1
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Khan H, Bangar A, Grewal AK, Singh TG. Mechanistic Implications of GSK and CREB Crosstalk in Ischemia Injury. Neurotox Res 2023; 42:1. [PMID: 38091155 DOI: 10.1007/s12640-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Ischemia-reperfusion (IR) injury is a damage to an organ when the blood supply is less than the demand required for normal functioning, leading to exacerbation of cellular dysfunction and death. IR injury occurs in different organs like the kidney, liver, heart, brain, etc., and may not only involve the ischemic organ but also cause systemic damage to distant organs. Oxygen-glucose deprivation in cells causes oxidative stress, calcium overloading, inflammation, and apoptosis. CREB is an essential integrator of the body's various physiological systems, and it is widely accepted that dysfunction of CREB signaling is involved in many diseases, including ischemia-reperfusion injury. The activation of CREB can provide life to a cell and increase the cell's survival after ischemia. Hence, GSK/CREB signaling pathway can provide significant protection to cells of different organs after ischemia and emerges as a futuristic strategy for managing ischemia-reperfusion injury. Different signaling pathways such as MAPK/ERK, TLR4/MyD88, RISK, Nrf2, and NF-κB, get altered during IR injury by the modulation of GSK-3 and CREB (cyclic AMP response element (CRE)-binding protein). GSK-3 (protein kinase B) and CREB are the downstream targets for fulfilling the roles of various signaling pathways. Calcium overloading during ischemia increases the expression of calcium-calmodulin-dependent protein kinase (CaMK), which subsequently activates CREB-mediated transcription, thus promoting the survival of cells. Furthermore, this review highlights the crosstalk between GSK-3 and CREB, promoting survival and rendering the cells resistant to subsequent severe ischemia.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | | |
Collapse
|
3
|
Pisarenko OI, Studneva IM. Apelin C-Terminal Fragments: Biological Properties and Therapeutic Potential. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1874-1889. [PMID: 38105205 DOI: 10.1134/s0006297923110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.
Collapse
Affiliation(s)
- Oleg I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia.
| | - Irina M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
4
|
Yin H, Sun Y, Ya B, Guo Y, Zhao H, Zhang L, Wang F, Zhang W, Yang Q. Apelin-13 protects against cisplatin-induced ototoxicity by inhibiting apoptosis and regulating STAT1 and STAT3. Arch Toxicol 2023; 97:2477-2493. [PMID: 37395757 DOI: 10.1007/s00204-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The ototoxic side effect of cisplatin is a main cause of sensorineural hearing loss. This side effect limits the clinical application of cisplatin and affects patients' quality of life. This study was designed to investigate the effect of apelin-13 on cisplatin-induced C57BL/6 mice hearing loss model and explore the potential underlying molecular mechanisms. Mice were intraperitoneally injected with 100 μg/kg apelin-13 2 h before 3 mg/kg cisplatin injection for 7 consecutive days. Cochlear explants cultured in vitro were pretreated with 10 nM apelin-13 2 h prior to 30 μM cisplatin treatment for another 24 h. Hearing test and morphology results showed that apelin-13 attenuated cisplatin-induced mice hearing loss and protected cochlear hair cells and spiral ganglion neurons from damage. In vivo and in vitro experimental results showed that apelin-3 reduced cisplatin-induced apoptosis of hair cells and spiral ganglion neurons. In addition, apelin-3 preserved mitochondrial membrane potential and inhibited ROS production in cultured cochlear explants. Mechanistic studies showed that apelin-3 decreased cisplatin-induced cleaved caspase 3 expression but increased Bcl-2; inhibited the expression of pro-inflammatory factors TNF-a and IL-6; and increased STAT1 phosphorylation but decreased STAT3 phosphorylation. In conclusion, our results indicate that apelin-13 could be a potential otoprotective agent to prevent cisplatin-induced ototoxicity by inhibiting apoptosis, ROS production, TNF-α and IL-6 expression, and regulating phosphorylation of STAT1 and STAT3 transcription factors.
