1
|
Chen J, Li M, Shang S, Cheng L, Tang Z, Huang C. LncRNA XIST/miR-381-3P/STAT1 axis as a potential biomarker for lupus nephritis. Lupus 2024; 33:1176-1191. [PMID: 39126180 DOI: 10.1177/09612033241273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
OBJECTIVE We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ming Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuangshuang Shang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lili Cheng
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhongfu Tang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chuanbing Huang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Yang M, Wang P, Liu T, Zou X, Xia Y, Li C, Wang X. High throughput sequencing revealed enhanced cell cycle signaling in SLE patients. Sci Rep 2023; 13:159. [PMID: 36599883 DOI: 10.1038/s41598-022-27310-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The multi-system involvement and high heterogeneity of systemic lupus erythematosus (SLE) pose great challenges to its diagnosis and treatment. The purpose of the current study is to identify genes and pathways involved in the pathogenesis of SLE. High throughput sequencing was performed on the PBMCs from SLE patients. We conducted differential gene analysis, gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) analysis, and quantitative real-time PCR (qRT-PCR) verification. Protein-protein interaction (PPI) analysis, alternative splicing analysis, and disease correlation analysis were conducted on some key pathogenic genes as well. Furthermore, si-CDC6 was used for transfection and cell proliferation was monitored using a cell counting kit-8 (CCK-8) assay. We identified 2495 differential genes (1494 upregulated and 1001 downregulated) in SLE patients compared with healthy controls. The significantly upregulated genes were enriched in the biological process-related GO terms of the cell cycle, response to stress, and chromosome organization. KEGG enrichment analysis revealed 7 significantly upregulated pathways including SLE, alcoholism, viral carcinogenesis, cell cycle, proteasome, malaria, and transcriptional misregulation in cancer. We successfully verified some differential genes on the SLE pathway and the cell cycle pathway. CDC6, a key gene in the cell cycle pathway, had remarkably higher MXE alternative splicing events in SLE patients than that in controls, which may explain its significant upregulation in SLE patients. We found that CDC6 participates in the pathogenesis of many proliferation-related diseases and its levels are positively correlated with the severity of SLE. Knockdown of CDC6 suppressed the proliferation of Hela cells and PBMCs from SLE patients in vitro. We identified SLE-related genes and their alternative splicing events. The cell cycle pathway and the cell cycle-related biological processes are over-activated in SLE patients. We revealed a higher incidence of MXE events of CDC6, which may lead to its high expression in SLE patients. Upregulated cell cycle signaling and CDC6 may be related to the hyperproliferation and pathogenesis of SLE.
Collapse
Affiliation(s)
- Mingyue Yang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Peisong Wang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Tao Liu
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaojuan Zou
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China.
- Institute of Translational Medicine, First Hospital of Jilin University, No.519 Dongminzhu Street, Changchun, 130021, China.
| |
Collapse
|
4
|
Afrashteh Nour M, Ghorbaninezhad F, Asadzadeh Z, Baghbanzadeh A, Hassanian H, Leone P, Jafarlou M, Alizadeh N, Racanelli V, Baradaran B. The emerging role of noncoding RNAs in systemic lupus erythematosus: new insights into the master regulators of disease pathogenesis. Ther Adv Chronic Dis 2023; 14:20406223231153572. [PMID: 37035097 PMCID: PMC10074641 DOI: 10.1177/20406223231153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/11/2023] [Indexed: 04/11/2023] Open
Abstract
Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine,
Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Student Research Committee, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Interdisciplinary Medicine,
University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
5
|
Zheng M, Han R, Yuan W, Chi H, Zhang Y, Sun K, Zhong J, Liu X, Yang X. Circulating exosomal lncRNAs in patients with chronic coronary syndromes. Arch Med Sci 2023; 19:46-56. [PMID: 36817662 PMCID: PMC9897088 DOI: 10.5114/aoms/128014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The concept of chronic coronary syndrome (CCS) was first presented at the European Society of Cardiology Meeting in 2019. However, the roles of exosomal lncRNAs in CCS remain largely unclear. MATERIAL AND METHODS A case-control study was performed with a total of 218 participants (137 males and 81 females), including 15 CCS patients and 15 controls for sequencing profiles, 20 CCS patients and 20 controls for the first validation, and 100 CCS patients and 48 controls for the second validation. Exosomes were isolated from the plasma of CCS patients and controls, and exosomal lncRNAs were identified by sequencing profiles and verified twice by qRT-PCR analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of exosomal lncRNAs for CCS patients. RESULTS A total of 152 significantly differentially expressed lncRNAs with over two-fold changes were detected in plasma exosomes of CCS patients, including 90 upregulated and 62 downregulated lncRNAs. Importantly, 6 upregulated lncRNAs with the top fold changes were selected for validations. Exosomal lncRNAs ENST00000424615.2 and ENST00000560769.1 were significantly elevated in CCS patients in both validations compared with controls. The areas under the ROC of lncRNAs ENST00000424615.2 and ENST00000560769.1 were 0.654 and 0.722, respectively. Additionally, exosomal lncRNA ENST00000560769.1 was significantly higher in the CCS patients with more diseased vessels (p = 0.028). CONCLUSIONS Exosomal lncRNA ENST00000424615.2 and ENST00000560769.1 were identified as novel diagnosis biomarkers for patients with CCS. Moreover, exosomal lncRNA ENST00000560769.1 was significantly higher in the CCS patients with more diseased vessels, and might be associated with a poor prognosis.
Collapse
Affiliation(s)
- Meili Zheng
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Han
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Yuan
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yeping Zhang
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kai Sun
- Department of Radiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Jiuchang Zhong
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
7
|
Li HH, Sai LT, Liu Y, Freel CI, Wang K, Zhou C, Zheng J, Shu Q, Zhao YJ. Systemic lupus erythematosus dysregulates the expression of long noncoding RNAs in placentas. Arthritis Res Ther 2022; 24:142. [PMID: 35701843 PMCID: PMC9195362 DOI: 10.1186/s13075-022-02825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 05/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) can cause placental dysfunctions, which may result in pregnancy complications. Long noncoding RNAs (lncRNAs) are actively involved in the regulation of immune responses during pregnancy. The present study aimed to determine the lncRNA expression profiles in placentas from women with SLE to gain new insights into the underlying molecular mechanisms in SLE pregnancies. Methods RNA sequencing (RNA-seq) analysis was performed to identify SLE-dysregulated lncRNAs and mRNAs in placentas from women with SLE and normal full-term (NT) pregnancies. Bioinformatics analysis was conducted to predict the biological functions of these SLE-dysregulated lncRNAs and mRNAs. Results RNA-seq analysis identified 52 dysregulated lncRNAs in SLE placentas, including 37 that were upregulated and 15 downregulated. Additional 130 SLE-dysregulated mRNAs were discovered, including 122 upregulated and 8 downregulated. Bioinformatics analysis revealed that SLE-dysregulated genes were associated with biological functions and gene networks, such as regulation of type I interferon-mediated signaling pathway, response to hypoxia, regulation of MAPK (mitogen-activated protein kinase) cascade, response to steroid hormone, complement and coagulation cascades, and Th1 and Th2 cell differentiation. Conclusions This is the first report of the lncRNA profiles in placentas from SLE pregnancies. These results suggest that the aberrant expression and the potential regulatory function of lncRNAs in placentas may play comprehensive roles in the pathogenesis of SLE pregnancies. SLE-dysregulated lncRNAs may potentially serve as biomarkers for SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02825-7.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Lin-Tao Sai
- Department of Infectious Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Colman I Freel
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA.,Scholars Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chi Zhou
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, 250012, Shandong, China.
| | - Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA. .,Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Wu H, Chen S, Li A, Shen K, Wang S, Wang S, Wu P, Luo W, Pan Q. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front Immunol 2022; 12:792884. [PMID: 35003113 PMCID: PMC8732359 DOI: 10.3389/fimmu.2021.792884] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common multisystem autoimmune diseases that share, among others, many clinical manifestations and serological features. The role of long non-coding RNAs (lncRNAs) has been of particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs associated with SLE and RA, published until November 1, 2021. Based on the studies on lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was noted that most of the current research is focused on investigating the regulatory mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5, NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR, GAS5, and HIX003209, have been identified as promising novel biomarkers for both diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs that may drive the pathogenesis of SLE and RA and could potentially serve as emerging novel biomarkers and therapeutic targets in the coming future.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kangyuan Shen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sijie Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ping Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenying Luo
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Karimifar M, Akbari K, ArefNezhad R, Fathi F, Mousaei Ghasroldasht M, Motedayyen H. Impacts of FcγRIIB and FcγRIIIA gene polymorphisms on systemic lupus erythematous disease activity index. BMC Res Notes 2021; 14:455. [PMID: 34922596 PMCID: PMC8684074 DOI: 10.1186/s13104-021-05868-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Systemic lupus erythematous (SLE) disease is a chronic autoimmune disease with unknown etiology that can involve different organs. Polymorphisms in Fcγ receptors have been identified as genetic factors in susceptibility to SLE. This study was aimed to investigate effects of two single nucleotide polymorphisms (SNPs) within FcγRIIB and FcγRIIIA genes on systemic lupus erythematous disease activity index (SLEDAI) in an Iranian population. RESULTS Our findings indicated TT and GG genotypes were the common genotypes of FcγRIIB and FcγRIIIA SNPs in SLE patients, respectively. There were no significant differences in genotype and allele frequencies of FcγRIIB and FcγRIIIA SNPs in SLE and healthy subjects. However, the frequencies of genotypes and alleles of FcγRIIB and FcγRIIIA SNPs were significantly associated with some clinical manifestations used to determine SLEDAI (P < 0.001-0.5).
Collapse
Affiliation(s)
- Mansoor Karimifar
- Department of Rheumatology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khosro Akbari
- Department of Rheumatology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mousaei Ghasroldasht
- Ariagene Medical Genetic Laboratory, Isfahan, Iran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, 5th Kilometer of Ravand Road, Kashan, Iran.
| |
Collapse
|
10
|
Li Z, Cai X, Zou W, Zhang J. CDKN2B-AS1 promotes the proliferation, clone formation, and invasion of nasopharyngeal carcinoma cells by regulating miR-98-5p/E2F2 axis. Am J Transl Res 2021; 13:13406-13422. [PMID: 35035684 PMCID: PMC8748104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the effect of CDKN2B antisense RNA 1 (CDKN2B-AS1) on the proliferation, clone formation, and invasion of nasopharyngeal carcinoma (NPC) cells by regulating miR-98-5p/E2F transcription factor 2 (E2F2) axis. METHODS The expressions of CDKN2B-AS1, miR-98-5p, and E2F2 in NPC tissues and cell lines (SUNE-1, 5-8F, 6-10B, and HK-1) as well as in peritumoral normal tissues and cell line NP69 were determined by qRT-PCR. Subcellular localization of CDKN2B-AS1 was detected using the fluorescence in situ hybridization assay. The targeting relationships between CDKN2B-AS1 and miR-98-5p as well as between miR-98-5p and E2F2 were analyzed by the dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay. The proliferation, clone formation and invasion of 5-8F cells were measured using the CCK-8 assay, Clone formation assay, and transwell assay, respectively. RESULTS CDKN2B-AS1 was highly expressed in NPC tissues and cells, whereas the expression of miR-98-5p decreased in the NPC tissues and cells. Silencing of CDKN2B-AS1 inhibited the proliferation, clone formation, and invasion of NPC cells (all P<0.05). CDKN2B-AS1 acted asceRNA of miR-98-5p, and miR-98-5p inhibitor could partially reverse the inhibitory effect of silencing CDKN2B-AS1 on NPC cells (all P<0.05). CDKN2B-AS1 upregulated E2F2 by inhibiting miR-98-5p, and the upregulation of E2F2 partially reversed the inhibitory effect of miR-98-5p overexpression on the NPC cells (all P<0.05). CONCLUSION CDKN2B-AS1, as a lncRNA, can regulate E2F2 by sponging miR-98-5p to promote the proliferation, clone formation, and invasion of NPC cells.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Otorhinolaryngology, Shanghai Tenth Peoples' Hospital, Tongji University Shanghai 200072, China
| | - Xiaojing Cai
- Department of Otorhinolaryngology, Shanghai Tenth Peoples' Hospital, Tongji University Shanghai 200072, China
| | - Wentao Zou
- Department of Otorhinolaryngology, Shanghai Tenth Peoples' Hospital, Tongji University Shanghai 200072, China
| | - Jiaxiong Zhang
- Department of Otorhinolaryngology, Shanghai Tenth Peoples' Hospital, Tongji University Shanghai 200072, China
| |
Collapse
|
11
|
Rong C, Xu H, Yan C, Wei F, Zhou H, Guan X. Linc8986 and linc0597 in plasma are novel biomarkers for systemic lupus erythematosus. Exp Ther Med 2021; 22:1210. [PMID: 34584555 PMCID: PMC8422381 DOI: 10.3892/etm.2021.10644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/22/2021] [Indexed: 11/05/2022] Open
Abstract
Despite increasing evidence that large intergenic non-coding RNAs (lincRNAs) are widely involved in human disease, the role of lincRNAs in the development of systemic lupus erythematosus (SLE) has remained largely elusive. The purpose of the present study was to investigate the expression of three lincRNAs (linc0597, linc8986 and linc7190) in the plasma of patients with SLE and their potential use as biomarkers for the diagnosis and treatment of SLE. Plasma samples were obtained from 54 patients with SLE, 24 patients with rheumatoid arthritis (RA), 24 patients with Sjogren's syndrome (SS) and 22 healthy controls. LincRNA expression levels were measured by reverse transcription-quantitative PCR. Compared with those in the healthy controls, the plasma levels of linc0597 and linc8986 were significantly increased in the patients with SLE (P<0.001), while the difference in the level of linc7190 was not significant (P=0.052). In addition, there was no significant difference in the levels of linc0597 and linc8986 among patients with RA, patients with SS and the healthy controls (P>0.05). Compared with patients with SLE without lupus nephritis (LN), the levels of linc0597 were significantly higher in patients with LN (P=0.044). For linc7190 and linc8986, there was no significant difference between patients with and without LN (P>0.05). Furthermore, complement component 3 (C3) levels were used to evaluate whether the expression of linc8986 and linc0597 is related to the activity of SLE. The results indicated that the levels of linc8986 and linc0597 were negatively correlated with the level of C3 (P<0.001 and P=0.004, respectively). Further analysis suggested that linc0597 and linc8986 were able to specifically identify patients with SLE and that a combination of linc0597 and linc8986 may improve the diagnostic accuracy. Therefore, the plasma levels of linc0597 and linc8986 may be suitable biomarkers for diagnosing SLE.
Collapse
Affiliation(s)
- Chunli Rong
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huafeng Xu
- Department of Radio-Immunity, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Changxin Yan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feng Wei
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuru Guan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
12
|
Ruan Y, Li H, Cao X, Meng S, Jia R, Pu L, Fu H, Jin Z. Inhibition of the lncRNA DANCR attenuates cardiomyocyte injury induced by oxygen-glucose deprivation via the miR-19a-3p/MAPK1 axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1377-1386. [PMID: 34515297 DOI: 10.1093/abbs/gmab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been considered as crucial regulators of acute myocardial infarction (AMI). In this study, to analyze the effect of differentiation antagonizing nonprotein coding RNA (DANCR) of lncRNA on cardiomyocyte damage in AMI, cardiomyocyte injury was induced by oxygen-glucose deprivation (OGD). Cell counting kit-8 (CCK-8) assay and flow cytometry were used to assess cell viability and apoptosis, respectively. Quantitative real-time PCR was used to measure the expression levels of DANCR and miR-19a-3p. Bioinformatics analysis and luciferase gene reporter assay were utilized to explore the relationship among DANCR, miR-19a-3p, and mitogen-activated protein kinase 1 (MAPK1). CCK-8 and TUNEL assays were used to explore the effects of DANCR alone or plus miR-19a-3p on the viability and apoptosis of OGD/R-exposed HL-1 cells. Western blot analysis was used to detect changes in the MAPK1/ERK1/2 pathway in HL-1 cells. We found that DANCR expression and miR-19a-3p level are negatively correlated as DANCR expression is increased, while miR-19a-3p level is decreased in AMI patients' serum and OGD/R-exposed HL-1 cells. DANCR knockdown increased miR-19a-3p level, and miR-19a-3p inhibition increased DANCR expression. Moreover, DANCR directly binds to miR-19a-3p. DANCR knockdown reduced viability but induced apoptosis in OGD/R-exposed HL-1 cells, while miR-19a-3p inhibition weakens these effects. Furthermore, MAPK1 is a target of miR-19a-3p. miR-19a-3p overexpression decreases MAPK1 and ERK1/2 in HL-1 cells, while miR-19a-3p inhibition increases MAPK1 and ERK1/2 in HL-1 cells. Moreover, DANCR knockdown reduces myocardium apoptosis in mice with the left anterior descending artery ligated. DANCR knockdown effectively restores myocardial cell apoptosis by regulating the miR-19a-3p/MAPK1/ERK1/2 axis.
Collapse
Affiliation(s)
- Yang Ruan
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hong Li
- Ward Three, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaojing Cao
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shuai Meng
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruofei Jia
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lianmei Pu
- Department of Emergency Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hao Fu
- Department of Emergency Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zening Jin
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
13
|
Li Y, Zong J, Ye W, Fu Y, Gu X, Pan W, Yang L, Zhang T, Zhou M. Pithecellobium clypearia: Amelioration Effect on Imiquimod-Induced Psoriasis in Mice Based on a Tissue Metabonomic Analysis. Front Pharmacol 2021; 12:748772. [PMID: 34603060 PMCID: PMC8484644 DOI: 10.3389/fphar.2021.748772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pithecellobium clypearia Benth. (accepted name: Archidendron clypearia (Jack) I.C.Nielsen; Mimosaceae), a popular traditional Chinese medicine, has a significant anti-inflammatory effect. The crude water extract of the aerial part of P. clypearia has been clinically applied to treat upper respiratory tract infections, acute gastroenteritis, laryngitis, and pharyngitis. However, the therapeutic mechanism of ethanol fraction of water extract (ESW) of P. clypearia to treat psoriasis should be complemented. The aim of our research was to clarify the protective effects of ESW from P. clypearia against psoriasis-like skin inflammation induced by imiquimod (IMQ) in mice with efficacy indexes and target tissue (spleen and serum) metabolomics. The ingredient of ESW was analyzed by ultrahigh-performance liquid chromatography combined with tandem mass spectrometry (UHPLC-MS/MS) method. The imiquimod-induced psoriatic mouse model was employed to investigate the effect of ESW against psoriasis, where the treatment method was implemented for 6 days both topically (Gel at 5%) and orally (at 2.4 g/kg p.o.). Traditional pharmacodynamic indicators (phenotypic characteristics, psoriasis area and severity index (PASI) score, H&E staining, immunohistochemical staining, the thickness of epidermis, body weight change, and spleen index) were conducted to appraise the efficacy of ESW. Furthermore, a gas chromatography-mass spectrometer (GC-MS) coupled with multivariate analysis was integrated and applied to obtain serum and spleen metabolic profiles for clarifying metabolic regulatory mechanisms of ESW. The current study illustrated that ESW is composed mainly of gallic acid, ethyl gallate, quercitin, 7-O-galloyltricetiflavan, quercetin, and myricetin by UHPLC-MS/MS analysis. ESW could distinctly improve IMQ-induced psoriasis in mouse through reducing PASI score, alleviating tissue damage, restoring spleen index, and inhibiting proliferating cell nuclear antigen (PCNA) expression in psoriasis-like skin tissue. From the metabolomics study, 23 markers with significant changes are involved in eight main pathways in spleen and serum samples, including linoleic acid metabolism and glycine, serine, and threonine metabolism. The current study showed that ESW had obvious antipsoriasis effects on IMQ-induced psoriasis in mice, which might be attributed to regulating the dysfunction of differential biomarkers and related pathways. In summary, ESW of P. clypearia showed a favourable therapeutic effect on IMQ-induced psoriasis, and metabolomics provided insights into the mechanisms of ESW to the treatment of psoriasis.
Collapse
Affiliation(s)
- Ying Li
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaxin Zong
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Ye
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanfeng Fu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weisong Pan
- Wuhan Institute for Drug and Medical Device Control, Hubei, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
RNA Sequencing for Gene Expression Profiles in Peripheral Blood Mononuclear Cells with Ankylosing Spondylitis RNA. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5304578. [PMID: 32596323 PMCID: PMC7298317 DOI: 10.1155/2020/5304578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Several previous studies have attempted to investigate the regulatory mechanisms underlying gene expression in ankylosing spondylitis (AS). However, the specific molecular pathways underlying this condition remain unclear. Previous research used next-generation RNA sequencing to identify a series of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) when compared between patients with AS and healthy controls, thus implying that these DEGs may be related to AS. Furthermore, by screening these DEGS, it may be possible to facilitate clinical diagnosis and optimize treatment strategies. In order to test this hypothesis, we recruited 15 patients with AS and 15 healthy controls. We randomly selected five subjects from each group of patients for RNA sequencing analysis. Sequence reads were generated by an Illumina HiSeq2500 platform and mapped on to the human reference genome using HISAT2. We successfully identified 973 significant DEGs (p < 0.05) in PBMCs. When compared with controls, 644 of these genes were upregulated (with a fold change (FC) > 2) in AS patients and 329 were downregulated (FC < 0.5). Our analysis identified numerous genes related to immune response. Gene Ontology (GO) analysis indicated that these DEGs were significantly related to the positive regulation of epidermal growth factor-activated receptor activity, the positive regulation of the ERBB (erb-b2 receptor tyrosine kinase) signaling pathway, the differentiation of trophoblast giant cells, oxygen transport, immune-related pathways, and inflammation-related pathways. The DEGs were also closely related to the TNF and NF-κB signaling pathways. Six DEGs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) curve analysis indicated that IL6 may represent a useful biomarker for diagnosing AS. The development of new biomarkers may help us to elucidate the specific mechanisms involved in the development and progression of AS.
Collapse
|
15
|
Wei W, Shi X, Xiong W, He L, Du ZD, Qu T, Qi Y, Gong SS, Liu K, Ma X. RNA-seq Profiling and Co-expression Network Analysis of Long Noncoding RNAs and mRNAs Reveal Novel Pathogenesis of Noise-induced Hidden Hearing Loss. Neuroscience 2020; 434:120-135. [PMID: 32201268 DOI: 10.1016/j.neuroscience.2020.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/16/2022]
Abstract
Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). In total, we identified 133 lncRNAs and 522 mRNAs that were significantly dysregulated in the NIHHL model. Gene Ontology (GO) showed that these lncRNAs were involved in multiple cell components and systems including synapses and the nervous and sensory systems. In addition, a lncRNA-mRNA network was constructed to identify core regulatory lncRNAs and transcription factors. KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Xi Shi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221004, China
| | - Wei Xiong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lu He
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng-De Du
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiulan Ma
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
16
|
Zou Y, Xu H. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. J Transl Autoimmun 2020; 3:100044. [PMID: 32743525 PMCID: PMC7388364 DOI: 10.1016/j.jtauto.2020.100044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are a group of heterogeneous disorders characterized by damage to various organs caused by abnormal innate and adaptive immune responses. The pathogenesis of autoimmune diseases is extremely complicated and has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), which are defined as transcripts containing more than 200 nucleotides with no protein-coding capacity, are emerging as important regulators of gene expression via epigenetic modification, transcriptional regulation and posttranscriptional regulation. Accumulating evidence has demonstrated that lncRNAs play a key role in the regulation of immunological functions and autoimmunity. In this review, we discuss various molecular mechanisms by which lncRNAs regulate gene expression and recent findings regarding the involvement of lncRNAs in many human autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), idiopathic inflammatory myopathy (IIM), systemic sclerosis (SSc) and Sjögren’s syndrome (pSS). lncRNAs are observed to be differentially expressed in various autoimmune diseases. lncRNAs are involved in abnormal immune regulation and inflammatory responses in autoimmune diseases, which provides new insight into disease pathogenesis. LncRNAs may have the potential of biomarkers for diagnosis and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|