1
|
Alfonso-Triguero P, Lorenzo J, Candiota AP, Arús C, Ruiz-Molina D, Novio F. Platinum-Based Nanoformulations for Glioblastoma Treatment: The Resurgence of Platinum Drugs? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1619. [PMID: 37242036 PMCID: PMC10223043 DOI: 10.3390/nano13101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Current therapies for treating Glioblastoma (GB), and brain tumours in general, are inefficient and represent numerous challenges. In addition to surgical resection, chemotherapy and radiotherapy are presently used as standards of care. However, treated patients still face a dismal prognosis with a median survival below 15-18 months. Temozolomide (TMZ) is the main chemotherapeutic agent administered; however, intrinsic or acquired resistance to TMZ contributes to the limited efficacy of this drug. To circumvent the current drawbacks in GB treatment, a large number of classical and non-classical platinum complexes have been prepared and tested for anticancer activity, especially platinum (IV)-based prodrugs. Platinum complexes, used as alkylating agents in the anticancer chemotherapy of some malignancies, are though often associated with severe systemic toxicity (i.e., neurotoxicity), especially after long-term treatments. The objective of the current developments is to produce novel nanoformulations with improved lipophilicity and passive diffusion, promoting intracellular accumulation, while reducing toxicity and optimizing the concomitant treatment of chemo-/radiotherapy. Moreover, the blood-brain barrier (BBB) prevents the access of the drugs to the brain and accumulation in tumour cells, so it represents a key challenge for GB management. The development of novel nanomedicines with the ability to (i) encapsulate Pt-based drugs and pro-drugs, (ii) cross the BBB, and (iii) specifically target cancer cells represents a promising approach to increase the therapeutic effect of the anticancer drugs and reduce undesired side effects. In this review, a critical discussion is presented concerning different families of nanoparticles able to encapsulate platinum anticancer drugs and their application for GB treatment, emphasizing their potential for increasing the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Xiang AD, Li B, Du YF, Abbaspoor S, Jalil AT, Saleh MM, He HC, Guo F. In Vivo and in Vitro Biocompatibility Studies of Pt Based Nanoparticles: a New Agent for Chemoradiation Therapy. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
3
|
Saidi AKAA, Ghazanfari A, Liu S, Tegafaw T, Ahmad MY, Zhao D, Liu Y, Yang SH, Hwang DW, Yang JU, Park JA, Jung JC, Nam SW, Chang Y, Lee GH. Facile Synthesis and X-ray Attenuation Properties of Ultrasmall Platinum Nanoparticles Grafted with Three Types of Hydrophilic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:806. [PMID: 36903686 PMCID: PMC10004834 DOI: 10.3390/nano13050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Ultrasmall platinum nanoparticles (Pt-NPs) grafted with three types of hydrophilic and biocompatible polymers, i.e., poly(acrylic acid), poly(acrylic acid-co-maleic acid), and poly(methyl vinyl ether-alt-maleic acid) were synthesized using a one-pot polyol method. Their physicochemical and X-ray attenuation properties were characterized. All polymer-coated Pt-NPs had an average particle diameter (davg) of 2.0 nm. Polymers grafted onto Pt-NP surfaces exhibited excellent colloidal stability (i.e., no precipitation after synthesis for >1.5 years) and low cellular toxicity. The X-ray attenuation power of the polymer-coated Pt-NPs in aqueous media was stronger than that of the commercial iodine contrast agent Ultravist at the same atomic concentration and considerably stronger at the same number density, confirming their potential as computed tomography contrast agents.
Collapse
Affiliation(s)
- Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Adibehalsadat Ghazanfari
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - So Hyeon Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Dong Wook Hwang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Ji-ung Yang
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Jae Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| |
Collapse
|
4
|
Mitrevska K, Merlos Rodrigo MA, Cernei N, Michalkova H, Splichal Z, Hynek D, Zitka O, Heger Z, Kopel P, Adam V, Milosavljevic V. Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism. Mater Today Bio 2023; 19:100570. [PMID: 36824411 PMCID: PMC9941372 DOI: 10.1016/j.mtbio.2023.100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-779 00, Olomouc, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Corresponding author. Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
5
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
7
|
Vukoja D, Vlainić J, Ljolić Bilić V, Martinaga L, Rezić I, Brlek Gorski D, Kosalec I. Innovative Insights into In Vitro Activity of Colloidal Platinum Nanoparticles against ESBL-Producing Strains of Escherichia coli and Klebsiella pneumoniae. Pharmaceutics 2022; 14:pharmaceutics14081714. [PMID: 36015339 PMCID: PMC9413765 DOI: 10.3390/pharmaceutics14081714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Growing morbidity and mortality rates due to increase in the number of infections caused by MDR (multi-drug resistant) microorganisms are becoming some of the foremost global health issues. Thus, the need to search for and find novel approaches to fight AMR (antimicrobial resistance) has become obligatory. This study aimed to determine the antimicrobial properties of commercially purchased colloidal platinum nanoparticles by examining the existence and potency of their antibacterial effects and investigating the mechanisms by means of which they express these activities. Antimicrobial properties were investigated with respect to standard laboratory ATCC (American Type Cell Culture) and clinical extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia (E.) coli and Klebsiella (K.) pneumoniae. Standard microbiological methods of serial microdilution, modulation of microbial cell death kinetics (“time–kill” assays), and biofilm inhibition were used. Bacterial cell wall damage and ROS (reactive oxygen species) levels were assessed in order to explore the mechanisms of platinum nanoparticles’ antibacterial activities. Platinum nanoparticles showed strong antibacterial effects against all tested bacterial strains, though their antibacterial effects were found to succumb to time kinetics. Antibiofilm activity was modest overall and significantly effective only against E. coli strains. By measuring extracellular DNA/RNA and protein concentrations, induced bacterial cell wall damage could be assumed. The determination of ROS levels induced by platinum nanoparticles revealed their possible implication in antibacterial activity. We conclude that platinum nanoparticles exhibit potent antibacterial effects against standard laboratory and resistant strains of E. coli and K. pneumoniae. Both, cell wall damage and ROS induction could have important role as mechanisms of antibacterial activity, and, require further investigation.
Collapse
Affiliation(s)
- Damir Vukoja
- Internal Medicine Clinic, University Hospital Dubrava, 10000 Zagreb, Croatia
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
- Correspondence: (J.V.); (I.K.)
| | - Vanja Ljolić Bilić
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Lela Martinaga
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Diana Brlek Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, 10000 Zagreb, Croatia
| | - Ivan Kosalec
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (J.V.); (I.K.)
| |
Collapse
|
8
|
Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, Hamblin MR, Mirzaei SA, Soleimanpour H, Dehghani S, Dehkordi FF, Mirzaei H. Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles. Front Pharmacol 2022; 13:797804. [PMID: 35281900 PMCID: PMC8904935 DOI: 10.3389/fphar.2022.797804] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer is the main cause of morbidity and mortality worldwide, excluding infectious disease. Because of their lack of specificity in chemotherapy agents are used for cancer treatment, these agents have severe systemic side effects, and gradually lose their therapeutic effects because most cancers become multidrug resistant. Platinum nanoparticles (PtNPs) are relatively new agents that are being tested in cancer therapy. This review covers the various methods for the preparation and physicochemical characterization of PtNPs. PtNPs have been shown to possess some intrinsic anticancer activity, probably due to their antioxidant action, which slows tumor growth. Targeting ligands can be attached to functionalized metal PtNPs to improve their tumor targeting ability. PtNPs-based therapeutic systems can enable the controlled release of drugs, to improve the efficiency and reduce the side effects of cancer therapy. Pt-based materials play a key role in clinical research. Thus, the diagnostic and medical industries are exploring the possibility of using PtNPs as a next-generation anticancer therapeutic agent. Although, biologically prepared nanomaterials exhibit high efficacy with low concentrations, several factors still need to be considered for clinical use of PtNPs such as the source of raw materials, stability, solubility, the method of production, biodistribution, accumulation, controlled release, cell-specific targeting, and toxicological issues to human beings. The development of PtNPs as an anticancer agent is one of the most valuable approaches for cancer treatment. The future of PtNPs in biomedical applications holds great promise, especially in the area of disease diagnosis, early detection, cellular and deep tissue imaging, drug/gene delivery, as well as multifunctional therapeutics.
Collapse
Affiliation(s)
- Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Kashan, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, Johannesburg, South Africa
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Soleimanpour
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Plumeria alba-Mediated Green Synthesis of Silver Nanoparticles Exhibits Antimicrobial Effect and Anti-Oncogenic Activity against Glioblastoma U118 MG Cancer Cell Line. NANOMATERIALS 2022; 12:nano12030493. [PMID: 35159838 PMCID: PMC8839720 DOI: 10.3390/nano12030493] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Plumeria alba (P. alba) is a small laticiferous tree with promising medicinal properties. Green synthesis of nanoparticles is eco-friendly, cost-effective, and non-hazardous compared to chemical and physical synthesis methods. Current research aiming to synthesize silver nanoparticles (AgNPs) from the leaf extract of P. alba (P- AgNPs) has described its physiochemical and pharmacological properties in recognition of its therapeutic potential as an anticancer and antimicrobial agent. These biogenic synthesized P-AgNPs were physiochemically characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometry (XRD), and zeta potential analyses. Antimicrobial activity was investigated against Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Enterococcus faecalis, Bacillus subtilis, Streptococcus pneumoniae, Candida albicans, and Candida glabrata. Anticancer activity against glioblasoma U118 MG cancer lines was investigated using an MTT assay, and apoptosis activity was determined by flow cytometry. UV–visible spectroscopic analysis portrayed surface plasmon resonance at 403 nm of synthesized P-AgNPs, and FTIR suggested the presence of amines, alkanes, and phenol molecules that could be involved in reduction and capping processes during AgNPs formation. Synthesized particles were spherical in shape and poly-dispersed with an average particle size of 26.43 nm and a poly-dispersity index (PDI) of 0.25 with a zeta potential value of −24.6 mV, ensuring their stability. The lattice plane values confirm the crystalline nature as identified by XRD. These P-AgNPs exhibited potential antimicrobial activity against selected human pathogenic microbes. Additionally, the in vitro MTT assay results show its effective anticancer activity against the glioma U118 MG cancer cell line with an IC50 value of 9.77 µg/mL AgNPs by initiating apoptosis as identified by a staining study with flow cytometric annexin V–fluorescein isothiocyanate (FITC) and propidium iodide (PI). Thus, P. alba AgNPs can be recommended for further pharmacological and other biological research. To conclude, the current investigation developed an eco-friendly AgNPs synthesis using P. alba leaf extract with potential cytotoxic and antibacterial capacity, which can therefore be recommended as a new strategy to treat different human diseases.
Collapse
|
10
|
Gulino M, Santos SD, Pêgo AP. Biocompatibility of Platinum Nanoparticles in Brain ex vivo Models in Physiological and Pathological Conditions. Front Neurosci 2022; 15:787518. [PMID: 34975386 PMCID: PMC8714788 DOI: 10.3389/fnins.2021.787518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
Platinum nanoparticles (PtNPs) have unique physico-chemical properties that led to their use in many branches of medicine. Recently, PtNPs gathered growing interest as delivery vectors for drugs, biosensors and as surface coating on chronically implanted biomedical devices for improving electrochemical properties. However, there are contradictory statements about their biocompatibility and impact on target organs such as the brain tissue, where these NPs are finding many applications. Furthermore, many of the reported studies are conducted in homeostasis conditions and, consequently, neglect the impact of the pathologic conditions on the tissue response. To expand our knowledge on the effects of PtNPs on neuronal and glial cells, we investigated the acute effects of monodisperse sodium citrate-coated PtNPs on rat organotypic hippocampal cultures in physiological or neuronal excitotoxic conditions induced by kainic acid (KA). The cellular responses of the PtNPs were evaluated through cytotoxic assays and confocal microscopy analysis. To mimic a pathologic scenario, 7-day organotypic hippocampal cultures were exposed to KA for 24 h. Subsequently, PtNPs were added to each slice. We show that incubation of the slices with PtNPs for 24 h, does not severely impact cell viability in normal conditions, with no significant differences when comparing the dentate gyrus (DG), as well as CA3 and CA1 pyramidal cell layers. Such effects are not exacerbated in KA-treated slices, where the presence of PtNPs does not cause additional neuronal propidium iodide (PI) uptake in CA3 and CA1 pyramidal cell layers. However, PtNPs cause microglial cell activation and morphological alterations in CA3 and DG regions indicating the establishment of an inflammatory reaction. Morphological analysis revealed that microglia acquire activated ameboid morphology with loss of ramifications, as a result of their response to PtNPs contact. Surprisingly, this effect is not increased in pathological conditions. Taken together, these results show that PtNPs cause microglia alterations in short-term studies. Additionally, there is no worsening of the tissue response in a neuropathological induced scenario. This work highlights the need of further research to allow for the safe use of PtNPs. Also, it supports the demand of the development of novel and more biocompatible NPs to be applied in the brain.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Sofia Duque Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Song Y, Qin G, Du L, Hu H, Han Y. In vitro and in vivo assessment of biocompatibility of AZ31 alloy as biliary stents: a preclinical approach. Arch Med Sci 2022; 18:195-205. [PMID: 35154540 PMCID: PMC8826861 DOI: 10.5114/aoms.2020.92675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Biomaterial technology due to its lack of or minimal side effects in tissues has great potential. Traditionally biomaterials used were cobalt-chromium, stainless steel and nitinol alloys. Biomaterials such as magnesium (Mg) and zinc (Zn) have good biocompatibility and consequently can be a potential material for medical implants. To date, the effects of AZ31 alloy stent on cell apoptosis are still unclear. The current investigation was designed to determine the effect of AZ31 alloy stent on necrosis and apoptosis of common bile duct (CBD) epithelial cells. MATERIAL AND METHODS We experimented with application of different concentrations of AZ31 alloy stent to primary mouse extrahepatic bile epithelial cells (MEBECs) and estimated the effect on apoptosis and necrotic cells. Apoptosis and pro-apoptosis expression were estimated through real-time PCR. For in vivo protocol, we used rabbits, implanted the AZ31 bile stent, and estimated its effect on the CBD. AZ31 (40%) concentration showed an effect on the apoptotic and necrotic cells. RESULTS Real-time PCR revealed that AZ31 (40%) concentration increased the apoptotic genes such as NF-κB, caspase-3, Bax and Bax/Bcl-2 ratio as compared to the control group. In the in vivo experiment, AZ31 alloy stents were implanted into the CBD and showed an effect on the alteration the hematological, hepatic and non-hepatic parameters. CONCLUSIONS To conclude, it can be stated that AZ31 induces apoptosis via alteration in genes including nuclear factor kappa-B (NF-κB), caspase-3, Bax and Bax/Bcl-2 ratio and improved the hematological, hepatic and non-hepatic parameters.
Collapse
Affiliation(s)
- Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Gaoping Qin
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Lixue Du
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haitian Hu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yong Han
- Material Science and Engineering, Xi’an Jiaotong University, Beilin District, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Yu J, He X, Wang Z, Liu S, Hao D, Li X, Huang Y. Combination of starvation therapy and Pt-NP based chemotherapy for synergistic cancer treatment. J Mater Chem B 2021; 9:6406-6411. [PMID: 34318860 DOI: 10.1039/d1tb01222c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platinum nanoparticles (Pt-NPs) have been developed for enhanced toxicity against tumor cells. However, the therapeutic effect of Pt-NPs was severely limited by the lack of cellular uptake of Pt-NPs and an oxidative environment. The combination of starvation therapy with Pt-NP based chemotherapy in a well-designed nano-system is expected to eliminate tumors. Therefore, GOx and Pt-NPs were coated with PLGA to obtain a functional nano-system (GOx-Pt-NS), which increased the cellular uptake of Pt-NPs. The accumulation of GOx-Pt-NS in tumors increased significantly via the enhanced permeability and retention (EPR) effect of nanoparticles. In addition, protection of the GOx-Pt-NS overcame several drawbacks of GOx such as poor stability, short in vivo half-life, immunogenicity, and systemic toxicity. Glucose oxidase (GOx) elevated the gluconic acid ROS levels in tumor cells, resulting in an acidic and oxidative environment. The acidic and oxidative environment enhanced the conversion of Pt2+via Pt NPs as well as DNA-binding ability. Finally, combining GOx based starvation therapy with Pt-NP based chemotherapy was expected to eliminate tumors more efficiently through a synergistic strategy.
Collapse
Affiliation(s)
- Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lemos BB, Motta KPD, Paltian JJ, Reis AS, Blödorn GB, Soares MP, Alves D, Luchese C, Wilhelm EA. Role of 7-chloro-4-(phenylselanyl) quinoline in the treatment of oxaliplatin-induced hepatic toxicity in mice. Can J Physiol Pharmacol 2021; 99:378-388. [PMID: 32810410 DOI: 10.1139/cjpp-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an increasing incidence of hepatotoxicity induced by oxaliplatin (OXA); therefore, researchers' attention has been drawn to therapeutic alternatives that may decrease OXA-induced hepatotoxicity. Studies indicate that oxidative stress plays a major role in OXA-induced liver injury. As several pharmacological effects of 7-chloro-4-(phenylselanyl) quinole (4-PSQ) involve its antioxidant action, the hypothesis that this organoselenium compound could be promising for the treatment or prevention of hepatotoxicity induced by treatment with OXA was investigated. To test this hypothesis, male Swiss mice received OXA (10 mg·kg-1) on days 0 and 2, followed by oral administration of 4-PSQ (1 mg·kg-1) on days 2 to 14. 4-PSQ reduced the plasma aspartate, and alanine aminotransferase activity increased by exposure to OXA. The histopathological examination of the liver showed that 4-PSQ markedly improved OXA-induced hepatic injury. In addition, treatment with 4-PSQ reduced the oxidation of lipids and proteins (thiobarbituric acid reactive species levels and protein carbonyl content) and attenuated the increase of hepatic catalase and glutathione peroxidase activity caused by OXA. The inhibition of hepatic δ-aminolevulinic dehydratase activity induced by OXA was reverted by 4-PSQ. In conclusion, results indicate that 4-PSQ may be a good therapeutic strategy for attenuating OXA-induced liver damage.
Collapse
Affiliation(s)
- Briana B Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Jaini J Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Angélica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Gustavo B Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| |
Collapse
|
14
|
LDL receptors and their role in targeted therapy for glioma: a review. Drug Discov Today 2021; 26:1212-1225. [PMID: 33609780 DOI: 10.1016/j.drudis.2021.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022]
Abstract
Gliomas are highly lethal forms of cancers occurring in the brain. Delivering the drugs into the brain is a major challenge to the treatment of gliomas because of the highly selectively permeable blood-brain barrier (BBB). Tapping the potential of receptor-mediated drug delivery systems using targeted nanoparticles (NPs) is a sought-after step forward toward successful glioma treatment. Several receptors are the focus of research for application in drug delivery. Low-density lipoprotein receptors (LDLR) are abundantly expressed in both healthy brains and diseased brains with a disrupted BBB. In this review, we discuss the LDLR and the types of NPs that have been used to target the brain via this receptor.
Collapse
|
15
|
Mapanao AK, Che PP, Sarogni P, Sminia P, Giovannetti E, Voliani V. Tumor grafted - chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opin Drug Metab Toxicol 2021; 17:947-968. [PMID: 33565346 DOI: 10.1080/17425255.2021.1879047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: Advancements in cancer management and treatment are associated with strong preclinical research data, in which reliable cancer models are demanded. Indeed, inconsistent preclinical findings and stringent regulations following the 3Rs principle of reduction, refinement, and replacement of conventional animal models currently pose challenges in the development and translation of efficient technologies. The chick embryo chorioallantoic membrane (CAM) is a system for the evaluation of treatment effects on the vasculature, therefore suitable for studies on angiogenesis. Apart from vascular effects, the model is now increasingly employed as a preclinical cancer model following tumor-grafting procedures.Areas covered: The broad application of CAM tumor model is highlighted along with the methods for analyzing the neoplasm and vascular system. The presented and cited investigations focus on cancer biology and treatment, encompassing both conventional and emerging nanomaterial-based modalities.Expert opinion: The CAM tumor model finds increased significance given the influences of angiogenesis and the tumor microenvironment in cancer behavior, then providing a qualified miniature system for oncological research. Ultimately, the establishment and increased employment of such a model may resolve some of the limitations present in the standard preclinical tumor models, thereby redefining the preclinical research workflow.
Collapse
Affiliation(s)
- Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy.,NEST-Scuola Normale Superiore, Pisa, Italy
| | - Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| |
Collapse
|
16
|
Dąbrowski M, Lewandowski J, Szmigielski C, Siński M. Atrial fibrillation influences automatic oscillometric ankle-brachial index measurement. Arch Med Sci 2021; 17:621-627. [PMID: 34025831 PMCID: PMC8130470 DOI: 10.5114/aoms.2018.75891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Repeated measurements of ankle-brachial index (ABI) using Doppler method were shown to be accurate during atrial fibrillation. Oscillometric devices are effective in ABI measurement, but their accuracy during atrial fibrillation is unknown. The purpose of the study was to investigate whether atrial fibrillation influences ABI obtained with the automatic oscillometric method. MATERIAL AND METHODS Ninety-nine patients with atrial fibrillation (mean age: 66.6 +(SD = 11) years, M/F - 63/36) who underwent electrical cardioversion were investigated (198 lower extremities). The ABI measurements using oscillometric and Doppler methods were performed on both lower extremities before and after procedure. RESULTS The ABI measured using the oscillometric method on both lower limbs did not change after cardioversion (1.21 (IQR: 1.13-1.27) vs. 1.22 (IQR: 1.14-1.26), p = 0.664, respectively). The ABI measured before and after cardioversion using Doppler and oscillometric methods showed a significant difference (1.14 (IQR: 1.07-1.22) vs. 1.21 (IQR: 1.13-1.27), p < 0.001 and 1.18 (IQR: 1.09-1.13) vs. 1.22 (IQR: 1.14-1.26), p < 0.001 respectively). Both methods showed a weak correlation before (r = 0.35, p < 0.001) and no correlation after cardioversion (r = 0.12, p = 0.07). The Bland-Altman plot showed poor agreement between measurements performed with the Doppler and oscillometric methods in sinus rhythm and during atrial fibrillation. CONCLUSIONS The automated oscillometric method of ABI measurements should not replace the reference Doppler method in patients with atrial fibrillation. More research related to the oscillometric measurements is needed in subjects with peripheral artery disease and atrial fibrillation.
Collapse
Affiliation(s)
- Michał Dąbrowski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Lewandowski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Cezary Szmigielski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Ding Y, Zhu W, Kong W, Li T, Zou P, Chen H. Edaravone attenuates neuronal apoptosis in hippocampus of rat traumatic brain injury model via activation of BDNF/TrkB signaling pathway. Arch Med Sci 2021; 17:514-522. [PMID: 33747286 PMCID: PMC7959085 DOI: 10.5114/aoms.2019.89849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The purpose of our study was to explore the effects of edaravone on rats with traumatic brain injury (TBI) and investigate the underlying mechanism. MATERIAL AND METHODS All rats were separated randomly into 3 groups as follows: sham group (n = 25), TBI group (n = 25), TBI + edaravone group (n = 25). Edaravone was administered intraperitoneally (i.p.) at a dose of 3 mg/kg at 30 min, 12 h, and 24 h after TBI. The neurological impairment and spatial cognitive function were assessed by the neurologic severity score (NSS) and Morris water maze (MWM), respectively. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to determine the expression levels of caspase-3, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay as well as flow cytometry assay was used to determine the apoptosis rate of cells. RESULTS Edaravone administration significantly attenuated neurological impairment induced by TBI and promoted cognitive function outcome. The expression of BDNF and TrkB was elevated with treatment of edaravone, which was increased after TBI. The expression of apoptosis related proteins such as caspase-3 and Bax-2 was decreased while that of Bcl-2 was enhanced with edaravone administration following TBI. In addition, edaravone treatment reduced TBI-induced cell apoptosis in the hippocampus. CONCLUSIONS Our study showed that administration with edaravone was able to inhibit neuronal apoptosis in the hippocampus in a rat TBI model. The neuroprotective function of edaravone may relate to modulation of the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Yuexia Ding
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Zhu
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Kong
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Tuo Li
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Zou
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongguang Chen
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
18
|
Kazmierak W, Korolczuk A, Kurzepa J, Czechowska G, Boguszewska-Czubara A, Madro A. The influence of erythropoietin on apoptosis and fibrosis in the early phase of chronic pancreatitis in rats. Arch Med Sci 2021; 17:1100-1108. [PMID: 34336038 PMCID: PMC8314426 DOI: 10.5114/aoms.2020.99800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a continuing, inflammatory process of the pancreas, characterised by irreversible morphological changes. The identification of pancreatic stellate cells resulted in the development of research on the pathogenesis of CP. Erythropoietin (Epo) regulates the interaction between apoptosis and inflammation of the brain, kidney, and heart muscle. Erythropoietin receptors were also found in the pancreas, in particular on the islet cells. Our objective was to evaluate the influence of Epo on fibrosis and apoptosis in experimental CP. MATERIAL AND METHODS The experiments were performed on 48 male Wistar rats (250-350 g). The animals were divided into six equal groups (I - control, II - chronic cerulein - induced pancreatitis, III - 1 ml of Epo sc, IV - 0.5 ml of Epo sc, V - CP treated with 1 ml Epo, VI - CP treated with 0.5 ml Epo). The blood for gelatinases and pancreata for the morphological examinations and immunohistochemistry were collected. RESULTS A slight reduction of interstitial oedema and less severe fibrosis were noticed in the groups treated with Epo. Reduced expression of caspase-3 and α-actin, and a lack of Bcl-2 expression were observed in areas with inflammation. There was no expression of caspase-9 observed in all groups. There were no statistically significant differences between the groups in the activity of gelatinases. CONCLUSIONS Erythropoietin seems to have the effect of reducing fibrosis and apoptosis in an experimental model of CP.
Collapse
Affiliation(s)
- Weronika Kazmierak
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grażyna Czechowska
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | | | - Agnieszka Madro
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
19
|
Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer. Int J Mol Sci 2020; 21:ijms21186792. [PMID: 32947930 PMCID: PMC7554966 DOI: 10.3390/ijms21186792] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.
Collapse
|
20
|
Gurunathan S, Jeyaraj M, La H, Yoo H, Choi Y, Do JT, Park C, Kim JH, Hong K. Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells. Int J Mol Sci 2020; 21:ijms21020440. [PMID: 31936679 PMCID: PMC7014054 DOI: 10.3390/ijms21020440] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
The thermoplasmonic properties of platinum nanoparticles (PtNPs) render them desirable for use in diagnosis, detection, therapy, and surgery. However, their toxicological effects and impact at the molecular level remain obscure. Nanotoxicology is mainly focused on the interactions of nanostructures with biological systems, particularly with an emphasis on elucidating the relationship between the physical and chemical properties such as size and shape. Therefore, we hypothesized whether these unique anisotropic nanoparticles could induce cytotoxicity similar to that of spherical nanoparticles and the mechanism involved. Thus, we synthesized unique and distinct anisotropic PtNPs using lycopene as a biological template and investigated their biological activities in model human acute monocytic leukemia (THP-1) macrophages. Exposure to PtNPs for 24 h dose-dependently decreased cell viability and proliferation. Levels of the cytotoxic markers lactate dehydrogenase and intracellular protease significantly and dose-dependently increased with PtNP concentration. Furthermore, cells incubated with PtNPs dose-dependently produced oxidative stress markers including reactive oxygen species (ROS), malondialdehyde, nitric oxide, and carbonylated protein. An imbalance in pro-oxidants and antioxidants was confirmed by significant decreases in reduced glutathione, thioredoxin, superoxide dismutase, and catalase levels against oxidative stress. The cell death mechanism was confirmed by mitochondrial dysfunction and decreased ATP levels, mitochondrial copy numbers, and PGC-1α expression. To further substantiate the mechanism of cell death mediated by endoplasmic reticulum stress (ERS), we determined the expression of the inositol-requiring enzyme (IRE1), (PKR-like ER kinase) PERK, activating transcription factor 6 (ATF6), and activating transcription factor 4 ATF4, the apoptotic markers p53, Bax, and caspase 3, and the anti-apoptotic marker Bcl-2. PtNPs could activate ERS and apoptosis mediated by mitochondria. A proinflammatory response to PtNPs was confirmed by significant upregulation of interleukin-1-beta (IL-1β), interferon γ (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL-6). Transcriptomic and molecular pathway analyses of THP-1 cells incubated with the half maximal inhibitory concentration (IC50) of PtNPs revealed the altered expression of genes involved in protein misfolding, mitochondrial function, protein synthesis, inflammatory responses, and transcription regulation. We applied transcriptomic analyses to investigate anisotropic PtNP-induced toxicity for further mechanistic studies. Isotropic nanoparticles are specifically used to inhibit non-specific cellular uptake, leading to enhanced in vivo bio-distribution and increased targeting capabilities due to the higher radius of curvature. These characteristics of anisotropic nanoparticles could enable the technology as an attractive platform for nanomedicine in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kwonho Hong
- Correspondence: ; Tel.: +82-2-450-0560; Fax: +82-2-444-3490
| |
Collapse
|
21
|
Gu L, Yu T, Liu J, Lu Y. Evaluation of the mechanism of cordyceps polysaccharide action on rat acute liver failure. Arch Med Sci 2020; 16:1218-1225. [PMID: 32864011 PMCID: PMC7444724 DOI: 10.5114/aoms.2020.94236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the mechanism of action of cordyceps polysaccharide on rat acute liver failure (ALF). MATERIAL AND METHODS Sixty rats were randomly divided into five groups: a normal group, a model group without cordyceps polysaccharide and groups with cordyceps polysaccharide in three different doses (5, 10 and 20 mg/ml). Serum alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and total bilirubin (TBIL) contents were measured for assessing liver function. Hematoxylin and eosin (HE) staining was used for observing liver pathology. Apoptosis was detected through the method of terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining. Protein expression levels of caspase-1, interleukin-18 (IL-18), IL-10, vascular endothelial growth factor (VEGF), and stromal cell-derived factor-1α (SDF-1α) in liver tissue were detected by Western blot. Proliferating cell nuclear antigen (PCNA) and signal regulatory protein-α1 (SIRPα1) contents were measured by PCR. RESULTS The rat ALF model was established with D-galactosamine induced by lipopolysaccharide (LPS). After modelling, tissue HE staining showed typical manifestation of acute liver injury that emerged in the rat ALF model. The liver failure group showed higher levels of serum ALT and AST, as well as hepatocyte apoptosis, than the groups treated with cordyceps polysaccharide. Cordyceps polysaccharide can effectively suppress the protein expression of caspase-1, IL-18, and IL-10, while simultaneously increasing the protein expression of VEGF and SDF-1α, as well as the mRNA expression of PCNA and SIRPα1. CONCLUSIONS Cordyceps polysaccharide can alleviate the immune response and inflammatory injury in ALF by regulating the balance of pro-inflammatory and anti-inflammatory factors and reducing the apoptosis.
Collapse
Affiliation(s)
- Lina Gu
- Intensive Care Unit, the First Hospital of Jilin University, Changchun, China
| | - Ting Yu
- Department of Nutrition, the Second Hospital of Jilin University, Changchun, China
| | - Jingyao Liu
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Ying Lu
- Intensive Care Unit, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1719. [PMID: 31810256 PMCID: PMC6956027 DOI: 10.3390/nano9121719] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea; (M.J.); (S.G.); (M.Q.); (M.-H.K.)
| |
Collapse
|
23
|
Han X, Wang X, Li H, Zhang H. Mechanism of microRNA-431-5p- EPB41L1 interaction in glioblastoma multiforme cells. Arch Med Sci 2019; 15:1555-1564. [PMID: 31749885 PMCID: PMC6855151 DOI: 10.5114/aoms.2019.88274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is a kind of malignant brain tumor prevalent in adults, with the characteristics well adapted to poorly immunogenic and hypoxic conditions. Effective treatment of GBM is impeded due to the high proliferation, migration and invasion of GBM cells. GBM cells migrate by degrading the extracellular matrix, so it is difficult to have GBM cells eradicated completely by surgery. This study aims to confirm that miR-431-5p could influence the proliferation, invasion and migration of human glioblastoma multiforme cells by targeting EPB41L1 (erythrocyte membrane protein band 4.1). MATERIAL AND METHODS The expression levels of miR-431-5p and EPB41L1 were detected in GBM cells and tissues using qRT-PCR. Dual luciferase reporter gene assay and western blot were applied to confirm the targeting relationship between miR-431-5p and EPB41L1. GBM cell line U87 was used in MTT, flow cytometry, Transwell, and wound healing assays to determine cell proliferation, migration and invasion. RESULTS MiR-431-5p was overexpressed in GBM tissues while EPB41L1 was under-expressed. The results of dual luciferase reporter gene assay and western blot demonstrated that miR-431-5p could target EPB41L1 and suppress its expression. Down-regulating the expression of miR-431-5p or up-regulating the expression of EPB41L1 could inhibit the proliferation, invasion and migration but promote the apoptosis of GBM cells. CONCLUSIONS MiR-431-5p facilitated the progression of GBM by inhibiting EPB41L1 expression.
Collapse
Affiliation(s)
- Xiaoyong Han
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Xirui Wang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Hui Li
- Department of Surgery, Dongguang County Chinese Traditional Medicine Hospital, CangZhou, Hebei, China
| | - Hui Zhang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| |
Collapse
|
24
|
Bano N, Najam R. Histopathological and biochemical assessment of liver damage in albino Wistar rats treated with cytotoxic platinum compounds in combination with 5-fluorouracil. Arch Med Sci 2019; 15:1092-1103. [PMID: 31360204 PMCID: PMC6657249 DOI: 10.5114/aoms.2019.86064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Chemotherapy-induced hepatotoxicity in cancer patients often results in cessation of therapy and prevents completion of the treatment plan. The entire pathological description and comparison of hepatic damage induced by oxaliplatin or cisplatin in combination with 5-fluorouracil (5-FU) is not adequately reported. This study reports histopathological assessment of hepatotoxicity of a non-tumor bearing organ in rats treated with 5-FU, oxaliplatin and cisplatin (CDDP). MATERIAL AND METHODS Changes in hepatic biochemical profile of 36 albino Wistar rats equally divided into different treatment groups with cisplatin, oxaliplatin, 5-FU, cisplatin plus 5-FU and oxaliplatin plus 5-FU were compared with a group of rats treated with normal saline (control group). At the end of treatments, hepatic tissues were taken for blinded histopathological assessment by light microscopy. RESULTS Serum glutamate pyruvate transaminase and serum glutamic-oxaloacetic transaminase levels were disrupted in rats treated with 5-FU alone and in combination with cisplatin or oxaliplatin. Hepatocellular injuries, e.g. sinusoidal dilatation, venular fibrosis and centrilobular vein injury induced by oxaliplatin were intensified in treatment groups also receiving 5-FU, manifested as massive architectural distortion, periportal fibrosis, hepatic cord degeneration and cystic lesions with demarcated margins. Hepatocellular degenerative sequence and abnormally dilated central hepatic vein was shown in the cisplatin plus 5-FU treatment group with hemorrhage and blood filled sinusoids. CONCLUSIONS Oxaliplatin-associated cystic lesions were intensified in rats treated with a combination of 5-FU and oxaliplatin.
Collapse
Affiliation(s)
- Nusrat Bano
- Department of Pharmacology, King Saud Bin Abdulaziz University For Health Sciences, Jeddah, Saudi Arabia
| | - Rahila Najam
- Department of Pharmacology, University of Karachi, Karachi, Saudi Arabia
| |
Collapse
|
25
|
Zhang X, Jiang X, Croley TR, Boudreau MD, He W, Cai J, Li P, Yin JJ. Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:99-115. [PMID: 31099294 DOI: 10.1080/10590501.2019.1602991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Xiumei Jiang
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Timothy R Croley
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Mary D Boudreau
- d National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weiwei He
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Junhui Cai
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Peirui Li
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
| | - Jun-Jie Yin
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| |
Collapse
|
26
|
Borowik A, Banasiuk R, Derewonko N, Rychlowski M, Krychowiak-Masnicka M, Wyrzykowski D, Ziabka M, Woziwodzka A, Krolicka A, Piosik J. Interactions of newly synthesized platinum nanoparticles with ICR-191 and their potential application. Sci Rep 2019; 9:4987. [PMID: 30899037 PMCID: PMC6428851 DOI: 10.1038/s41598-019-41092-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
One of the greatest challenges of modern medicine is to find cheaper and easier ways to produce transporters for biologically active substances, which will provide selective and efficient drug delivery to the target cells, while causing low toxicity towards healthy cells. Currently, metal-based nanoparticles are considered a successful and viable solution to this problem. In this work, we propose the use of novel synthesis method of platinum nanoparticles (PtNPs) connected with their precise biophysical characterization and assessment of their potential toxicity. To work as an efficient nanodelivery platform, nanoparticles should interact with the desired active compounds spontaneously and non-covalently. We investigated possible direct interactions of PtNPs with ICR-191, a model acridine mutagen with well-established biophysical properties and mutagenic activity, by Dynamic Light Scattering, fluorescence spectroscopy, and Isothermal Titration Calorimetry. Moreover, to determine the biological activity of ICR-191-PtNPs aggregates, we employed Ames mutagenicity test, eukaryotic cell line analysis and toxicity test against the model organism Caenorhabditis elegans. PtNPs' interesting physicochemical properties associated to the lack of toxicity in a tested range of concentrations, as well as their ability to modulate ICR-191 biological activity, suggest that these particles successfully work as potential delivery platforms for different biologically active substances.
Collapse
Affiliation(s)
- Agnieszka Borowik
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biophysics, Abrahama 58, Gdansk, 80-307, Poland
| | - Rafal Banasiuk
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, Abrahama 58, Gdansk, 80-307, Poland
| | - Natalia Derewonko
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Virus Molecular Biology, Abrahama 58, Gdansk, 80-307, Poland
| | - Michal Rychlowski
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Virus Molecular Biology, Abrahama 58, Gdansk, 80-307, Poland
| | - Marta Krychowiak-Masnicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, Abrahama 58, Gdansk, 80-307, Poland
| | - Dariusz Wyrzykowski
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Magdalena Ziabka
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, Krakow, 30-059, Poland
| | - Anna Woziwodzka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biophysics, Abrahama 58, Gdansk, 80-307, Poland
| | - Aleksandra Krolicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, Abrahama 58, Gdansk, 80-307, Poland.
| | - Jacek Piosik
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biophysics, Abrahama 58, Gdansk, 80-307, Poland.
| |
Collapse
|
27
|
Kutwin M, Sawosz E, Jaworski S, Wierzbicki M, Strojny B, Grodzik M, Ewa Sosnowska M, Trzaskowski M, Chwalibog A. Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines. MATERIALS 2019; 12:ma12060909. [PMID: 30893818 PMCID: PMC6470683 DOI: 10.3390/ma12060909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Inefficient drug administration into cancer cells is related to the chemoresistance of cancer cells caused by genetic mutations including genes involved in drug transport, enzyme metabolism, and/or DNA damage repair. The objective of the present study was to evaluate the properties of platinum (NP-Pt), graphene oxide (GO), and the nanocomplex of GO functionalized with platinum nanoparticles (GO-NP-Pt) against several genetically, phenotypically, and metabolically different cancer cell lines: Colo205, HT-29, HTC-116, SW480, HepG2, MCF-7, LNCaP, and Hela B. The anticancer effects toward the cancer cell lines were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) and bromodeoxyuridine (BrdU) assays and measurements of cell apoptosis and morphology deformations. The NP-Pt and GO could effectively be introduced to cancer cells, but more effective delivery was observed after GO-NP-Pt treatment. The delivery of the GO-NP-Pt nanocomplex significantly decreased the viability of Colo 205 and HepG2 cells, but did not increase the cytotoxicity of other investigated cancer cells. The nanocomplex GO-NP-Pt also significantly increased the apoptosis of Colo 205 and HepG2 cancer cells. The obtained results suggest that the nanocomplex GO-NP-Pt is a remarkable nanostructure that can improve the delivery of Pt nanoparticles into cancer cells and has potential anticancer applications.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Malwina Ewa Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland.
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland.
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
28
|
Adeyemi OS, Otohinoyi DA, Awakan OJ, Adeyanju AA. Cellular apoptosis of HFF cells by inorganic nanoparticles not susceptible to modulation by Toxoplasma gondii infection in vitro. Toxicol In Vitro 2018; 54:280-285. [PMID: 30359720 DOI: 10.1016/j.tiv.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
The interaction of nanoparticles with living cells is becoming one of the urgent areas of collaborative research in materials science and biology. Previously, we showed that nanoparticles have promising anti-Toxoplasma gondii properties. Meanwhile, Toxoplasma gondii has been shown to avert apoptosis in host cells whereas nanoparticles have been implicated for apoptotic tendency. Therefore, in the present study, we assessed the in vitro apoptotic properties of inorganic nanoparticles in the absence or presence of Toxoplasma infection and/or small molecules used as metabolic modulators. Results showed that inorganic nanoparticles dose-dependently caused cellular apoptosis. However, in the presence of infection by Toxoplasma gondii, nanoparticles-induced cellular apoptosis was not mitigated. Likewise, use of several small molecules (anti-metabolites) as metabolic modulators either mildly or nearly failed to abate cellular apoptosis by nanoparticles. Taken together, our findings do not only confirm the apoptotic potential of inorganic nanoparticles but show evidence that cellular apoptosis by inorganic nanoparticles of gold and silver might not be susceptible to modulation by Toxoplasma gondii infection. The findings are new and contribute to deepen our understanding of the cellular interaction of nanoparticles.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 10017 Omu-Aran, Nigeria.
| | | | - Oluwakemi Josephine Awakan
- Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 10017 Omu-Aran, Nigeria
| | | |
Collapse
|
29
|
Electrochemically Reduced Water Delays Mammary Tumors Growth in Mice and Inhibits Breast Cancer Cells Survival In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4753507. [PMID: 30402124 PMCID: PMC6196883 DOI: 10.1155/2018/4753507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/25/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
Abstract
Electrochemical reduced water (ERW) has been proposed to have beneficial effects on human health due to its rich content of H2 and the presence of platinum nanoparticles with antioxidant effects. Many studies have demonstrated that ERW scavenging properties are able to reduce the damage caused by oxidative stress in different experimental models. Although few in vivo studies have been reported, it has been demonstrated that ERW may display anticancer effects by induction of tumor cells apoptosis and reduction of both angiogenesis and inflammation. In this study, we show that ERW treatment of MCF-7, MDA-MB-453, and mouse (TUBO) breast cancer cells inhibited cell survival in a time-dependent fashion. ERW decreased ErbB2/neu expression and impaired pERK1/ERK2 and AKT phosphorylation in breast cancer cells. In addition, ERW treatment induced apoptosis of breast cancer cell lines independently of the status of p53 and ER and PR receptors. Our in vivo results showed that ERW treatment of transgenic BALB-neuT mice delayed the development of mammary tumors compared to the control. In addition, ERW induced a significant prolongation of tumor-free survival and a reduction in tumor multiplicity. Overall, these results suggest a potential beneficial role of ERW in inhibiting cancer cells growth.
Collapse
|
30
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|
31
|
Kutwin M, Sawosz E, Jaworski S, Wierzbicki M, Strojny B, Grodzik M, Chwalibog A. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment. PLoS One 2017; 12:e0178277. [PMID: 28562655 PMCID: PMC5451066 DOI: 10.1371/journal.pone.0178277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/10/2017] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is one of the most frequent primary brain tumours of the central nervous system, with a poor survival time. With inefficient chemotherapy, it is urgent to develop new strategies for tumour therapy. The present approach is based on the inhibition of cell proliferation using platinum nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell morphology, the level of DNA synthesis, the migration of cells, protein expression levels of proliferating cell nuclear antigen (PCNA) and the level of DNA oxidation in glioma tumours were investigated. The results showed that NP-Pt treatment of U87 and U118 glioma cells decreased the level of DNA synthesis and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation. However, the mechanism of action and potential side effects need to be elucidated further.
Collapse
Affiliation(s)
- Marta Kutwin
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - Ewa Sawosz
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - Slawomir Jaworski
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - Mateusz Wierzbicki
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - Barbara Strojny
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - Marta Grodzik
- Warsaw University of Life Science, Faculty of Animal Science, Department of Animal Nutrition and Biotechnology, Warsaw, Poland
| | - André Chwalibog
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Frederiksberg, Denmark
| |
Collapse
|