Collapse
Affiliation(s)
- Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China.
| | - Yinuo Sun
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Bailiu Ya
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Yan Guo
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Lili Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
5
|
Xu J, Bian X, Zhao H, Sun Y, Tian Y, Li X, Tian W. Morphine Prevents Ischemia/Reperfusion-Induced Myocardial Mitochondrial Damage by Activating δ-opioid Receptor/EGFR/ROS Pathway. Cardiovasc Drugs Ther 2021; 36:841-857. [PMID: 34279751 DOI: 10.1007/s10557-021-07215-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether the epidermal growth factor receptor (EGFR), which is a classical receptor tyrosine kinase, is involved in the protective effect of morphine against ischemia/reperfusion (I/R)-induced myocardial mitochondrial damage. METHODS Isolated rats hearts were subjected to global ischemia followed by reperfusion. Cardiac H9c2 cells were exposed to a simulated ischemia solution followed by Tyrode's solution to induce hypoxia/reoxygenation (H/R) injury. Triphenyltetrazolium chloride (TTC) was used to measure infarct size. The mitochondrial morphological and functional changes were determined using transmission election microscopy (TEM), mitochondrial stress assay, and mitochondrial swelling, respectively. Mitochondrial fluorescence indicator JC-1, DCFH-DA, and Mitosox Red were used to determine mitochondrial membrane potential (△Ψm), intracellular reactive oxygen species (ROS) and mitochondrial superoxide. A TUNUL assay kit was used to detect the level of apoptosis. Western blotting analysis was used to measure the expression of proteins. RESULTS Treatment of isolated rat hearts with morphine prevented I/R-induced myocardial mitochondrial injury, which was inhibited by the selective EGFR inhibitor AG1478, suggesting that EGFR is involved in the mitochondrial protective effect of morphine under I/R conditions. In support of this hypothesis, the selective EGFR agonist epidermal growth factor (EGF) reduced mitochondrial morphological and functional damage similarly to morphine. Further study demonstrated that morphine may alleviate I/R-induced cardiac damage by inhibiting autophagy but not apoptosis. Morphine increased protein kinase B (Akt), extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation, which was inhibited by AG1478, and EGF had similar effects, indicating that morphine may activate Akt, ERK, and STAT-3 via EGFR. Morphine and EGF increased intracellular reactive oxygen species (ROS) generation. This effect of morphine was inhibited by AG1478, indicating that morphine promotes intracellular ROS generation by activating EGFR. However, morphine did not increase ROS generation when cells were transfected with siRNA against EGFR. In addition, EGFR activity was markedly increased by morphine, but the effect of morphine was reversed by naltrindole. These results suggest that morphine may activate EGFR via δ-opioid receptor activation. CONCLUSIONS Morphine may prevent I/R-induced myocardial mitochondrial damage by activating EGFR through δ-opioid receptors, in turn increasing RISK and SAFE pathway activity via intracellular ROS. Moreover, morphine may reduce myocardial injury by regulating autophagy but not apoptosis.
Collapse
Affiliation(s)
- Jingman Xu
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, 300, Tianjin, ,450, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300, Tianjin, ,010, China
| | - Yujie Sun
- Department of Neurology, Kailuan Hospital, Tangshan, 063000, Hebei Province, China
| | - Yanyi Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Xiaodong Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Wei Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| |
Collapse
|
6
|
A network map of apelin-mediated signaling. J Cell Commun Signal 2021; 16:137-143. [PMID: 33797707 DOI: 10.1007/s12079-021-00614-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5067 ).
Collapse
|
7
|
Relationship between Apelin/APJ Signaling, Oxidative Stress, and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/8866725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apelin, a peptide hormone, is an endogenous ligand for G protein-coupled receptor and has been shown to be widely expressed in human and animal tissues, such as the central nervous system and adipose tissue. Recent studies indicate that the apelin/APJ system is involved in the regulation of multiple physiological and pathological processes, and it is associated with cardiovascular diseases, metabolic disorders, neurological diseases, ischemia-reperfusion injury, aging, eclampsia, deafness, and tumors. The occurrence and development of these diseases are closely related to the local inflammatory response. Oxidative stress is that the balance between oxidation and antioxidant is broken, and reactive oxygen species are produced in large quantities, causing cell or molecular damage, which leads to vascular damage and a series of inflammatory reactions. Hence, this article reviewed recent advances in the relationship between apelin/APJ and oxidative stress, and inflammation-related diseases, and highlights them as potential therapeutic targets for oxidative stress-related inflammatory diseases.
Collapse
|
8
|
Shao ZQ, Dou SS, Zhu JG, Wang HQ, Wang CM, Cheng BH, Bai B. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 16:1044-1051. [PMID: 33269749 PMCID: PMC8224111 DOI: 10.4103/1673-5374.300725] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apelin-13 is a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, and it may be neuroprotective against cerebral ischemia injury. However, the precise mechanisms of the effects of apelin-13 remain to be elucidated. To investigate the effects of apelin-13 on apoptosis and autophagy in models of cerebral ischemia/reperfusion injury, a rat model was established by middle cerebral artery occlusion. Apelin-13 (50 μg/kg) was injected into the right ventricle as a treatment. In addition, an SH-SY5Y cell model was established by oxygen-glucose deprivation/reperfusion, with cells first cultured in sugar-free medium with 95% N2 and 5% CO2 for 4 hours and then cultured in a normal environment with sugar-containing medium for 5 hours. This SH-SY5Y cell model was treated with 10–7 M apelin-13 for 5 hours. Results showed that apelin-13 protected against cerebral ischemia/reperfusion injury. Apelin-13 treatment alleviated neuronal apoptosis by increasing the ratio of Bcl-2/Bax and significantly decreasing cleaved caspase-3 expression. In addition, apelin-13 significantly inhibited excessive autophagy by regulating the expression of LC3B, p62, and Beclin1. Furthermore, the expression of Bcl-2 and the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was markedly increased. Both LY294002 (20 μM) and rapamycin (500 nM), which are inhibitors of the PI3K/Akt/mTOR pathway, significantly attenuated the inhibition of autophagy and apoptosis caused by apelin-13. In conclusion, the findings of the present study suggest that Bcl-2 upregulation and mTOR signaling pathway activation lead to the inhibition of apoptosis and excessive autophagy. These effects are involved in apelin-13-induced neuroprotection against cerebral ischemia/reperfusion injury, both in vivo and in vitro. The study was approved by the Animal Ethical and Welfare Committee of Jining Medical University, China (approval No. 2018-JS-001) in February 2018.
Collapse
Affiliation(s)
- Zi-Qi Shao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shan-Shan Dou
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Jun-Ge Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hui-Qing Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Mei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bao-Hua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
9
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
10
|
Salidroside Ameliorates Mitochondria-Dependent Neuronal Apoptosis after Spinal Cord Ischemia-Reperfusion Injury Partially through Inhibiting Oxidative Stress and Promoting Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3549704. [PMID: 32774670 PMCID: PMC7396093 DOI: 10.1155/2020/3549704] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is the second most common injury of the spinal cord and has the risk of neurological dysfunction and paralysis, which can seriously affect patient quality of life. Salidroside (Sal) is an active ingredient extracted from Herba Cistanche with a variety of biological attributes such as antioxidant, antiapoptotic, and neuroprotective activities. Moreover, Sal has shown a protective effect in ischemia-reperfusion injury of the liver, heart, and brain, but its effect in ischemia-reperfusion injury of the spinal cord has not been elucidated. Here, we demonstrated for the first time that Sal pretreatment can significantly improve functional recovery in mice after spinal cord ischemia-reperfusion injury and significantly inhibit the apoptosis of neurons both in vivo and in vitro. Neurons have a high metabolic rate, and consequently, mitochondria, as the main energy-supplying suborganelles, become the main injury site of spinal cord ischemia-reperfusion injury. Mitochondrial pathway-dependent neuronal apoptosis is increasingly confirmed by researchers; therefore, Sal's effect on mitochondria naturally attracted our attention. By means of a range of experiments both in vivo and in vitro, we found that Sal can reduce reactive oxygen species production through antioxidant stress to reduce mitochondrial permeability and mitochondrial damage, and it can also enhance the PINK1-Parkin signaling pathway and promote mitophagy to eliminate damaged mitochondria. In conclusion, our results show that Sal is beneficial to the protection of spinal cord neurons after ischemia-reperfusion injury, mainly by reducing apoptosis associated with the mitochondrial-dependent pathway, among which Sal's antioxidant and autophagy-promoting properties play an important role.
Collapse
|
11
|
Mao GH, Huang XH, Geng XJ, Li Q, Zhang Y, Dou Q. Correlation between sperm mitochondrial ND5 and ND6 gene variations and total fertilisation failure. Arch Med Sci 2020; 16:692-698. [PMID: 32399119 PMCID: PMC7212212 DOI: 10.5114/aoms.2020.94658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The purpose of this study was to investigate the correlation between sperm mitochondrial NADH dehydrogenase subunit 5 (ND5) and NADH dehydrogenase subunit 6 (ND6) gene variations and total fertilisation failure (TFF). MATERIAL AND METHODS A total of 232 sperm samples at the fresh in vitro fertilisation (IVF) cycle or the half-intracytoplasmic sperm injection (ICSI) cycle were collected for this retrospective controlled study on Han Chinese people between July 2011 and April 2014. Of the 232 total samples, 45 were from the IVF-TFF group and 187 were from couples with normal fertilisation (fertilisation rate > 50%). The mitochondrial ND5 and ND6 gene variations and sperm haplotypes were confirmed using nested PCR and DNA sequencing. RESULTS Ten homozygous variations were newly discovered, namely C12417T, T12441A, C12543A, C13650A, C13765A, T13769C, C13775T, A13776G, C13785A and C13845T. The gene variation rates of six sites, C12417T, C13650A, C13765A, T13769C, C13785A and C13845T, in the TFF group were significantly higher than those in the control group (p < 0.05). There were 231 heterozygous variations discovered; however, only nine heterozygous sites (12441, 12561, 12735, 13164, 13743, 13812, 13928, 14172 and 14368) had significantly higher gene variation rates than those in the control group (p < 0.05). In addition, the results showed that haplogroup C did not affect TFF (p > 0.05), and the fertilisation failure rates of haplogroup R and haplogroup D4a were both higher than those in the control group (p < 0.05). CONCLUSIONS Our results suggested that the ND5 and ND6 gene variations are correlated with TFF. Furthermore, this study indicated that haplogroup R and haplogroup D4a might be risk factors for TFF.
Collapse
Affiliation(s)
- Gen-Hong Mao
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao-Hui Huang
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu-Jing Geng
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qian Li
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu Zhang
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qian Dou
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
12
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
13
|
Zheng W, Wang J, Xie L, Xie H, Chen C, Zhang C, Lin D, Cai L. An injectable thermosensitive hydrogel for sustained release of apelin-13 to enhance flap survival in rat random skin flap. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:106. [PMID: 31502009 DOI: 10.1007/s10856-019-6306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
With the advantage of handy process, random pattern skin flaps are generally applied in limb reconstruction and wound repair. Apelin-13 is a discovered endogenous peptide, that has been shown to have potent multiple biological functions. Recently, thermosensitive gel-forming systems have gained increasing attention as wound dressings due to their advantages. In the present study, an apelin-13-loaded chitosan (CH)/β-sodium glycerophosphate (β-GP) hydrogel was developed for promoting random skin flap survival. Random skin flaps were created in 60 rats after which the animals were categorized to a control hydrogel group and an apelin-13 hydrogel group. The water content of the flap as well as the survival area were then measured 7 days post-surgery. Hematoxylin and eosin staining was used to evaluate the flap angiogenesis. Cell differentiation 34 (CD34) and vascular endothelial growth factor (VEGF) levels were detected by immunohistochemistry and Western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were assessed by enzyme linked immunosorbent assays (ELISAs). Oxidative stress was estimated via the activity of tissue malondialdehyde (MDA) and superoxide dismutase (SOD). Our results showed that CH/β-GP/apelin-13 hydrogel could not only reduce the tissue edema, but also improve the survival area of flap. CH/β-GP/apelin-13 hydrogel also upregulated levels of VEGF protein and increased mean vessel densities. Furthermore, CH/β-GP/apelin-13 hydrogel was shown to significantly inhibit the expression of TNF-α and IL-6, along with increasing the activity of SOD and suppressing the MDA content. Taken together, these results indicate that this CH/β-GP/apelin-13 hydrogel may be a potential therapeutic way for random pattern skin flap.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Huanguang Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Dingsheng Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
14
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E. Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney. Arch Med Sci 2019; 15:1081-1091. [PMID: 31360203 PMCID: PMC6657261 DOI: 10.5114/aoms.2019.85651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION We recently reported that a series of brief hind limb ischemia and reperfusion (IR) at the beginning of renal ischemia (remote per-conditioning - RPEC) significantly attenuated the ischemia/reperfusion-induced acute kidney injury. In the present study, we investigated whether the nitric oxide synthase (NOS) pathway is involved in the RPEC protection of the rat ischemic kidneys. MATERIAL AND METHODS Male rats were subjected to right nephrectomy and randomized as: (1) sham, no additional intervention; (2) IR, 45 min of renal ischemia followed by 24 h reperfusion; (3) RPEC, four 5 min cycles of lower limb IR administered at the beginning of renal ischemia; (4) RPEC+L-NAME (a non-specific NOS inhibitor, 10 mg/kg, i.p.) (5) RPEC + 1400W (a specific iNOS inhibitor, 1 mg/kg, i.p.). After 24 h, blood, urine and tissue samples were collected. RESULTS The protective effect of RPEC on renal function, oxidative stress indices, pro-inflammatory marker expression and histopathological changes of kidneys subjected to 45 min ischemia were completely inhibited by pretreatment with L-NAME or 1400W. It was accompanied by increased iNOS and eNOS expression in the RPEC group compared with the IR group. CONCLUSIONS These findings suggest that the protective effects of RPEC on renal IR injury are closely dependent on the nitric oxide production after the reperfusion and both eNOS and iNOS are involved in this protection.
Collapse
Affiliation(s)
- Zahra Sedaghat
- Department of Physiology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Eisa Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Deres L, Eros K, Horvath O, Bencze N, Cseko C, Farkas S, Habon T, Toth K, Halmosi R. The Effects of Bradykinin B1 Receptor Antagonism on the Myocardial and Vascular Consequences of Hypertension in SHR Rats. Front Physiol 2019; 10:624. [PMID: 31178756 PMCID: PMC6537226 DOI: 10.3389/fphys.2019.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/02/2019] [Indexed: 01/20/2023] Open
Abstract
It is known that non-steroidal anti-inflammatory drugs increase cardiovascular (CV) morbidity and mortality. In this study, we examined whether a novel anti-inflammatory drug, bradykinin B1 receptor antagonist (FGY-1153) treatment could influence the development of hypertensive organ damages in spontaneously hypertensive rats (SHR). SHRs were treated with low (FGY-120) or high dose FGY-1153 (FGY-400) and with placebo (Control) for 26 weeks. Wistar–Kyoto rats were used as aged-matched, normotensive controls (WKY). Body weight, food consumption and blood pressure were measured regularly. Echocardiography was performed at the beginning and at the end of the study. Light and electron microscopic analysis of heart and great vessels were performed, and the extent of fibrotic areas was measured. The phosphorylation state of prosurvival Akt-1/glycogen synthase kinase (GSK)-3β pathway and the activation of signaling factors playing part in the fibrotic processes – mitogen activated protein kinases (MAPKs), and TGF-β/Smad2 – were monitored using Western-blot. Body weight and food consumption as well as the elevated blood pressure in SHRs was not influenced by FGY-1153 treatment. However, both doses of FGY-1153 treatment decreased left ventricular (LV) hypertrophy and diastolic dysfunction in hypertensive animals. Moreover systolic LV function was also preserved in FGY-120 group. Increased intima-media thickness and interstitial fibrosis were not significantly diminished in great vessels. FGY-1153 treatment inhibited the expression of TGFβ and the phosphorylation of SMAD2 in the heart. Our results suggest that the tested novel anti-inflammatory compound has no deleterious effect on CV system, moreover it exerts moderate protective effect against the development of hypertensive cardiopathy.
Collapse
Affiliation(s)
- Laszlo Deres
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztian Eros
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Orsolya Horvath
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Noemi Bencze
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | | | | | - Tamas Habon
- 1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Kalman Toth
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Robert Halmosi
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Luo J, Liu H, Zheng X, Lin B, Ye Q, Deng Y, Wu L. Inhibitory Effect of Apelin on Cardiomyocyte Hypertrophy induced by Resistin in H9c2 Cells. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.311.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Sabry MM, Ramadan NM, Al Dreny BA, Rashed LA, Abo El Enein A. Protective effect of apelin preconditioning in a rat model of hepatic ischemia reperfusion injury; possible interaction between the apelin/APJ system, Ang II/AT1R system and eNOS. United European Gastroenterol J 2019; 7:689-698. [PMID: 31210947 DOI: 10.1177/2050640619826847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Introduction Hepatic ischemic reperfusion injury occurs in multiple clinical settings. Novel potential protective agents are still needed to attenuate this injury. Apelin preconditioning protects against ischemic reperfusion injury in different organs. However, the protective mechanism of apelin on hepatic ischemic reperfusion injury is not yet clear. Aim Evaluate the effect of apelin-13 preconditioning on hepatic ischemic reperfusion injury and clarify possible interactions between apelinergic, renin-angiotensin systems and endothelial nitric oxide synthase. Methods In total, 60 rats were assigned to four groups: control sham-operated, ischemic reperfusion, apelin-treated ischemic reperfusion and apelin + N-nitro-L-arginine methyl ester-treated ischemic reperfusion. Apelin 2 µg/kg/day and N-nitro-L-arginine methyl ester 10 mg/kg/day were injected intraperitoneally daily for 3 days and 2 weeks respectively before hepatic ischemic reperfusion. Serum aminotransferase, aspartate aminotransferase, hepatic malondialdehyde, apelin, gene expression of caspase-3, endothelial nitric oxide synthase and angiotensin type 1 receptor and liver histopathology were compared between groups. Results Apelin significantly reduced serum aminotransferase, aspartate aminotransferase, hepatic malondialdehyde, caspase-3 and angiotensin type 1 receptor expression, whereas hepatic apelin and endothelial nitric oxide synthase expression were significantly increased with improved hepatic histopathology. N-nitro-L-arginine methyl ester co-administration partially reversed this hepatoprotective effect. Conclusion Apelin-13 reduced hepatic ischemic reperfusion injury. This protection could be related to the suppression of hepatic angiotensin type 1 receptor expression and elevation of hepatic apelin level and endothelial nitric oxide synthase expression, which counteracts the pathologic effects of Ang II/angiotensin type 1 receptor. An interaction exists between apelinergic, renin-angiotensin systems and endothelial nitric oxide synthase in hepatic ischemic reperfusion pathophysiology.
Collapse
Affiliation(s)
- Maha M Sabry
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
18
|
Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, Guo Y, Jia D. Protective effect of morin on myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2018; 42:1379-1390. [PMID: 29956744 PMCID: PMC6089753 DOI: 10.3892/ijmm.2018.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Morin, a natural flavonol, exhibits antioxidative, anti-inflammatory and anti-apoptotic effects in various pathological and physiological processes. However, whether morin exerts a protective effect on myocardial ischemia-reperfusion injury (MIRI) is unknown. The present study aimed to determine the effect of morin on MIRI in cultured cardiomyocytes and isolated rat hearts, and to additionally explore the underlying mechanism. The effect of morin on the viability, lactate dehydrogenase (LDH) activity and apoptosis of H9c2 cardiomyocytes subjected to hypoxia/reoxygenation, and cardiac function and infarct size of rat hearts following ischemia/reperfusion in an animal model were measured. Furthermore, the mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (ΔΨm), and the change in the expression levels of B-cell lymphoma 2 (Bcl2)-associated X protein (Bax), Bcl-2 and mitochondrial apoptosis-associated proteins following MPTP opening were also detected. The results indicated that morin treatment significantly increased cell viability, decreased LDH activity and cell apoptosis, improved the recovery of cardiac function and decreased the myocardial infarct size. Furthermore, morin treatment markedly inhibited MPTP opening, prevented the decrease of ΔΨm, and decreased the expression of cytochrome c, apoptotic protease activating factor-1, caspase-9, caspase-3 and the Bax/Bcl-2 ratio. However, these beneficial effects were reversed by treatment with atractyloside, an MPTP opener. The present study demonstrated that morin may prevent MIRI by inhibiting MPTP opening and revealed the possible mechanism of the cardioprotection of morin and its acting target. It also provided an important theoretical basis for the research on drug interventions for MIRI in clinical applications.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxin Miao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zijun Huang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuying Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengyu Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuxuan Guo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Yang R, Fang W, Liang J, Lin C, Wu S, Yan S, Hu C, Ke X. Apelin/APJ axis improves angiotensin II-induced endothelial cell senescence through AMPK/SIRT1 signaling pathway. Arch Med Sci 2018; 14:725-734. [PMID: 30002688 PMCID: PMC6040122 DOI: 10.5114/aoms.2017.70340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/03/2017] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Previous studies have shown that endothelial cell senescence is involved in cardiovascular diseases such as cardiac fibrosis, atherosclerosis and heart failure. Accumulating evidence indicates that apelin exerts protective effects on ageing-related endothelial dysfunction. In this study, we aim to investigate the role of the apelin/APJ axis in angiotensin II (AngII)-induced endothelium senescence and its associated mechanisms. MATERIAL AND METHODS Senescence-related β-gal activity assay and western blot were used to evaluate human umbilical vein endothelial cell (HUVEC) senescence. In addition, DCFH-DA staining was carried out to detect the generation of reactive oxygen species (ROS). A validated, high-sensitivity real-time quantitative telomeric repeat amplification protocol (RQ-TRAP) was applied to determine telomerase activity in HUVECs, and a CCK-8 assay was employed to measure cellular viability. RESULTS AngII induced an increase in SA-β-Gal-positive cells and upregulation on expression of P21 and PAI-1 compared to the control group (p < 0.05), while apelin against this process (p < 0.05). The protective effects were attenuated when APJ, AMPK and SIRT1 expression was knocked down (p < 0.05). Furthermore, apelin reduced AngII-induced ROS generation and enhanced telomerase activity in HUVECs (p < 0.05), which contributed to increased HUVEC viability as assessed by the CCK-8 assay (p < 0.05). CONCLUSIONS The apelin/APJ axis improved AngII-induced HUVEC senescence via the AMPK/SIRT1 signaling pathway, and the underlying mechanisms might be associated with reduced ROS production and enhanced telomerase activity.
Collapse
Affiliation(s)
- Rongfeng Yang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Wu Fang
- Department of Geriatric, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiawen Liang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Lin
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoyun Wu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaodi Yan
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Chengheng Hu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Ke
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| |
Collapse
|
20
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci 2017; 13:448-458. [PMID: 28261301 PMCID: PMC5332452 DOI: 10.5114/aoms.2016.61789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Remote ischemic preconditioning (RIPC) reduces myocardial infarct size, and protection can be transferred with plasma to other individuals, even across species. Mitochondria are the end-effectors of cardioprotection by local ischemic conditioning maneuvers. We have now analyzed mitochondrial function in response to RIPC. MATERIAL AND METHODS Plasma from pigs undergoing placebo or RIPC (infarct size reduction by 67% in RIPC pigs compared to placebo) was transferred to isolated perfused rat hearts subjected to 30 min global ischemia followed by 120 min reperfusion for infarct size measurement. Additional experiments were terminated at 10 min reperfusion to isolate mitochondria for functional measurements. Effects of RIPC pig plasma were compared to local ischemic preconditioning (IPC) or to infusion of tumor necrosis factor α (TNF-α). RESULTS Ischemia/reperfusion (I/R) induced an infarct of 41 ±2% of total ventricular mass. Placebo pig plasma did not affect infarct size (38 ±1, p = 0.13). The RIPC pig plasma reduced infarct size (27 ±2, p < 0.001), as did IPC (20 ±1, p < 0.001) and TNF-α (28 ±2, p < 0.001). Associated with cardioprotection, reductions of mitochondrial adenosine diphosphate (ADP)-stimulated respiration, adenosine triphosphate (ATP) production and calcium retention capacity (CRC) by I/R and placebo pig plasma were prevented by RIPC pig plasma, as they were by IPC and TNF-α. Mitochondrial reactive oxygen species production (nmol H2O2/100 µg protein) induced by I/R (272 ±34) was comparable in response to placebo pig plasma (234 ±28, p = 0.37) and was reduced by RIPC pig plasma (83 ±15, p < 0.001) as well as by IPC (78 ±21, p < 0.001) and TNF-α (125 ±42, p = 0.002). CONCLUSIONS In rat myocardium, mitochondria are an intracellular target of protection induced by humoral factors retrieved from pigs undergoing RIPC.
Collapse
Affiliation(s)
- Nilguen Gedik
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Leonardo Maciel
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
- Laboratory of Cardiac Electrophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christiane Schulte
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| |
Collapse
|
22
|
Wu Y, Wang X, Zhou X, Cheng B, Li G, Bai B. Temporal Expression of Apelin/Apelin Receptor in Ischemic Stroke and its Therapeutic Potential. Front Mol Neurosci 2017; 10:1. [PMID: 28167898 PMCID: PMC5253351 DOI: 10.3389/fnmol.2017.00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 02/03/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide, and ischemic stroke accounts for approximately 87% of cases. Improving post-stroke recovery is a major challenge in stroke treatment. Accumulated evidence indicates that the apelinergic system, consisting of apelin and apelin receptor (APLNR), is temporally dysregulated in ischemic stroke. Moreover, the apelinergic system plays a pivotal role in post-stroke recovery by inhibiting neuronal apoptosis and facilitating angiogenesis through various molecular pathways. In this review article, we summarize the temporal expression of apelin and APLNR in ischemic stroke and the mechanisms of their dysregulation. In addition, the protective role of the apelinergic system in ischemic stroke and the underlying mechanisms of its protective effects are discussed. Furthermore, critical issues in activating the apelinergic system as a potential therapy will also be discussed. The aim of this review article is to shed light on exploiting the activation of the apelinergic system to treat ischemic stroke.
Collapse
Affiliation(s)
- Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xin Wang
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xuan Zhou
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University Jining, China
| | - Gongying Li
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Bo Bai
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University Jining, China
| |
Collapse
|
23
|
Porta A, Barrabés JA, Candell-Riera J, Agulló L, Aguadé-Bruix S, de León G, Figueras J, Garcia-Dorado D. Plasma B-type natriuretic peptide levels are poorly related to the occurrence of ischemia or ventricular arrhythmias during symptom-limited exercise in low-risk patients. Arch Med Sci 2016; 12:341-8. [PMID: 27186178 PMCID: PMC4848363 DOI: 10.5114/aoms.2016.59258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The usefulness of B-type natriuretic peptide (BNP) as a marker of ischemia is controversial. BNP levels have predicted arrhythmias in various settings, but it is unknown whether they are related to exercise-induced ischemic ventricular arrhythmias. MATERIAL AND METHODS We analyzed in 63 patients (64 ±14 years, 65% male, 62% with known coronary disease) undergoing exercise stress single-photon emission computed tomography (SPECT) the association between plasma BNP values (before and 15 min after exercise) and the occurrence of ischemia or ventricular arrhythmias during the test. RESULTS Exercise test (8.1 ±2.7 min, 7.4 ±8.1 metabolic equivalents, 82 ±12% of maximal predicted heart rate) induced reversible perfusion defects in 23 (36%) patients. Eight (13%) patients presented significant arrhythmias (≥ 7 ventricular premature complexes/min, couplets, or non-sustained ventricular tachycardia during exercise or in the first minute of recovery). Median baseline BNP levels were 17.5 (12.4-66.4) pg/ml in patients developing scintigraphic ischemia and 45.6 (13.2-107.4) pg/ml in those without ischemia (p = 0.137). The BNP levels increased after exercise (34.4 (15.3-65.4)% increment over baseline, p < 0.001), but the magnitude of this increase was not related to SPECT positivity (35.7 (18.8-65.4)% vs. 27.9 (5.6-64.0)% in patients with and without ischemia, respectively, p = 0.304). No significant association was found between BNP values (at baseline or their change during the test) and ventricular arrhythmias. CONCLUSIONS Plasma BNP values - at baseline or after exercise - were not associated with myocardial ischemia or with ventricular arrhythmia during exercise SPECT. These results highlight the limited usefulness of this biomarker to assess acute ischemia.
Collapse
Affiliation(s)
- Andreu Porta
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A Barrabés
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Candell-Riera
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Agulló
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Aguadé-Bruix
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gustavo de León
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Figueras
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Garcia-Dorado
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|