1
|
Zhou B, Liu Y, Ma H, Zhang B, Lu B, Li S, Liu T, Qi Y, Wang Y, Zhang M, Qiu J, Fu R, Li W, Lu L, Tian S, Liu Q, Gu Y, Huang R, Lawrence T, Kong E, Zhang L, Li T, Liang Y. Zdhhc1 deficiency mitigates foam cell formation and atherosclerosis by inhibiting PI3K-Akt-mTOR signaling pathway through facilitating the nuclear translocation of p110α. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167577. [PMID: 39566590 DOI: 10.1016/j.bbadis.2024.167577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Monocyte-to-macrophage differentiation and subsequent foam cell formation are key processes that contribute to plaque build-up during the progression of atherosclerotic lesions. Palmitoylation enzymes are known to play pivotal roles in the development and progression of inflammatory diseases. However, their specific impact on atherosclerosis development remains unclear. In this study, we discovered that the knockout of zDHHC1 in THP-1 cells, as well as Zdhhc1 in mice, markedly reduces the uptake of oxidized low-density lipoprotein (ox-LDL) by macrophages, thereby inhibiting foam cell formation. Moreover, the absence of Zdhhc1 in ApoE-/- mice significantly suppresses atherosclerotic plaque formation. Mass spectrometry coupled with bioinformatic analysis revealed an enrichment of the PI3K-Akt-mTOR signaling pathway. Consistent with this, we observed that knockout of zDHHC1 significantly decreases the palmitoylation levels of p110α, a crucial subunit of PI3K. Notably, the deletion of Zdhhc1 facilitates the nuclear translocation of p110α in macrophages, leading to a significant reduction in the downstream phosphorylation of Akt at Ser473 and mTOR at Ser2448. This cascade results in a decreased number of macrophages within plaques and ultimately mitigates the severity of atherosclerosis. These findings unveil a novel role for zDHHC1 in regulating foam cell formation and the progression of atherosclerosis, suggesting it as a promising target for clinical intervention in atherosclerosis therapy.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Beijia Lu
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Sainan Li
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengjie Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Juanjuan Qiu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui Fu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wushan Li
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuanghua Tian
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiaoli Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Centre de Immunologie Marseille-Luminy, CNRS, INSERM, Aix-Marseille Universite, 13009 Marseille, France
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China.
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Tianhan Li
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Basic Medical College, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China; Center of Disease Model and Immunology, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
2
|
Zhang L, Li P, Li Y, Qu W, Shi Y, Zhang T, Chen Y. The role of immunoglobins in atherosclerosis development; friends or foe? Mol Cell Biochem 2024:10.1007/s11010-024-05158-y. [PMID: 39592554 DOI: 10.1007/s11010-024-05158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Coronary artery disease, atherosclerosis, and its life-threatening sequels impose the hugest burden on the healthcare systems throughout the world. The intricate process of atherosclerosis is considered as an inflammatory-based disorder, and therefore, the components of the immune system are involved in different stages from formation of coronary plaques to its development. One of the major effectors in this way are the antibody producing entities, the B cells. These cells, which play a significant and unique role in responding to different stress, injuries, and infections, contribute differently to the development of atherosclerosis, either inhibitory or promoting, depending on the type of subsets. B cells implicate in both systemic and local immune responses of an atherosclerotic artery by cell-cell contact, cytokine production, and antigen presentation. In particular, natural antibodies bind to oxidized lipoproteins and cellular debris, which are abundant during plaque growth. Logically, any defects in B cells and consequent impairment in antibody production may greatly affect the shaping of the plaque and its clinical outcome. In this comprehensive review, we scrutinize the role of B cells and different classes of antibodies in atherosclerosis progression besides current novel B-cell-based therapeutic approaches that aim to resolve this affliction of mankind.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Peize Li
- Department of Orthopedics, Changchun Chinese Medicine Hospital, Changchun, 130022, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wantong Qu
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanyu Shi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tianyang Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
3
|
Zheng J, Ni C, Lee SWR, Li FR, Huang J, Zhou R, Huang Y, Lip GYH, Wu X, Tang S. Association of hospital-treated infectious diseases and infection burden with cardiovascular diseases and life expectancy. J Intern Med 2024; 295:679-694. [PMID: 38528394 DOI: 10.1111/joim.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND The association of a broad spectrum of infectious diseases with cardiovascular outcomes remains unclear. OBJECTIVES We aim to provide the cardiovascular risk profiles associated with a wide range of infectious diseases and explore the extent to which infections reduce life expectancy. METHODS We ascertained exposure to 900+ infectious diseases before cardiovascular disease (CVD) onset in 453,102 participants from the UK Biobank study. Time-varying Cox proportional hazard models were used. Life table was used to estimate the life expectancy of individuals aged ≥50 with different levels of infection burden (defined as the number of infection episodes over time and the number of co-occurring infections). RESULTS Infectious diseases were associated with a greater risk of CVD events (adjusted HR [aHR] 1.79 [95% confidence interval {CI} 1.74-1.83]). For type-specific analysis, bacterial infection with sepsis had the strongest risk of CVD events [aHR 4.76 (4.35-5.20)]. For site-specific analysis, heart and circulation infections posed the greatest risk of CVD events [aHR 4.95 (95% CI 3.77-6.50)], whereas noncardiac infections also showed excess risk [1.77 (1.72-1.81)]. Synergistic interactions were observed between infections and genetic risk score. A dose-response relationship was found between infection burden and CVD risks (p-trend <0.001). Infection burden >1 led to a CVD-related life loss at age 50 by 9.3 years [95% CI 8.6-10.3]) for men and 6.6 years [5.5-7.8] for women. CONCLUSIONS The magnitude of the infection-CVD association showed specificity in sex, pathogen type, infection burden, and infection site. High genetic risk and infection synergistically increased the CVD risk.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Can Ni
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - S W Ricky Lee
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Fu-Rong Li
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Jinghan Huang
- Biomedical Genetics Section, School of Medicine, Boston University, Boston, Massachusetts, USA
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Danish Center for Clinical Health Services Research, Aalborg University, Aalborg, Denmark
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
5
|
Velpuri P, Rai V, Agrawal DK. Role of sirtuins in attenuating plaque vulnerability in atherosclerosis. Mol Cell Biochem 2024; 479:51-62. [PMID: 36952068 PMCID: PMC10034899 DOI: 10.1007/s11010-023-04714-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Atherosclerosis is characterized by the development of intimal plaque, thrombosis, and stenosis of the vessel lumen causing decreased blood flow and hypoxia precipitating angina. Chronic inflammation in the stable plaque renders it unstable and rupture of unstable plaques results in the formation of emboli leading to hypoxia/ischemia to the organs by occluding the terminal branches and precipitate myocardial infarction and stroke. Such delibitating events could be controlled by the strategies that prevent plaque development or plaque stabilization. Despite the use of statins to stabilize plaques, there is a need for novel targets due to continuously increasing cases of cardiovascular events. Sirtuins (SIRTs), a family of signaling proteins, are involved in sustaining genome integrity, DNA damage response and repair, modulating oxidative stress, aging, inflammation, and energy metabolism. SIRTs play a critical role in modulating inflammation and involves in the development and progression of atherosclerosis. The role of SIRTs in relation to atherosclerosis and plaque vulnerability is scarcely discussed in the literature. Since SIRTs regulate oxidative stress, inflammation, and aging, they may also regulate plaque progression and vulnerability as these molecular mechanisms underlie the pathogenesis of plaque development, progression, and vulnerability. This review critically discusses the role of SIRTs in plaque progression and vulnerability and the possibility of targeting SIRTs to attenuate plaque rupture, focusing on the highlights in genomics, molecular pathways, and cell types involved in the underlying pathophysiology.
Collapse
Affiliation(s)
- Prathosh Velpuri
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
6
|
Blümm C, Bonaterra GA, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R. PAC1 deficiency reduces chondrogenesis in atherosclerotic lesions of hypercholesterolemic ApoE-deficient mice. BMC Cardiovasc Disord 2023; 23:566. [PMID: 37980508 PMCID: PMC10657554 DOI: 10.1186/s12872-023-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Induction of chondrogenesis is associated with progressive atherosclerosis. Deficiency of the ADCYAP1 gene encoding pituitary adenylate cyclase-activating peptide (PACAP) aggravates atherosclerosis in ApoE deficient (ApoE-/-) mice. PACAP signaling regulates chondrogenesis and osteogenesis during cartilage and bone development. Therefore, this study aimed to decipher whether PACAP signaling is related to atherogenesis-related chondrogenesis in the ApoE-/- mouse model of atherosclerosis and under the influence of a high-fat diet. METHODS For this purpose, PACAP-/-/ApoE-/-, PAC1-/-/ApoE-/-, and ApoE-/- mice, as well as wildtype (WT) mice, were studied under standard chow (SC) or cholesterol-enriched diet (CED) for 20 weeks. The amount of cartilage matrix in atherosclerotic lesions of the brachiocephalic trunk (BT) with maximal lumen stenosis was monitored by alcian blue and collagen II staining on deparaffinized cross sections. The chondrogenic RUNX family transcription factor 2 (RUNX2), macrophages [(MΦ), Iba1+], and smooth muscle cells (SMC, sm-α-actin) were immunohistochemically analyzed and quantified. RESULTS ApoE-/- mice fed either SC or CED revealed an increase of alcian blue-positive areas within the media compared to WT mice. PAC1-/-/ApoE-/- mice under CED showed a reduction in the alcian blue-positive plaque area in the BT compared to ApoE-/- mice. In contrast, PACAP deficiency in ApoE-/- mice did not affect the chondrogenic signature under either diet. CONCLUSIONS Our data show that PAC1 deficiency reduces chondrogenesis in atherosclerotic plaques exclusively under conditions of CED-induced hypercholesterolemia. We conclude that CED-related chondrogenesis occurs in atherosclerotic plaques via transdifferentiation of SMCs and MΦ, partly depending on PACAP signaling through PAC1. Thus, PAC1 antagonists or PACAP agonists may offer therapeutic potential against pathological chondrogenesis in atherosclerotic lesions generated under hypercholesterolemic conditions, especially in familial hypercholesterolemia. This discovery opens therapeutic perspectives to be used in the treatment against the progression of atherosclerosis.
Collapse
Affiliation(s)
- C Blümm
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - G A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany.
| | - H Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - L E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20814, USA
| | - E Weihe
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - R Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
7
|
Li Y, Gu L, Zhou J, Han C, Zang W. FOXP1‑induced DUSP12 alleviates vascular endothelial cell inflammation and oxidative stress injury induced by ox‑LDL via MAP3K5 signaling pathway. Exp Ther Med 2023; 26:450. [PMID: 37614418 PMCID: PMC10443057 DOI: 10.3892/etm.2023.12149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 08/25/2023] Open
Abstract
Atherosclerosis (AS) is a type of chronic inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, which seriously threaten the health of patients. The dual specificity phosphatase 12 (DUSP12) protein is known as regulator of inflammatory diseases. Nonetheless, at present, there are only a few reports on the regulatory role of DUSP12 in AS. Human umbilical vein endothelial cells (HUVECs) were induced using oxidized low-density lipoprotein (ox-LDL). Subsequently, cell transfection experiments were performed to overexpress DUSP12 in ox-LDL-induced HUVECs. Cell Counting Kit-8, TUNEL western blotting, 2',7'-dichlorofluorescein diacetate assays, ELISA and other techniques were used to measure cell viability, apoptosis, inflammation, oxidative stress and endothelial function-related indicators. Subsequently, the relationship between DUSP12 and Forkhead box P1 (FOXP1) was predicted using the JASPAR database and verified using luciferase reporter and chromatin immunoprecipitation assays. Finally, the regulatory mechanism was investigated by simultaneously overexpressing DUSP12 and knocking down FOXP1 in ox-LDL-induced HUVECs and MAP3K5-related proteins of the DUSP12 downstream pathway were measured by western blotting. The expression of DUSP12 in ox-LDL-induced HUVECs was significantly decreased. Overexpression of DUSP12 inhibited apoptosis, inflammation and oxidative stress damage and alleviated endothelial dysfunction in ox-LDL-induced HUVECs. FOXP1 promoted the transcription of DUSP12. Moreover, FOXP1 alleviated ox-LDL-induced apoptosis, inflammation and oxidative stress damage in HUVECs by regulating the expression of DUSP12, probably acting through the MAP3K5 pathway. Collectively, the present study revealed that FOXP1-induced DUSP12 alleviated vascular endothelial cell inflammation and oxidative stress injury in ox-LDL-induced HUVECs via the MAP3K5 signaling pathway, which might shed novel insights into the targeted treatment for AS in the clinic.
Collapse
Affiliation(s)
- Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Long Gu
- Department of Blood Transfusion, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Jian Zhou
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Chenjun Han
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Wangfu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
8
|
Walther R, Wehner R, Tunger A, Julius U, Schatz U, Tselmin S, Bornstein SR, Schmitz M, Graessler J. Repeated lipoprotein apheresis and immune response: Effects on different immune cell populations. Ther Apher Dial 2022; 26 Suppl 1:18-28. [PMID: 36468334 DOI: 10.1111/1744-9987.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atherosclerosis is considered a chronic inflammation of arterial vessels with the involvement of several immune cells causing severe cardiovascular diseases. Lipoprotein apheresis (LA) improves cardiovascular conditions of patients with severely disturbed lipid metabolism. In this context, little is known about the impact of LA on various immune cell populations, especially over time. METHODS Immune cells of 18 LA-naïve patients starting weekly LA treatment were analyzed before and after four apheresis cycles over the course of 24 weeks by flow cytometry. RESULTS AND CONCLUSIONS An acute lowering effect of LA on T cell and natural killer (NK) cell subpopulations expressing CD69 was observed. The non-classical and intermediate monocyte subsets as well as HLA-DR+ 6-sulfo LacNAc+ monocytes were significantly reduced during the apheresis procedure. We conclude that LA has the capacity to alter various immune cell subsets. However, LA has mainly short-term effects than long-term consequences on proportions of immune cells.
Collapse
Affiliation(s)
- Romy Walther
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ulrike Schatz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Juergen Graessler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
9
|
Wang L, Tan L, Ding X, Meng X. Circ_0003204 downregulation protected vascular smooth muscle cells from ox-LDL-induced injury by acting on miR-637/FOSL2 axis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Yang Y, Ding X, Chen F, Wu X, Chen Y, Zhang Q, Cao J, Wang J, Dai Y. Inhibition Effects of Nippostrongylus brasiliensis and Its Derivatives against Atherosclerosis in ApoE-/- Mice through Anti-Inflammatory Response. Pathogens 2022; 11:pathogens11101208. [PMID: 36297265 PMCID: PMC9610917 DOI: 10.3390/pathogens11101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a dominant and growing cause of death and disability worldwide that involves inflammation from its inception to the emergence of complications. Studies have demonstrated that intervention with helminth infections or derived products could modulate the host immune response and effectively prevent or mitigate the onset and progression of inflammation-related diseases. Therefore, to understand the molecular mechanisms underlying the development of atherosclerosis, we intervened in ApoE-/- mice maintained on a high-fat diet with Nippostrongylus brasiliensis (N. brasiliensis) infection and immunized with its derived products. We found that N. brasiliensis infection and its derived proteins had suitable protective effects both in the initial and progressive stages of atherosclerosis, effectively reducing aortic arch plaque areas and liver lipid contents and downregulating serum LDL levels, which may be associated with the significant upregulation of serum anti-inflammatory cytokines (IL-10 and IL-4) and the down-regulation of proinflammatory cytokines (TNF-α and IFN-γ) in the serum. In conclusion, these data highlighted the effective regulatory role of N. brasiliensis and its derived proteins in the development and progression of atherosclerosis. This could provide a promising new avenue for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yougui Yang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Fuzhong Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaomin Wu
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China
| | - Yuying Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jun Cao
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Junhong Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.W.); (Y.D.)
| | - Yang Dai
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Correspondence: (J.W.); (Y.D.)
| |
Collapse
|
11
|
Ebadi N, Ghafouri-Fard S, Taheri M, Arsang-Jang S, Omrani MD. Expression analysis of inflammatory response-associated genes in coronary artery disease. Arch Physiol Biochem 2022; 128:601-607. [PMID: 31913058 DOI: 10.1080/13813455.2019.1708953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is among prominent causes of death throughout the world. Inflammatory processes participate in the pathogenesis of this disorder. METHODS In the current case-control study, we compared expression levels of three inflammation-associated genes namely Antisense noncoding RNA in the INK4 locus (ANRIL), NKILA and IL-1B between CAD patients and matched healthy subjects. RESULTS ANRIL, IL-1B and NKILA were significantly down-regulated in CAD patients compared with controls (p values of <.0001, .023 and <.0001, respectively). When evaluating study participants based on their gender, the differences in expression levels of ANRIL and NKILA were significant in both male and female patients compared with the matched controls. However, IL-1B was only down-regulated in female patients compared with female controls. CONCLUSION Taken together, our study revealed dysregulation of inflammation-associated genes in the peripheral blood of CAD patients and supported the previously suggested role of inflammation in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Nader Ebadi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
13
|
Li Y, Yu Z, Liu Y, Wang T, Liu Y, Bai Z, Ren Y, Ma H, Bao T, Lu H, Wang R, Yang L, Yan N, Yan R, Jia S, Zhang X, Wang H. Dietary α-Linolenic Acid-Rich Flaxseed Oil Ameliorates High-Fat Diet-Induced Atherosclerosis via Gut Microbiota-Inflammation-Artery Axis in ApoE−/− Mice. Front Cardiovasc Med 2022; 9:830781. [PMID: 35295260 PMCID: PMC8918482 DOI: 10.3389/fcvm.2022.830781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is closely associated with abnormally chronic low-grade inflammation and gut dysbiosis. Flaxseed oil (FO) rich in omega-3 polyunsaturated fatty acids (PUFAs), which are mainly composed of alpha-linolenic acid (ALA, 18:3 omega-3), has been demonstrated to exhibit pleiotropic benefits in chronic metabolic diseases. However, the impact of dietary ALA-rich FO on AS and its associated underlying mechanisms remain poorly understood. Thus, the present study was designed as two phases to investigate the effects in atherosclerotic Apolipoprotein E (ApoE)−/− mice. In the initial portion, the ApoE−/− mice were randomly allocated to three groups: control group (CON), model group (MOD), and FO-fed model group (MOD/FO) and were treated for 12 weeks. The second phase used antibiotic (AB)-treated ApoE−/− mice were divided into two groups: AB-treated model group (AB/MOD) and FO-fed AB-treated model group (AB/FO). In the results, the dietary ALA-rich FO administration ameliorated atherosclerotic lesion, as well as the parameters of AS (body weights (BWs) and the total bile acids (TBA). Chronic systemic/vascular inflammatory cytokines and in situ macrophages (Mψs) were reduced with FO intervention. In addition, the FO improved the gut integrity and permeability by decreasing the plasma lipopolysaccharide (LPS). Moreover, gut dysbiosis and metabolites [short-chain fatty acids (SCFAs) and bile acids (BAs)] in AS were modulated after FO treatment. Intriguingly, during an AB-treated condition, a significantly weakened amelioration of FO-treated on AS proposed that the intestinal microbiota contributed to the FO effects. A correlation analysis showed close relationships among gut bacteria, metabolites, and inflammation. Collectively, these results suggested that the dietary ALA-rich FO ameliorated the AS in ApoE−/− mice via the gut microbiota-inflammation-artery axis.
Collapse
Affiliation(s)
- Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhi Yu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yajuan Liu
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Zhixia Bai
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Yi Ren
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Huiyan Ma
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Ting Bao
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Haixia Lu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rui Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Libo Yang
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Ning Yan
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Shaobin Jia
- Department of Cardiovascular Diseases, Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Xiaoxia Zhang
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Hao Wang
| |
Collapse
|
14
|
Shao CL, Cui GH, Guo HD. Effects and Mechanisms of Taohong Siwu Decoction on the Prevention and Treatment of Myocardial Injury. Front Pharmacol 2022; 13:816347. [PMID: 35153789 PMCID: PMC8826566 DOI: 10.3389/fphar.2022.816347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Taohong Siwu decoction (THSWD) is one of the classic prescriptions for promoting blood circulation and removing blood stasis. With the continuous in-depth excavation in basic and clinical research, it has been found that THSWD has made greater progress in the prevention and treatment of cardiovascular diseases. Mechanisms of the current studies have shown that it could prevent and treat the myocardial injury by inhibiting inflammatory reaction, antioxidant stress, inhibiting platelet aggregation, prolonging clotting time, anti-fibrosis, reducing blood lipids, anti-atherosclerosis, improving hemorheology and vascular pathological changes, regulating related signal pathways and other mechanisms to prevent and treat the myocardial injury, so as to protect cardiomyocytes and improve cardiac function. Many clinical studies have shown that THSWD is effective in the prevention and treatment of cardiovascular diseases related to myocardial injuries, such as coronary heart disease angina pectoris (CHD-AP), and myocardial infarction. In clinical practice, it is often used by adding and subtracting prescriptions, the combination of compound prescriptions and combinations of chemicals and so on. However, there are some limitations and uncertainties in both basic and clinical research of prescriptions. According to the current research, although the molecular biological mechanism of various active ingredients needs to be further clarified, and the composition and dose of the drug have not been standardized and quantified, this study still has exploration for scientific research and clinical practice. Therefore, this review mainly discusses the basic mechanisms and clinical applications of THSWD in the prevention and treatment of the myocardial injury caused by CHD-AP and myocardial infarction. The authors hope to provide valuable ideas and references for researchers and clinicians.
Collapse
Affiliation(s)
- Chang-Le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Transcriptomic Analysis Identifies Differentially Expressed Genes Associated with Vascular Cuffing and Chronic Inflammation Mediating Early Thrombosis in Arteriovenous Fistula. Biomedicines 2022; 10:biomedicines10020433. [PMID: 35203642 PMCID: PMC8962355 DOI: 10.3390/biomedicines10020433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Arteriovenous fistula (AVF) is vascular access created for hemodialysis in end-stage renal disease patients. AVF creation causes increased blood flow in the outflow vein with increased pressure. Increased blood flow, blood volume, and shear stress causes outward remodeling so that the outflow vein can withstand the increased pressure. Outward remodeling of the vein involved in AVF is necessary for AVF maturation, however, inward remodeling due to excessive neointimal hyperplasia (NIH) and chronic inflammation may end up with vessel thrombosis and AVF maturation failure. Early thrombosis of the vessel may be due to the luminal factors including NIH and chronic inflammation or due to chronic inflammation of the adventitial due to perivascular cuffing. Inflammation may either be due to an immune response to the vascular injury during AVF creation or injury to the surrounding muscles and fascia. Several studies have discussed the role of inflammation in vascular thrombosis due to intimal injury during AVF creation, but there is limited information on the role of inflammation due to surrounding factors like a muscle injury. The concept of perivascular cuffing has been reported in the nervous system, but there is no study of perivascular cuffing in AVF early thrombosis. We performed the bulk RNA sequencing of the femoral arterial tissue and contralateral arteries as we found thrombosed arteries after AVF creation. RNA sequencing revealed several significantly differentially expressed genes (DEGs) related to chronic inflammation and perivascular cuffing, including tripartite motif-containing protein 55 (TRIM55). Additionally, DEGs like myoblast determination protein 1 (MYOD1) increased after muscle injury and relates to skeletal muscle differentiation, and network analysis revealed regulation of various genes regulating inflammation via MYOD1. The findings of this study revealed multiple genes with increased expression in the AVF femoral artery and may provide potential therapeutic targets or biomarkers of early thrombosis in AVF maturation failure. Thus, not only the luminal factors but also the surrounding factors mediating vascular cuffing contribute to vessel thrombosis and AVF failure via early thrombosis, and targeting the key regulatory factors may have therapeutic potential.
Collapse
|
16
|
Yavuzsan AH, Kirecci SL, Ilgi M, Turk S, Bursali K, Yesildal C, Albayrak AT, Demirel HC, Horasanli K. Failure of ureteral access sheath insertion in primary flexible ureteroscopy for renal stones: is there any relation with inflammation? Aktuelle Urol 2022; 53:67-74. [PMID: 34933347 DOI: 10.1055/a-1378-2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the relationship between failure to insert a ureteral access sheath (UAS) with inflammation and other clinical parameters in patients treated with flexible ureteroscopy for renal stones. METHODS This study included patients who underwent flexible ureteroscopy for the treatment of renal stones in our centre between 2015 and 2020. Patients who underwent any surgical procedure on the ipsilateral ureter and had a history of spontaneous stone passage were excluded. Patients were divided into two groups based on UAS insertion success (group 1) or failure (group 2). Both groups were compared with a view to clinical characteristics, preoperative neutrophil, lymphocyte, monocyte and platelet counts and ratios of these counts, all being considered inflammatory markers. A multivariate logistic regression analysis was performed to determine the independent variables affecting UAS insertion success. RESULTS There were 113 (59.1%) patients in group 1, while group 2 consisted of 78 (40.9%) patients. The rates of male gender, coronary artery disease and preoperative ipsilateral hydronephrosis were significantly higher in group 2, while platelet counts and platelet-lymphocyte ratios were significantly lower. Our analysis revealed four independent predictors for UAS insertion failure: female gender (odds ratio [OR]=2.1) increased the rate of UAS insertion success, while hydronephrosis (OR=1.6), low platelet counts and PLR increased the rate of UAS insertion failure (OR=0.99, OR=0.98, respectively). CONCLUSION Our results suggest that male gender and ipsilateral hydronephrosis are associated with increased UAS insertion failure. Although we found a relationship between relatively low platelet levels and UAS insertion failure, we think that further studies are needed to investigate this matter.
Collapse
Affiliation(s)
- Abdullah Hizir Yavuzsan
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Sinan Levent Kirecci
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Musab Ilgi
- Urologie, KMG Klinikum Luckenwalde, Luckenwalde, Germany
| | - Semih Turk
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kerem Bursali
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Cumhur Yesildal
- Urology, University of Health Sciences Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Tevfik Albayrak
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Huseyin Cihan Demirel
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Sisli, Turkey
| | - Kaya Horasanli
- Urology, University of Health Sciences Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Inflammatory Cells in Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11020233. [PMID: 35204116 PMCID: PMC8868126 DOI: 10.3390/antiox11020233] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a chronic progressive disease that involves damage to the intima, inflammatory cell recruitment and the accumulation of lipids followed by calcification and plaque rupture. Inflammation is considered a key mediator of many events during the development and progression of the disease. Various types of inflammatory cells are reported to be involved in atherosclerosis. In the present paper, we discuss the involved inflammatory cells, their characteristic and functional significance in the development and progression of atherosclerosis. The detailed understanding of the role of all these cells in disease progression at different stages sheds more light on the subject and provides valuable insights as to where and when therapy should be targeted.
Collapse
|
18
|
Association of Inflammatory Markers/Cytokines with Cardiovascular Risk Manifestation in Patients with Endometriosis. Mediators Inflamm 2021; 2021:3425560. [PMID: 34754275 PMCID: PMC8572614 DOI: 10.1155/2021/3425560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
This study is aimed at determining the association of inflammatory markers and proinflammatory cytokines with cardiovascular risk manifestation in women with endometriosis as compared to healthy controls. A total of 181 females of reproductive age with the absence of other inflammatory or autoimmune disorders and a lack of hormonal therapy for at least 6 months voluntarily participated in this investigation. Patients were 81 females, laparoscopically diagnosed with endometriosis, while the control group comprised 80 healthy females without any pelvic pathology. All subjects were 20-40 years of age. Exclusion criteria were diabetes, obesity, hypertension, metabolic diseases, cardiovascular, and renal disorders. C-reactive protein, fibrinogen, homocysteine, interleukin-17, and interleukin-33 were analyzed using commercially available ELISA kits. For statistical interpretation, the unpaired Student “t” test was used. All inflammatory markers and cytokines demonstrated elevated levels (P < 0.001) in endometriosis patients as compared to healthy controls. The results of the study revealed that the patients with endometriosis demonstrate a hypercoagulable status due to inflammation, which initiates atherosclerosis and associated complications. Hence, endometriosis can cause a risk of cardiovascular disorders in these patients.
Collapse
|
19
|
Miao L, Yang Y, Li Z, Fang Z, Zhang Y, Han CC. Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects. J Ginseng Res 2021; 46:206-213. [PMID: 35509822 PMCID: PMC9058830 DOI: 10.1016/j.jgr.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zhongwen Li
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zengjun Fang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China. Tel.: +86 531 82613129; Fax: +86 86 531 82613129.
| |
Collapse
|
20
|
KHOSRAVANIPOUR MOHAMMADJAVAD, MOKHTARI-DIZAJI MANIJHE, FARHAN FARSHID, SATTARZADEH-BADKOUBEH ROYA. COMPARISON OF TWO THICK SHELL MODELS PERFORMANCE IN NONINVASIVE EVALUATION OF MYOCARDIAL WALL STRESS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary artery stenosis is the most common heart disease, leading to altered myocardial mechanics. This study aimed to compare Ghista–Sandler and Mirsky wall stress models and evaluate the discriminant analysis of noninvasive wall stress based on these models. 59 Coronary artery disease (CAD) patients were divided into two groups; moderate stenosis and severe stenosis in the left anterior descending artery proximal part were enrolled in this study. The wall stress in the end-systolic and end-diastolic phases at LV anterior and interventricular septum wall segments calculated by using the equation proposed by Ghista–Sandler and Mirsky. The specificity and sensitivity of wall stress at groups were calculated by Ghista–Sandler and Mirsky models. The wall thickness and principal radius of segments in healthy subjects and patients with severe and moderate stenosis were shown statistically differences in some segments of anterior and septum walls ([Formula: see text]). Statistical analysis showed that calculated stresses in myocardial wall segments of patients with severe and moderate coronary stenosis and healthy people had a significant difference in systole and diastolic phase. Results of the discriminant analysis showed the specificity value obtained by the Ghista–Sandler model were higher in most wall stress combinations than the Mirsky model. Sensitivity in identifying patients with severe stenosis was higher in the Ghista–Sandler model. It is concluded that specificity and sensitivity based on wall stresses calculated by the Ghista–Sandler model were higher in comparison with the Mirsky model. The Ghista–Sandler model has better performance than the Mirsky model in diagnosing patients with stenosis.
Collapse
Affiliation(s)
| | - MANIJHE MOKHTARI-DIZAJI
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - FARSHID FARHAN
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Oh KK, Adnan M, Cho DH. A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis. J Food Biochem 2021; 45:e13906. [PMID: 34409623 DOI: 10.1111/jfbc.13906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Ganoderma lucidum (GL) is known as a potent alleviator against chronic inflammatory disease like atherosclerosis (AS), but its mechanisms against AS have not been unveiled. This research aimed to identify the key compounds(s) and mechanism(s) of GL against AS through network pharmacology. The compounds from GL were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME screened their physicochemical properties. Then, the target(s) associated with the screened compound(s) or AS related targets were identified by public databases, and we selected the overlapping targets using a Venn diagram. The networks between overlapping targets and compounds were visualized, constructed, and analyzed by RStudio. Finally, we performed a molecular docking test (MDT) to explore key target(s), compound(s), on AutoDockVina. A total of 35 compounds in GL were detected via GC-MS, and 34 compounds (accepted by Lipinski's rule) were selected as drug-like compounds (DLCs). A total of 34 compounds were connected to the number of 785 targets, and DisGeNET and Online Mendelian Inheritance in Man (OMIM) identified 2,606 AS-related targets. The final 98 overlapping targets were extracted between the compounds-targets and AS-related targets. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, the number of 27 signaling pathways were sorted out, and a hub signaling pathway (MAPK signaling pathway), a core gene (PRKCA), and a key compound (Benzamide, 4-acetyl-N-[2,6-dimethylphenyl]) were selected among the 27 signaling pathways via MDT. Overall, we found that the identified 3 DLCs from GL have potent anti-inflammatory efficacy, improving AS by inactivating the MAPK signaling pathway. PRACTICAL APPLICATIONS: Ganoderma lucidum (GL) has been used as a medicinal or edible mushroom for chronic inflammatory patients: diabetes mellitus and dyslipidemia, especially atherosclerosis (AS). Until now, the majority of mushroom research has been implemented regarding β-glucan derivatives with very hydrophilic physicochemical properties. It implies that β-glucan or its derivatives have poor bioavailability. Hence, we have involved GC-MS in identifying lipophilic compounds from GL, which filtered them in silico to sort drug-like compounds (DLCs). Then, we retrieved targets associated with the DLCs, and identified a key signaling pathway, key targets, and key compounds against AS. In this paper, we utilized bioinformatics and network pharmacology theory to understand the uncovered pharmacological mechanism of GL on AS. To sum things up, our analysis elucidates the relationships between signaling pathways, targets, and compounds in GL. Ultimately, this work provides biochemical evidence to identify the therapeutic effect of GL on AS, and a scientific basis for deciphering the key mechanism on DLCs of GL against AS.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
23
|
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Immunity in Atherosclerosis: Focusing on T and B Cells. Int J Mol Sci 2021; 22:ijms22168379. [PMID: 34445084 PMCID: PMC8395064 DOI: 10.3390/ijms22168379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the major cause of the development of cardiovascular disease, which, in turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis, atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis; however, the main components of atherogenesis are considered to be inflammation and alterations of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in the adventitia layer. Of course, such widespread and well-studied cells have attracted attention as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been developed and tested for their efficacy.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
24
|
Luo J, Yan Z, Guo S, Chen W. Recent Advances in Atherosclerotic Disease Screening Using Pervasive Healthcare. IEEE Rev Biomed Eng 2021; 15:293-308. [PMID: 34003754 DOI: 10.1109/rbme.2021.3081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis screening helps the medical model transform from therapeutic medicine to preventive medicine by assessing degree of atherosclerosis prior to the occurrence of fatal vascular events. Pervasive screening emphasizes atherosclerotic monitoring with easy access, quick process, and advanced computing. In this work, we introduced five cutting-edge pervasive technologies including imaging photoplethysmography (iPPG), laser Doppler, radio frequency (RF), thermal imaging (TI), optical fiber sensing and piezoelectric sensor. IPPG measures physiological parameters by using video images that record the subtle skin color changes consistent with cardiac-synchronous blood volume changes in subcutaneous arteries and capillaries. Laser Doppler obtained the information on blood flow by analyzing the spectral components of backscattered light from the illuminated tissues surface. RF is based on Doppler shift caused by the periodic movement of the chest wall induced by respiration and heartbeat. TI measures vital signs by detecting electromagnetic radiation emitted by blood flow. The working principle of optical fiber sensor is to detect the change of light properties caused by the interaction between the measured physiological parameter and the entering light. Piezoelectric sensors are based on the piezoelectric effect of dielectrics. All these pervasive technologies are noninvasive, mobile, and can detect physiological parameters related to atherosclerosis screening.
Collapse
|
25
|
Amin AM. The metabolic signatures of cardiometabolic diseases: Does the shared metabotype offer new therapeutic targets? LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Arwa M. Amin
- Department of Clinical and Hospital Pharmacy College of Pharmacy Taibah University Medina Saudi Arabia
| |
Collapse
|
26
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Frequency of Efficient Circulating Follicular Helper T Cells Correlates with Dyslipidemia and WBC Count in Atherosclerosis. IRANIAN BIOMEDICAL JOURNAL 2021; 25:117-31. [PMID: 33465845 PMCID: PMC7921518 DOI: 10.29252/ibj.25.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background The significance of cTfh cells and their subsets in atherosclerosis is not well understood. We measured the frequency of cTfh subsets in patients with different degrees of stenosis using flow-cytometry. Methods Participants included high (≥50%; n = 12) and low (<50%; n = 12) stenosis groups, as well as healthy controls (n = 6). Results The frequency of CCR7loPD-1hiefficient-cTfh was significantly higher in patients with high stenosis compared to healthy controls (p = 0.003) and correlated with low-density lipoprotein (LDL; p = 0.043), cholesterol (p = 0.043), triglyceride (p = 0.019), neutrophil count (p = 0.032), platelet count (p = 0.024), neutrophil/lymphocyte ratio (NLR; p = 0.046), and platelet/lymphocyte ratio (PLR; p = 0.025) in high stenosis group. The frequency of CCR7hiPD-1lo quiescent-cTfh was higher in healthy controls compared to the high-stenosis group (p = 0.001) and positively correlated with high-density lipoprotein (p = 0.046). The frequency of efficient-cTfh cells was correlated with platelet count (p = 0.043), NLR (p = 0.036), and PLR (p P = 0.035) in low-stenosis group, while that of quiescent-cTfh cells was negatively correlated with LDL (p = 0.034), cholesterol (p = 0.047), platelet count (p = 0.032), and PLR (p = 0.041). Conclusion High percentages of cTfh and efficient-cTfh cells in patients with advanced atherosclerosis and their correlation with dyslipidemia and white blood cell counts suggest an ongoing cTfh subset deviation, towards efficient phenotype in the milieu of inflammation and altered lipid profile. Efficient cTfh cells have an effector phenotype and could in turn contribute to atherosclerosis progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Partial recovery of senescence in circulating follicular helper T cells after Dasatinib treatment. Int Immunopharmacol 2021; 94:107465. [PMID: 33631598 DOI: 10.1016/j.intimp.2021.107465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Cellular senescence is an irreversible arrest of cell proliferation triggered by different stimuli, including DNA damage, telomere shortening and oncogenic stress. Senescent cells, by releasing the senescence-associated-secretory-phenotype (SASP), contribute to various diseases pathogenesis. Human atherosclerotic plaque contains cells with multiple markers of senescence that associate with disease severity. We characterized the frequency of senescent cTfh cells and genes expressions before and after treatment with Dasatinib in patients with different degrees of stenosis. Twelve high (≥50%), and twelve low (<50%) stenosis patients and six healthy controls were enrolled. The percentage of senescent CD3+CD4+CXCR5+CD153+CD57+ cells was significantly decreased in Dasatinib treated cells from individuals with low and high stenosis (P = 0.0007 and P = 0.0002, respectively). However, the frequency of total lymphocytes, CD3+ and CD4+ T cells were not significantly different between the groups before and after treatment. The expression levels of P53 (P = 0.0003 and P = 0.0001), P16 (P = 0.0005 and P = 0.0002), p21 (P = 0.0002 and P < 0.0001), SENEX (P = 0.0005 and P < 0.0001) and BCL-2 (P = 0.0005 and P = 0.0002) were decreased in PBMCs of low and high stenosis groups after treatment with Dasatinib, respectively. The percentage of senescent cTfh cells positively correlated with cholesterol (P = 0.034; r = 0.671), C-reactive protein (CRP) (P = 0.029; r = 0.707), Erythrocyte sedimentation rate (ESR) levels (P = 0.030; r = 0.598) and neutrophil counts (P = 0.021; r = 0.799) in patients with high stenosis. The decreased frequency of senescent cTfh cells and the expression levels of senescence genes after Dasatinib treatment in patients with atherosclerosis suggest a role for Dasatinib in partial clearance or rejuvenation of senescent cTfh cells, which may decrease inflammatory mediators and attenuate disease progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Stevenson AJ, Gadd DA, Hillary RF, McCartney DL, Campbell A, Walker RM, Evans KL, Harris SE, Spires-Jones TL, McRae AF, Visscher PM, McIntosh AM, Deary IJ, Marioni RE. Creating and validating a DNA methylation-based proxy for interleukin-6. J Gerontol A Biol Sci Med Sci 2021; 76:2284-2292. [PMID: 33595649 PMCID: PMC8599002 DOI: 10.1093/gerona/glab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 01/28/2023] Open
Abstract
Background Studies evaluating the relationship between chronic inflammation and cognitive functioning have produced heterogeneous results. A potential reason for this is the variability of inflammatory mediators which could lead to misclassifications of individuals’ persisting levels of inflammation. DNA methylation (DNAm) has shown utility in indexing environmental exposures and could be leveraged to provide proxy signatures of chronic inflammation. Method We conducted an elastic net regression of interleukin-6 (IL-6) in a cohort of 875 older adults (Lothian Birth Cohort 1936; mean age: 70 years) to develop a DNAm-based predictor. The predictor was tested in an independent cohort (Generation Scotland; N = 7028 [417 with measured IL-6], mean age: 51 years). Results A weighted score from 35 CpG sites optimally predicted IL-6 in the independent test set (Generation Scotland; R2 = 4.4%, p = 2.1 × 10−5). In the independent test cohort, both measured IL-6 and the DNAm proxy increased with age (serum IL-6: n = 417, β = 0.02, SE = 0.004, p = 1.3 × 10−7; DNAm IL-6 score: N = 7028, β = 0.02, SE = 0.0009, p < 2 × 10−16). Serum IL-6 did not associate with cognitive ability (n = 417, β = −0.06, SE = 0.05, p = .19); however, an inverse association was identified between the DNAm score and cognitive functioning (N = 7028, β = −0.16, SE = 0.02, pFDR < 2 × 10−16). Conclusions These results suggest methylation-based predictors can be used as proxies for inflammatory markers, potentially allowing for further insight into the relationship between inflammation and pertinent health outcomes.
Collapse
Affiliation(s)
- Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, Little France Crescent, Edinburgh BioQuarter, Edinburgh
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Kim CW, Oh E, Park HJ. A strategy to prevent atherosclerosis via TNF receptor regulation. FASEB J 2021; 35:e21391. [DOI: 10.1096/fj.202000764r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Chan Woo Kim
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Department of Preclinical Trial Laboratory Animal Center Osong Medical Innovation Foundation Cheongju Republic of Korea
| | - Eun‐Taex Oh
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
- Department of Biomedical Sciences College of Medicine Inha University Incheon Republic of Korea
| | - Heon Joo Park
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
| |
Collapse
|
30
|
Sri Iswari R, Dafip M, Purwantoyo E. Malondialdehyde (MDA) Production in Atherosclerosis Supplemented with Steamed Tomato. Pak J Biol Sci 2021; 24:319-325. [PMID: 34486316 DOI: 10.3923/pjbs.2021.319.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Objective Malondialdehyde (MDA) may increase influenced by free radicals due to lipid oxidation. Tomato induction considers able to prevent free radical damage and atherosclerosis. Therefore, this study aims to understand the effect of steamed-tomato extracts on MDA and its potential as an early diagnosis of atherosclerosis. Materials and Methods A total of 24 healthy 12 weeks-old male-rats were divided into four treatment groups, equally. A normal control group (K1) was rats with placebo treatment. A negative control group (K2) was the rats supplemented with 2 mL kg-1 b.wt. per day of cholesterol until cholesterol. A K3 group was atherosclerosis rats given with 20 mg kg-1 b.wt. per day of atorvastatin and a K4 was atherosclerotic rats supplemented with 16 mg kg-1 b.wt. per day of tomato extract. All treatments were carried out for 60 consecutive days. Results Tomato extract in the K4 group was succeeded in lowering MDA production. Carotenoid compounds in tomato extract are well known to be prevention agents against lipid oxidation and inhibit free radicals. MDA levels have increased significantly in atherosclerosis conditions, making it potentially noticeable during early atherosclerotic, therefore, potentially developed as biomarkers. Conclusion MDA levels increase significantly and simultaneously after high cholesterol diets and in line with lipid parameters and damaged blood vessels. The steamed-tomato extract can reduce MDA, lipids levels and protect endothelial from lipid oxidation. More research should be conducted to breakdown the MDA function in the molecular pathway, including MDA correlation to microRNA expression and cell signaling.
Collapse
|
31
|
Gang H, Peng D, Hu Y, Tang S, Li S, Huang Q. Interleukin-9-secreting CD4 + T cells regulate CD8 + T cells cytotoxicity in patients with acute coronary syndromes. APMIS 2020; 129:91-102. [PMID: 33113251 DOI: 10.1111/apm.13094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
T cells play vital roles in the development and progression of acute coronary syndromes (ACS), including cytotoxicity mediated by CD8+ T cells and immunoregulatory activity mediated by CD4+ T cells. Interleukin (IL)-9-secreting CD4+ T cells (Th9 cells) were recently found to be involved in the onset of ACS. We investigated regulatory role of Th9 cells to CD8+ T cells in patients with stable angina pectoris, unstable angina pectoris, and acute myocardial infarction (AMI). Circulating Th9 cells percentage, plasma IL-9 level, and PU.1 mRNA relative level was up-regulated in AMI patients compared with controls. There was no significant difference of IL-9-secreting CD8+ T cells percentage among groups. CD8+ T cells from AMI patients revealed increased cytotoxicity than those from controls, which presented as enhanced cytotolytic activity to target cells, increased interferon-γ and tumor necrosis factor-α secretion, elevated perforin and granzyme B production, and reduced programmed death-1 and cytotoxic T lymphocyte-associated protein 4. IL-9 stimulation did not affect proliferation, but promoted CD8+ T-cell cytotoxicity from both controls and AMI patients. IL-9-secreting CD4+ T cells were enriched in CD4+ CCR4- CCR6- CXCR3- cells. The enhancement of CD8+ T-cell cytotoxicity induced by CD4+ CCR4- CCR6- CXCR3- cells was dependent on IL-9 secretion. The present results indicated that up-regulation of IL-9-secreting CD4+ T cells may contribute to pathogenesis of AMI through enhancement of CD8+ T-cell cytotoxicity.
Collapse
Affiliation(s)
- Hongsheng Gang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingfeng Peng
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Hu
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songhai Li
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Formanowicz D, Krawczyk JB. Controlling the thickness of the atherosclerotic plaque by statin medication. PLoS One 2020; 15:e0239953. [PMID: 33048950 PMCID: PMC7553348 DOI: 10.1371/journal.pone.0239953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disorder of the arterial wall, is a complex process whose dynamics are affected by multiple factors. The disease control consists of restraining it by administering statins. Slowing down or halting the plaque growth depends on the patient age at which the statin treatment begins and on the thickness of the intima-media (IMT) at that time. In this paper, we propose a mathematical model to estimate the sets of atherosclerosis states, from which the use of statins can restrain the disease. Our model is control-theoretic, and the estimated sets are the viability kernels, in the parlance of viability theory. To our best knowledge, this way of modelling the atherosclerosis progression is original. We compute two viability kernels, each for a different statin-treatment dose. Each kernel is composed of the vector [age, IMT] from which the disease can be restrained. By extension, the disease can’t be restrained from the kernel complements, this being mainly because of the disease and patient-age advancement. The kernels visualise tradeoffs between early and late treatments, which helps the clinician to decide when to start the statin treatment and which statin dose may be sufficient.
Collapse
Affiliation(s)
- Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail: (DF); (JBK)
| | - Jacek B. Krawczyk
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- * E-mail: (DF); (JBK)
| |
Collapse
|
33
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Weissman S, Sinh P, Mehta TI, Thaker RK, Derman A, Heiberger C, Qureshi N, Amrutiya V, Atoot A, Dave M, Tabibian JH. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. World J Gastrointest Pathophysiol 2020; 11:104-113. [PMID: 32832194 PMCID: PMC7403753 DOI: 10.4291/wjgp.v11.i5.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/24/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) causes systemic vascular inflammation. The increased risk of venous as well as arterial thromboembolic phenomena in IBD is well established. More recently, a relationship between IBD and atherosclerotic cardiovascular disease (ASCVD) has been postulated. Systemic inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus, have well characterized cardiac pathologies and treatments that focus on prevention of disease associated ASCVD. The impact of chronic inflammation on ASCVD in IBD remains poorly characterized. This manuscript aims to review and summarize the current literature pertaining to IBD and ASCVD with respect to its pathophysiology and impact of medications in order to encourage further research that can improve understanding and help develop clinical recommendations for prevention and management of ASCVD in patients with IBD.
Collapse
Affiliation(s)
- Simcha Weissman
- Department of Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Preetika Sinh
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Tej I Mehta
- Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57108, United States
| | - Rishi K Thaker
- Department of Medicine, New York Presbyterian, Brooklyn, NY 11215, United States
| | - Abraham Derman
- Department of Medicine, Mount Sinai-Saint Luke’s Roosevelt, NY 10025, United States
| | - Caleb Heiberger
- Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57108, United States
| | - Nabeel Qureshi
- Department of Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Viralkumar Amrutiya
- Department of Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adam Atoot
- Department of Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Maneesh Dave
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA 91342, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90001, United States
| |
Collapse
|
35
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
36
|
Ho CL, Li LH, Weng YC, Hua KF, Ju TC. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through reducing MAPK and NF-κB pathways. BMC Complement Med Ther 2020; 20:200. [PMID: 32600338 PMCID: PMC7325248 DOI: 10.1186/s12906-020-02999-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Eucalyptus essential oils have been used in traditional medicine for centuries. It was reported that Eucalyptus leaves possess antioxidant and antimicrobial effects. Here, we investigated the anti-inflammatory activity of the essential oils extracted from the leaves of four different Eucalyptus species in RAW264.7 macrophages. Methods Lipopolysaccharide (LPS)-activated RAW264.7 macrophages were used to evaluate the anti-inflammatory activity of the leaf essential oils of Eucalyptus. The cell survival was quantified by an Alamar Blue assay. Nitric oxide (NO) production was assessed by Griess reaction. TNF-α and IL-6 production were measured by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-κB (NF-κB) transcriptional activity was measured by NF-κB reporter assay. Intracellular protein expression levels were determined by Western blot. The expression levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and NF-κB pathway were measured by western blot in LPS-activated RAW 264.7 macrophage. Results The essential oils extracted from Eucalyptus citriodora leaf exert the best NO inhibitory activity in LPS-activated RAW264.7 macrophages. The essential oils were fractionated into fractions A-H, and fraction F has been demonstrated to inhibit the expression levels of TNF-α, IL-6, NO, iNOS and COX-2 in LPS-activated RAW264.7 macrophages. Mechanistic analysis revealed that fraction F reduced the phosphorylation levels of ERK1/2, p38, PKC-α, PKC-ε and PKC-δ, and inhibited the NF-κB transcriptional activity. The chemical composition of Fraction F was determined by GC-MS. Conclusions The discoveries made herein could help develop innovative nonsteroidal anti-inflammatory drugs with minimal side effects and strong efficacy. Clinical trials on these Eucalyptus leaf essential oils will help customize and optimize their therapeutic administration.
Collapse
Affiliation(s)
- Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Chun Weng
- EMA program in College of Bioresources, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, No. 1727, Sec. 4, Taiwan Blvd., Xitun Dist, Taichung City, 40704, Taiwan.
| |
Collapse
|
37
|
Gypenoside Inhibits Endothelial Cell Apoptosis in Atherosclerosis by Modulating Mitochondria through PI3K/Akt/Bad Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2819658. [PMID: 32685460 PMCID: PMC7327587 DOI: 10.1155/2020/2819658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis remains the most common cause of deaths worldwide. Endothelial cell apoptosis is an important process in the progress of atherosclerosis, as it can cause the endothelium to lose their capability in regulating the lipid homeostasis, inflammation, and immunity. Endothelial cell injury can disrupt the integrity and barrier function of an endothelium and facilitate lipid deposition, leading to atherogenesis. Chinese medicine techniques for preventing and treating atherosclerosis are gaining attention, especially natural products. In this study, we demonstrated that gypenoside could decrease the levels of serum lipid, alleviate the formation of atherosclerotic plaque, and lessen aortic intima thickening. Gypenoside potentially activates the PI3K/Akt/Bad signal pathway to modulate the apoptosis-related protein expression in the aorta. Moreover, gypenoside downregulated mitochondrial fission and fusion proteins, mitochondrial energy-related proteins in the mouse aorta. In conclusion, this study demonstrated a new function of gypenoside in endothelial apoptosis and suggested a therapeutic potential of gypenoside in atherosclerosis associated with apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway.
Collapse
|
38
|
Sun JL, Abd El-Aty AM, Jeong JH, Jung TW. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:967-985. [PMID: 32431178 DOI: 10.1142/s0192415x20500469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and endoplasmic reticulum (ER) stress have been documented to contribute to the development of atherosclerosis. Ginsenoside Rb2 has been reported to exhibit antidiabetic effects. However, the effects of Rb2 on atherosclerotic responses such as inflammation and ER stress in endothelial cells and monocytes remain unclear. In this study, the expression of inflammation and ER stress markers was determined using a Western blotting method. Concentrations of tumor necrosis factor alpha (TNF[Formula: see text]) and monocyte chemoattractant protein-1 (MCP-1) in culture media were assessed by enzyme-linked immunosorbent assay (ELISA) and apoptosis was evaluated by a cell viability assay and a caspase-3 activity measurement kit. We found that exposure of HUVECs and THP-1 monocytes to Rb2 attenuated inflammation and ER stress, resulting in amelioration of apoptosis and THP-1 cell adhesion to HUVECs under lipopolysaccharide (LPS) condition. Increased AMPK phosphorylation and heme oxygenase (HO)-1 expression, including GPR120 expression were observed in Rb2-treated HUVECs and THP-1 monocytes. Downregulation of both, AMPK phosphorylation and HO-1expression rescued these observed changes. Furthermore, GPR120 siRNA mitigated Rb2-induced AMPK phosphorylation. These results suggest that Rb2 inhibits LPS-mediated apoptosis and THP-1 cell adhesion to HUVECs by GPR120/AMPK/HO-1-associated attenuating inflammation and ER stress. Therefore, Rb2 can be used as a potential therapeutic molecule for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Talepoor AG, Fouladseresht H, Khosropanah S, Doroudchi M. Immune-Inflammation in Atherosclerosis: A New Twist in an Old Tale. Endocr Metab Immune Disord Drug Targets 2020; 20:525-545. [DOI: 10.2174/1871530319666191016095725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Background and Objective:Atherosclerosis, a chronic and progressive inflammatory disease, is triggered by the activation of endothelial cells followed by infiltration of innate and adaptive immune cells including monocytes and T cells in arterial walls. Major populations of T cells found in human atherosclerotic lesions are antigen-specific activated CD4+ effectors and/or memory T cells from Th1, Th17, Th2 and Treg subsets. In this review, we will discuss the significance of T cell orchestrated immune inflammation in the development and progression of atherosclerosis.Discussion:Pathogen/oxidative stress/lipid induced primary endothelial wound cannot develop to a full-blown atherosclerotic lesion in the absence of chronically induced inflammation. While the primary inflammatory response might be viewed as a lone innate response, the persistence of such a profound response over time must be (and is) associated with diverse local and systemic T cell responses. The interplay between T cells and innate cells contributes to a phenomenon called immuneinflammation and has an impact on the progression and outcome of the lesion. In recent years immuneinflammation, an old term, has had a comeback in connecting the puzzle pieces of chronic inflammatory diseases.Conclusion:Taking one-step back and looking from afar at the players of immune-inflammation may help us provide a broader perspective of these complicated interactions. This may lead to the identification of new drug targets and the development of new therapies as well as preventative measures.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes. Mediators Inflamm 2020; 2020:5373562. [PMID: 32410856 PMCID: PMC7204090 DOI: 10.1155/2020/5373562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Objective This research is aimed at determining the vascular health characteristics of carotenoids by evaluating their effect on excessive inflammatory response in endothelial and monocyte cells, the main factors of atherosclerosis. Methods Human umbilical vein endothelial cells (HUVECs) or U937 monocytes were treated with escalating concentrations (0.1, 0.5, and 1 μM) of five most common carotenoids in human plasma, i.e., α-carotene, β-carotene, β-cryptoxanthin, lutein, and lycopene prior to stimulation with 2 mM fructose. We examined the monocyte adhesion to endothelial cells (ECs) and relevant endothelial adhesion molecules. Chemokine and proinflammatory cytokine production as well as intracellular oxidative stress were also assessed in fructose-stimulated ECs and monocytes. Results Carotenoids repressed monocyte adhesion to fructose-stimulated ECs dose dependently via decreasing primarily the expression of endothelial VCAM-1. In ECs and monocytes, three carotenoids, i.e., β-cryptoxanthin, lutein, and lycopene, suppressed the fructose-induced expression of chemokines MCP-1, M-CSF, and CXCL-10 and inflammatory cytokines TNF-α and IL-1β, with CXCL-10 being the most repressed inflammatory mediator. β-Cryptoxanthin, lutein, and lycopene dramatically downregulated the fructose-induced CXCL-10 expression in vascular cells. The reduction in the inflammatory response was associated with a slight but significant decrease of intracellular oxidative stress. Conclusions Our results show that carotenoids have a variety of anti-inflammatory and antiatherosclerosis activities, which can help prevent or reduce fructose-induced inflammatory vascular diseases.
Collapse
|
41
|
Pan J, Liu J, Wang H, Li W, Du X, Lin Q, Zhang X, Qi D, Tu J, Ning X, Yang Q, Wang J. Association of Carotid Atherosclerosis With Lipid Components in Asymptomatic Low-Income Chinese: A Population-Based Cross-Sectional Study. Front Neurol 2020; 11:276. [PMID: 32390928 PMCID: PMC7193094 DOI: 10.3389/fneur.2020.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
Intima-media thickness is a non-invasive arterial marker of early-stage atherosclerosis. Identifying carotid plaque is a superior surrogate endpoint for assessing atherosclerotic lesions. The aim of this study was to investigate the association of carotid intima-media thickness (CIMT) and carotid plaque with lipids among asymptomatic low-income rural residents in China. A total of 3,789 people aged ≥45 years without a history of stroke or cardiovascular disease were recruited to this study. B-mode ultrasonography was performed to measure CIMT and identify carotid plaque for early identification of atherosclerosis. Multivariate analysis was used to assess the association of blood lipid levels with atherosclerosis. The mean CIMT across our cohort was 567 μm. A linear regression analysis showed that low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) were risk factors for early-stage atherosclerosis; however, high-density lipoprotein cholesterol and triglycerides protected against early-stage atherosclerosis after adjusting for potential risk factors (P < 0.001). Carotid plaque risk increased by 24 and 62% for each 1-mmol/L increase in TC and LDL-C (P < 0.001). These findings suggest that it is vital to manage and control the dyslipidemia standard levels in China, especially among rural residents, in order to reduce the burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Hong Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Weilan Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Du
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiuxing Lin
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongwang Qi
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
42
|
Pathophysiological and Genetic Aspects of Vascular Calcification. Cardiol Res Pract 2020; 2020:5169069. [PMID: 32411445 PMCID: PMC7201852 DOI: 10.1155/2020/5169069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that vascular calcification is an independent cardiovascular risk factor (CRF) of morbidity and mortality. New studies point out the existence of a complex physiopathological mechanism that involves inflammation, oxidation, the release of chemical mediators, and genetic factors that promote the osteochondrogenic differentiation of vascular smooth muscle cells (VSMC). This review will evaluate the main mechanisms involved in the pathophysiology and genetics modulation of the process of vascular calcification. