Expression Network Analysis. Front Mol Biosci 2022; 9:805570. [PMID: 35187081 PMCID: PMC8847715 DOI: 10.3389/fmolb.2022.805570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Asthma is a heterogeneous disease with different subtypes including eosinophilic asthma (EA) and neutrophilic asthma (NA). However, the mechanisms underlying the difference between the two subtypes are not fully understood.Methods: Microarray datasets (GSE45111 and GSE137268) were acquired from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in induced sputum between EA (n = 24) and NA (n = 15) were identified by “Limma” package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and Gene set enrichment analysis (GSEA) were used to explore potential signaling pathways. Weighted gene co-expression network analysis (WGCNA) were performed to identify the key genes that were strongly associated with EA and NA.Results: A total of 282 DEGs were identified in induced sputum of NA patients compared with EA patients. In GO and KEGG pathway analyses, DEGs were enriched in positive regulation of cytokine production, and cytokine-cytokine receptor interaction. The results of GSEA showed that ribosome, Parkinson’s disease, and oxidative phosphorylation were positively correlated with EA while toll-like receptor signaling pathway, primary immunodeficiency, and NOD-like receptor signaling pathway were positively correlated with NA. Using WGCNA analysis, we identified a set of genes significantly associated NA including IRFG, IRF1, STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.Conclusion: We identified potential signaling pathways and key genes involved in the pathogenesis of the asthma subsets, especially in neutrophilic asthma.
Collapse
Affiliation(s)
- Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
- *Correspondence: Guohua Zhen,
| |
Collapse
|
8
|
Li P, Tsang MSM, Kan LLY, Hou T, Hon SSM, Chan BCL, Chu IMT, Lam CWK, Leung PC, Wong CK. The Immuno-Modulatory Activities of Pentaherbs Formula on Ovalbumin-Induced Allergic Rhinitis Mice via the Activation of Th1 and Treg Cells and Inhibition of Th2 and Th17 Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010239. [PMID: 35011470 PMCID: PMC8746371 DOI: 10.3390/molecules27010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022]
Abstract
Allergic rhinitis (AR) is a highly prevalent allergic disease induced by immunoglobulin (Ig) E-mediated hypersensitivity reaction at the nasal epithelium against inhaled allergens. Previous studies have demonstrated that Pentaherbs formula (PHF), a modified herbal formula comprising five herbal medicines (Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis), could suppress various immune effector cells to exert anti-inflammatory and anti-allergic effects in allergic asthma and atopic dermatitis. The present study aimed to further determine the anti-inflammatory activities of PHF in an ovalbumin (OVA)-induced AR BALB/c mouse model. Nasal symptoms such as sneezing and nose rubbing were recorded and the serum total IgE and OVA-specific IgG1, as well as interleukin (IL)-4, IL-5, IL-10, IL-13, chemokines CXCL9 CXCL10, and tumor necrosis factor (TNF)-α concentrations in nasal lavage fluid (NALF) were measured during different treatments. Effects of PHF on the expression of inflammatory mediators in the sinonasal mucosa were quantified using real-time QPCR. PHF was found to suppress allergic symptoms, infiltration of inflammatory cells, and hyperplasia of goblet cells in the nasal epithelium of the OVA-induced AR mice. PHF could reduce OVA-specific IgG1 level in serum, and TNF-α and IL-10 in nasal lavage fluid (NALF), significantly up-regulate the splenic regulatory T (Treg) cell level, increase the Type 1 helper T cell (Th1)/Type 2 helper T cell (Th2) ratio, and reduce the Th17 cells (all p < 0.05). PHF could also alleviate in situ inflammation in sinonasal mucosa of OVA-induced AR mice. In conclusion, oral treatment of PHF showed immuno-modulatory activities in the OVA-induced AR mice by regulating the splenic T cell population to suppress the nasal allergy symptoms and modulating inflammatory mediators, implicating that PHF could be a therapeutic strategy for allergic rhinitis.
Collapse
Affiliation(s)
- Peiting Li
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
| | - Miranda Sin-Man Tsang
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (T.H.); (I.M.-T.C.)
| | - Lea Ling-Yu Kan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (T.H.); (I.M.-T.C.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sharon Sze-Man Hon
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
| | - Ben Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (T.H.); (I.M.-T.C.)
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China;
| | - Ping-Chung Leung
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
| | - Chun-Kwok Wong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (M.S.-M.T.); (L.L.-Y.K.); (S.S.-M.H.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (T.H.); (I.M.-T.C.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3505-2964; Fax: +852-2636-5090
| |
Collapse
|
9
|
Vasconcelos JF, Santos IP, de Oliveira TB, Kelly AM, do Reis BPZC, Orge ID, Meira CS, Valverde SS, Soares MBP. The protective effect of solidagenone from Solidago chilensis Meyen in a mouse model of airway inflammation. Basic Clin Pharmacol Toxicol 2021; 130:44-55. [PMID: 34634189 DOI: 10.1111/bcpt.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Solidagenone is the main active constituent present in Solidago chilensis Meyen which is used in folk medicine to treat pain and inflammatory diseases. This study aimed to evaluate the anti-inflammatory activity of solidagenone in vitro and in a model of allergic airway inflammation. In vitro studies were performed in activated macrophages and lymphocytes. BALB/c mice were sensitized and challenged with ovalbumin and treated with solidagenone orally (30 or 90 mg/kg body weight) or dexamethasone, as a positive control in our in vivo analysis. Supernatant concentrations of nitrite, TNF and IL-1β, as well as gene expression of pro-inflammatory mediators in macrophages cultures, were reduced after solidagenone treatment, without affecting macrophages viability. Besides, solidagenone significantly decreased T cell proliferation and secretion of IFNγ and IL-2. Th2 cytokine concentrations and inflammatory cell counts, especially eosinophils, in bronchoalveolar lavage fluid were reduced in mice treated with solidagenone. Histopathological evaluation of lung tissue was performed, and morphometrical analyses demonstrated reduction of cellular infiltration and mucus hypersecretion. Altogether, solidagenone presented anti-inflammatory activity in vitro and in vivo in the OVA-induced airway inflammation model, suggesting its promising pharmacological use as an anti-inflammatory agent for allergic hypersensitivity.
Collapse
Affiliation(s)
| | | | - Temistocles Barroso de Oliveira
- Pharmaceutical Technology Institute - FarManguinhos, Natural Products Department, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Andressa Maia Kelly
- Pharmaceutical Technology Institute - FarManguinhos, Natural Products Department, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Iasmim Diniz Orge
- Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation, FIOCRUZ, Salvador, Brazil.,Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| | - Simone Sacramento Valverde
- Pharmaceutical Technology Institute - FarManguinhos, Natural Products Department, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation, FIOCRUZ, Salvador, Brazil.,Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| |
Collapse
|
10
|
Bogdanov IV, Finkina EI, Melnikova DN, Ziganshin RH, Ovchinnikova TV. Investigation of Sensitization Potential of the Soybean Allergen Gly m 4 by Using Caco-2/Immune Cells Co-Culture Model. Nutrients 2021; 13:nu13062058. [PMID: 34208504 PMCID: PMC8234232 DOI: 10.3390/nu13062058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022] Open
Abstract
The soybean allergen Gly m 4 is known to cause severe allergic reactions including anaphylaxis, unlike other Bet v 1 homologues, which induce mainly local allergic reactions. In the present study, we aimed to investigate whether the food Bet v 1 homologue Gly m 4 can be a sensitizer of the immune system. Susceptibility to gastrointestinal digestion was assessed in vitro. Transport through intestinal epithelium was estimated using the Caco-2 monolayer. Cytokine response of different immunocompetent cells was evaluated by using Caco-2/Immune cells co-culture model. Absolute levels of 48 cytokines were measured by multiplex xMAP technology. It was shown that Gly m 4 can cross the epithelial barrier with a moderate rate and then induce production of IL-4 by mature dendritic cells in vitro. Although Gly m 4 was shown to be susceptible to gastrointestinal enzymes, some of its proteolytic fragments can selectively cross the epithelial barrier and induce production of Th2-polarizing IL-5, IL-10, and IL-13, which may point at the presence of the T-cell epitope among the crossed fragments. Our current data indicate that Gly m 4 can potentially be a sensitizer of the immune system, and intercommunication between immunocompetent and epithelial cells may play a key role in the sensitization process.
Collapse
|
11
|
Sio YY, Shi P, Say YH, Chew FT. Functional variants in the chromosome 4q21 locus contribute to allergic rhinitis risk by modulating the expression of N-acylethanolamine acid amidase. Clin Exp Allergy 2021; 52:127-136. [PMID: 33866639 DOI: 10.1111/cea.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous haplotype-based association studies identified chromosome 4q21 as an allergic rhinitis (AR) susceptibility locus; however, the functional role of 4q21 single nucleotide polymorphisms (SNPs) on AR risk remains unclear. OBJECTIVE To investigate the functional effect of 4q21 SNPs on AR risk by conducting cohort-based functional genomics and genetic association analyses. METHODS The associations between 4q21 SNPs and mRNA expression levels of three 4q21-associated genes (SDAD1, NAAA and CXCL9) in peripheral blood mononuclear cells (PBMCs) were assessed in a Singapore/Malaysia Chinese cohort (n = 291). Exon expression levels of these genes in PBMCs were tested against the tag-SNP genotypes in a Singapore Chinese cohort (n = 30). Serum protein levels of these genes were assessed with tag-SNP genotypes in a Singapore Chinese cohort (n = 193). SNP functions were characterized through luciferase assay. In a Singapore Chinese cohort (n = 1794), we confirmed the associations between functional SNPs and AR. RESULTS Forty SNPs in 4q21 showed significant associations with NAAA (but not SDAD1 or CXCL9) mRNA expression in PBMCs, of which were tagged by two tag-SNPs, rs17001237 and rs2242470. Both tag-SNPs rs2242470 and rs12648687 (a proxy for rs17001237) were also significantly associated with the expression level of NAAA exon 1. Tag-SNP rs12648687 was correlated with serum NAAA level. A four promoter SNPs-haplotype tagged by rs17001237 influenced the NAAA promoter activity in HEK293T cells. Lastly, individuals carrying the risk allele A of rs12648687 exhibited significantly higher AR risk in the Singapore Chinese population. CONCLUSIONS & CLINICAL RELEVANCE The rs17001237 linkage set SNPs in the 4q21 locus are associated with NAAA expression at both gene and protein levels ex vivo, have functional consequences in vitro and contribute to AR susceptibility in our study population. Our findings provided a better understanding of the genetic mechanism that contributes to AR pathogenesis.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ping Shi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Kim B, Lee YE, Yeon JW, Go GY, Byun J, Lee K, Lee HK, Hur JK, Jang M, Kim TH. A novel therapeutic modality using CRISPR-engineered dendritic cells to treat allergies. Biomaterials 2021; 273:120798. [PMID: 33895493 DOI: 10.1016/j.biomaterials.2021.120798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Despite the important roles of dendritic cells (DCs) in airway allergies, current therapeutic strategies such as drugs, allergen immunotherapy and biologics haven't been targeted at them. In this study, we established a promising DC-based therapeutic approach for the alleviation of allergic rhinitis (AR)-associated allergic reactions, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated targeted gene disruption. RNA sequencing analysis revealed upregulation of vacuolar protein sorting 37 B (VPS37B) in AR-derived DCs, indicating a novel molecular target. Following antigen presentation, VPS37A and VPS37B enabled endocytosis of the mannose receptor, which recognizes the house dust mite (HDM) allergen Der p 1. DCs with targeted disruption of VPS37A/B alleviated Th2 cytokine production when co-cultured in vitro with allogeneic naïve CD4+ T cell from patients with AR. Furthermore, nasal administration of Vps37a/b-disrupted bone marrow DCs to a mouse model of AR resulted in strongly reduced AR-related symptoms. Thus, this novel modality using genetically engineered DCs can provide an effective therapeutic and preventative strategy for allergic diseases.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea; Neuroscience Research Institute, Korea University, College of Medicine, Seoul, 02841, Republic of Korea
| | - Young Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Woo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ga-Yeon Go
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyomin K Lee
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, 04763, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
14
|
Gongora-Rivera F, Gonzalez-Aquines A, Ortiz-Jiménez X, de la Garza CM, Salinas-Carmona M. Chemokine profile in Alzheimer’s disease: Results from a Mexican population. J Clin Neurosci 2020; 73:159-161. [DOI: 10.1016/j.jocn.2019.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/31/2019] [Indexed: 11/30/2022]
|
15
|
Liu K, Ding RF, Xu H, Qin YM, He QS, Du F, Zhang Y, Yao LX, You P, Xiang YP, Ji ZL. Broad-Spectrum Profiling of Drug Safety via Learning Complex Network. Clin Pharmacol Ther 2019; 107:1373-1382. [PMID: 31868917 PMCID: PMC7325315 DOI: 10.1002/cpt.1750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022]
Abstract
Drug safety is a severe clinical pharmacology and toxicology problem that has caused immense medical and social burdens every year. Regretfully, a reproducible method to assess drug safety systematically and quantitatively is still missing. In this study, we developed an advanced machine learning model for de novo drug safety assessment by solving the multilayer drug‐gene‐adverse drug reaction (ADR) interaction network. For the first time, the drug safety was assessed in a broad landscape of 1,156 distinct ADRs. We also designed a parameter ToxicityScore to quantify the overall drug safety. Moreover, we determined association strength for every 3,807,631 gene‐ADR interactions, which clues mechanistic exploration of ADRs. For convenience, we deployed the model as a web service ADRAlert‐gene at http://www.bio-add.org/ADRAlert/. In summary, this study offers insights into prioritizing safe drug therapy. It helps reduce the attrition rate of new drug discovery by providing a reliable ADR profile in the early preclinical stage.
Collapse
Affiliation(s)
- Ke Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ruo-Fan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Han Xu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang-Mei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiu-Shun He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fei Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li-Xia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Pan You
- Xiamen Xianyue Hospital, Xiamen, Fujian, China
| | - Yan-Ping Xiang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
16
|
Yin X, Wang Z, Wu T, Ma M, Zhang Z, Chu Z, Hu Q, Ding H, Han X, Xu J, Shang H, Jiang Y. The combination of CXCL9, CXCL10 and CXCL11 levels during primary HIV infection predicts HIV disease progression. J Transl Med 2019; 17:417. [PMID: 31836011 PMCID: PMC6909626 DOI: 10.1186/s12967-019-02172-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chemokines are small chemotactic cytokines involved in inflammation, cell migration, and immune regulation in both physiological and pathological contexts. Here, we investigated the profile of chemokines during primary HIV infection (PHI). Methods Fifty-four participants with blood samples before and during HIV infection and clinical information available were selected from an HIV-negative man who have sex with men (MSM) prospective cohort. Thirty chemokines and 10 cytokines were measured pre- and post-HIV infection in the same individuals using a Bio-Plex Pro™ Human Chemokine Panel. Results Levels of 18 chemokines/cytokines changed significantly during PHI relative to pre-HIV infection levels; 14 were up-regulated and 4 down-regulated. Among them, CXCL9, CXCL10, and CXCL11 were the most prominently raised. Levels of CXCL9 and CXCL10 were much higher in the high-set point group (log viral load (lgVL) ≥ 4.5) than those in the low-set point group (lgVL < 4.5) and levels of CXCL9, CXCL10, and CXCL11 were higher in the low-CD4+ T-cell count group (CD4+ T-cell count ≥ 500). A formula to predict HIV disease progression using a combination panel comprising CXCL9, CXCL10, and CXCL11 was developed, where risk score = 0.007 × CXCL9 + 0.004 × CXCL10 − 0.033 × CXCL11 − 1.724, with risk score values higher than the cutoff threshold (0.5211) indicating more rapid HIV disease progression. Conclusions A panel of plasma CXCL9, CXCL10, and CXCL11 measured during primary HIV-1 infection could predict long-term HIV disease prognosis in an MSM group and has potential as a novel biomarker in the clinic.
Collapse
Affiliation(s)
- Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhuo Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tong Wu
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qinghai Hu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
17
|
Son MJ, Jung J, Kim Y, Yeum C, Lee SM, Jung SY, Kwon O, Kim S, Kang J, Kim H, Lee J, Lee D. Treating nasal symptoms associated with rhinitis using the intranasal herbal ointment Biyeom-go: A prospective observational study. Clin Otolaryngol 2019; 44:997-1003. [PMID: 31468673 PMCID: PMC6916331 DOI: 10.1111/coa.13425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The aim of the current study was to investigate the effectiveness and clinical feasibility of Biyeom-go for the treatment of nasal symptoms associated with rhinitis. DESIGN Prospective observational study. SETTING This study was conducted at the Woosuk Korean Medicine Medical Center in South Korea. PARTICIPANTS Fifty-eight patients with rhinitis participated in this study. All patients received Biyeom-go treatment >3 times daily for a total of 4 weeks. MAIN OUTCOME MEASURES The primary outcome was the total nasal symptom score. Mini-rhinoconjunctivitis quality of life questionnaire, nasal endoscopy index, total serum immunoglobulin E levels and immunologic factors in nasal lavage fluid were also measured. RESULTS Biyeom-go administration was associated with significant improvements in total nasal symptoms scores (P < .0001) and mini-rhinoconjunctivitis quality of life questionnaire scores (P < .0001) in a time-dependent manner. The nasal endoscopy index also significantly improved at weeks 2 (P = .0049), 3 (P < .0001) and 4 (P = .0001) after Biyeom-go treatment. Significantly, increased interleukin-2 levels (P = .005) and decreased interleukin-8, chemokine (C-C motif) ligand (CCL) 5, chemokine (C-X-C motif) ligand (CXCL) 9, CCL2 and CXCL10 levels were observed in the nasal lavage fluid. CONCLUSIONS The present findings suggest that Biyeom-go may be beneficial for the management of rhinitis symptoms and rhinitis-associated quality of life. Further well-designed randomised controlled trials are needed to evaluate the effectiveness of Biyeom-go for rhinitis.
Collapse
Affiliation(s)
- Mi Ju Son
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Jeeyoun Jung
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Young‐Eun Kim
- Future Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | | | - So Min Lee
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - So Young Jung
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Ojin Kwon
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Sungha Kim
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Jeong‐In Kang
- Deptartment of Ophthalmology, Otolaryngology, and DermatologyCollege of Korean MedicineWoo‐Suk UniversityJeonju‐siKorea
| | - Hye‐Lin Kim
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Jung‐Eun Lee
- Clinical Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Dong‐Hyo Lee
- Deptartment of Ophthalmology, Otolaryngology, and DermatologyCollege of Korean MedicineWoo‐Suk UniversityJeonju‐siKorea
| |
Collapse
|
18
|
Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH. Role of chemokines in Parkinson's disease. Brain Res Bull 2019; 152:11-18. [PMID: 31136787 DOI: 10.1016/j.brainresbull.2019.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder with an increasing incidence year by year, particularly as the population ages. The most common neuropathologic manifestation in patients with Parkinson's disease is dopamine neurons degeneration and loss in substantia nigra of middle brain. The main neurochemistry problem is the lack of the neurotransmitter dopamine. Clinically, PD patients may also have higher levels of glutamate, gamma-aminobutyric acid, acetylcholine and other neurotransmitters. At present, many data have shown that some chemokines are involved in regulating the release and transmission of neurotransmitters, and the growth and development of related neurons. In recent years, most of the studies relative to PD is based on immune and inflammatory mechanisms, and chemokines is also the focus on this mechanism. Chemokines are a class of cytokines that have definite chemotaxis effects on the different target cells. They might be involved in the pathogenesis of PD by inducing neuronal apoptosis and microglia activation. Clinical data has shown that the levels of chemokines in plasma and cerebrospinal fluid of PD patients have corresponding changes compared with the healthy persons. This review summarizes recent studies on chemokines and their receptors in Parkinson's disease: (i) to explore the role of chemokines in Parkinson's disease; (ii) to provide new indicators for clinical diagnosis of PD; (iii) to provide new targets for drug research and development in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Qi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Da-Yong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol 2018; 59:339-344. [PMID: 29292068 DOI: 10.1016/j.pedneo.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
A new population of T cells known as Th22 was described for the first time in 2009. These cells are usually identified by the production of IL-22. However, this cytokine is also secreted by other cells such as Th1, Th2, Th17, natural killers, and innate lymphoid cells. Th22 is known as a pro-inflammatory agent in allergic skin diseases. Recently, more evidence has emerged showing associations between these cells and other diseases. The role of Th22 in asthma and allergic rhinitis is controversial: some authors suggest that Th22 has a pro-inflammatory effect, while others state that Th22 has anti-inflammatory properties. The aim of this article was to review the role of Th22 and IL-22 in allergic airway diseases based on the most recent literature. This review suggests that Th22 plays a significant role in the pathogenesis of allergic airway diseases and has predominantly anti-inflammatory properties. More studies are needed to clarify the role of Th22 in more detail.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Qi S, Liu G, Dong X, Huang N, Li W, Chen H. Microarray data analysis to identify differentially expressed genes and biological pathways associated with asthma. Exp Ther Med 2018; 16:1613-1620. [PMID: 30186379 PMCID: PMC6122392 DOI: 10.3892/etm.2018.6366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/17/2018] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to identify differentially expressed genes (DEGs) and biological processes (BPs) associated with asthma. DEGs between allergic asthma and healthy controls were screened from GSE15823. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction network was constructed, followed by module mining and functional analysis. Additionally, GSE41649 was downloaded to validate the reliability of the results. In GSE41649, DEGs were identified and compared with key DEGs identified in GSE15823. A total of 43 upregulated and 275 downregulated DEGs were obtained from GSE15823. Upregulated DEGs, such as nitric oxide synthase 2 (NOS2), were enriched in BPs related to oxidation reduction. Downregulated DEGs, such as chemokine (C-C motif) ligand 19 (CCL21) and Cys-X-Cys ligand (CXCL9), were enriched in immune response-related BPs. Protein tyrosine phosphatase receptor type C (PTPRC), CCL21, and CXCL9 were identified as hub genes. The DEGs in module 1 were significantly involved in the chemokine signaling pathway (P<0.05). The expression of the key genes obtained in GSE15823 demonstrated the same variation directions in the two datasets. The immune response, oxidants and nitric oxide metabolic pathways may have important roles in the progression of asthma. DEGs of PTPRC, CCL21, CXCL9 and NOS2 may be the potential targets for asthma diagnosis and treatment.
Collapse
Affiliation(s)
- Shanshan Qi
- Department of Allergy, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Guanghui Liu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Dong
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenjing Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
21
|
Levels of cytokines in drug hypersensitivity. Cent Eur J Immunol 2017; 42:354-357. [PMID: 29472812 PMCID: PMC5820979 DOI: 10.5114/ceji.2017.72809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Introduction Multiple drug intolerance is a serious complication of drug therapy and is an issue of allergology. The aim of the study was the investigation of cytokine status in patients with drug hypersensitivity and multiple drug hypersensitivity. Material and methods 19 patients with multiple drug hypersensitivity, 34 patients with hypersensitivity to one drug, and 35 non-allergic subjects were involved. Only women were included in the study. A multiplex assay of 27 cytokines and chemokines was performed using xMap technology (Human Cytokine Panel I by Bio-Rad). Results Women with drug allergy revealed increased IL-2 levels (p < 0.05). In the case of the study of cytokine status in patients with multiple drug hypersensitivity, the new data revealed the prevalence of pro-inflammatory cytokine status with the participation of cytokines IL-17, IL-9, TNF-α, IP-10, and MIP-1. Conclusions Various immune response arms Th2, Th17, as well as macrophages were the determining factors in the cytokine balance that was found in patients with multiple drug hypersensitivity.
Collapse
|
22
|
Gauthier M, Chakraborty K, Oriss TB, Raundhal M, Das S, Chen J, Huff R, Sinha A, Fajt M, Ray P, Wenzel SE, Ray A. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2017; 2:94580. [PMID: 28679952 DOI: 10.1172/jci.insight.94580] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
We previously showed that Th1/type 1 inflammation marked by increased IFN-γ levels in the airways can be appreciated in 50% of patients with severe asthma, despite high dose corticosteroid (CS) treatment. We hypothesized that a downstream target of IFN-γ, CXCL10, which recruits Th1 cells via the cognate receptor CXCR3, is an important contributor to Th1high asthma and CS unresponsiveness. We show high levels of CXCL10 mRNA closely associated with IFNG levels in the BAL cells of 50% of severe asthmatics and also in the airways of mice subjected to a severe asthma model, both in the context of high-dose CS treatment. The inability of CS to dampen IFNG or CXCL10 expression was not because of impaired nuclear translocation of the glucocorticoid receptor (GR) or its transactivational functions. Rather, in the presence of CS and IFN-γ, STAT1 and GR were recruited on critical regulatory elements in the endogenous CXCL10 promoter in monocytes, albeit without any abatement of CXCL10 gene expression. High CXCL10 gene expression was also associated with a mast cell signature in both humans and mice, CXCR3 being also expressed by mast cells. These findings suggest that the IFN-γ-CXCL10 axis plays a central role in persistent type 1 inflammation that may be facilitated by CS therapy through GR-STAT1 cooperation converging on the CXCL10 promoter.
Collapse
Affiliation(s)
- Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jie Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Ayan Sinha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Merritt Fajt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Sicinska P, Bukowska B, Pajak A, Koceva-Chyla A, Pietras T, Nizinkowski P, Gorski P, Koter-Michalak M. Decreased activity of butyrylcholinesterase in blood plasma of patients with chronic obstructive pulmonary disease. Arch Med Sci 2017; 13:645-651. [PMID: 28507582 PMCID: PMC5420625 DOI: 10.5114/aoms.2016.60760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Butyrylcholinesterase (BChE) is involved in the metabolism of endogenous lipids and xenobiotics, such as esters of carboxylic or phosphoric acids. Butyrylcholinesterase activity is associated with both inflammation and oxidative stress. Changes in the activity of this enzyme have been observed in various diseases such as liver cirrhosis, diabetes, neurodegenerative disease and others. MATERIAL AND METHODS The study involved 30 patients with chronic obstructive pulmonary disease (COPD) and 18 healthy subjects. The COPD patients were divided according to the severity of the disease by applying the classification of COPD based on GOLD standards for forced expiratory volume in 1 s (FEV1) and the FEV1/forced expiratory volume (FVC) ratio. The control group comprised blood samples collected from healthy subjects without concomitant diseases related to the respiratory system. Butyrylcholinesterase activity, lipid peroxidation and total antioxidant capacity (TAC) were determined in the blood plasma. RESULTS A significant (p < 0.05) decrease in the activity of BChE, associated with an increase in lipid peroxidation and a decrease in the total antioxidant capacity, was observed in blood plasma of patients with chronic obstructive pulmonary disease. CONCLUSIONS The study shows for the first time that activity of BChE in the blood plasma of patients diagnosed with chronic obstructive pulmonary disease is considerably reduced compared with healthy subjects. These changes were accompanied by a decrease of TAC and an increase of lipid peroxidation, which suggests that they may be related to the oxidative stress induced by COPD disease.
Collapse
Affiliation(s)
- Paulina Sicinska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bozena Bukowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Pajak
- Department of Pneumology and Allergology, Norbert Barlicki Memorial University Hospital, Medical University of Lodz, Lodz, Poland
| | - Aneta Koceva-Chyla
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tadeusz Pietras
- Department of Pneumology and Allergology, Norbert Barlicki Memorial University Hospital, Medical University of Lodz, Lodz, Poland
| | - Piotr Nizinkowski
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Gorski
- Department of Pneumology and Allergology, Norbert Barlicki Memorial University Hospital, Medical University of Lodz, Lodz, Poland
| | - Maria Koter-Michalak
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Ding Q, Lu P, Xia Y, Ding S, Fan Y, Li X, Han P, Liu J, Tian D, Liu M. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med 2016; 5:3246-3259. [PMID: 27726306 PMCID: PMC5119981 DOI: 10.1002/cam4.934] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/06/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023] Open
Abstract
Chemokines are a group of low molecular weight peptides. Their major function is the recruitment of leukocytes to inflammation sites, but they also play a key role in tumor growth, angiogenesis, and metastasis. In the last few years, accumulated experimental evidence supports that monokine induced by interferon (IFN)‐gamma (CXCL9), a member of CXC chemokine family and known to attract CXCR3‐ (CXCR3‐A and CXCR3‐B) T lymphocytes, is involved in the pathogenesis of a variety of physiologic diseases during their initiation and their maintenance. This review for the first time presents the most comprehensive summary for the role of CXCL9 in different types of tumors, and demonstrates its contradictory role of CXCL9 in tumor progression. Altogether, this is a useful resource for researchers investigating therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Shuping Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yuhui Fan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xin Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
25
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
26
|
Kim BJ, Bae KS, Kim HS, Chun YH, Yoon JS, Kim HH, Kim JT. Clinical characteristics of interferon-gamma-inducible protein of 10 kDa in children with wheezing. ALLERGY ASTHMA & RESPIRATORY DISEASE 2016. [DOI: 10.4168/aard.2016.4.3.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Beom Joon Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kil Seong Bae
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwan Soo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Hong Chun
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong-Seo Yoon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Tack Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
27
|
Wen-Jing L, Chuan-Qiang P, Hong-Hua L, Xiang-Hui L, Jie-Xiao L. A new modified animal model of myosin-induced experimental autoimmune myositis enhanced by defibrase. Arch Med Sci 2015; 11:1272-8. [PMID: 26788090 PMCID: PMC4697045 DOI: 10.5114/aoms.2015.52883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/27/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION We investigated the effect of defibrase (a proteolytic enzyme extraction of Agkistrodon halys venom) on experimental autoimmune myositis (EAM) in guinea pigs and explored the option of using a modified pig model of EAM to enhance the study of this disease. MATERIAL AND METHODS Guinea pigs were divided into 3 groups: group A (control group) was immunized with complete Freund adjuvant (CFA), then received 6 injections of saline weekly; group B (EAM group) was immunized with partially purified rabbit myosin emulsified with CFA, then received an injection of saline; group C (EAM + defibrase group) was immunized with purified rabbit myosin emulsified with CFA, then received an injection of defibrase. The animals were observed for their general health condition and the body weight was measured daily. Plasma levels of fibrinogen and creatine kinase (CK) were determined. Muscle tissues were examined histologically. RESULTS After immunizations for 6 weeks, incidence of EAM in groups A, B and C was 0 (0/7), 83.3% (10/12) and 100% (15/15), respectively. Guinea pigs with EAM presented angeitis symptoms of muscle weakness. Histological analysis revealed a significant difference. Muscles with EAM had scattered or diffuse inflammatory manifestations, which are also common pathological features of human idiopathic polymyositis (IPM). Defibrase-treated animals displayed extensive inflammation and fiber necrosis compared with the EAM group (histological score: 2.80 ±1.15 vs. 1.88 ±1.32, p < 0.05). Severity of inflammation of group B was mainly mild to moderate; 16.7% (2/12) of animals developed severe inflammation. Incidence of severe inflammation with a score up to 4 in group C was 40% (6/15). CONCLUSIONS Defibrase can exacerbate myosin-induced EAM; thus a new modified model was generated.
Collapse
Affiliation(s)
- Luo Wen-Jing
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
- Department of Neurology, Chinese PLA Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Pu Chuan-Qiang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Li Hong-Hua
- Department of Neurology, Chinese PLA Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Lu Xiang-Hui
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Liu Jie-Xiao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|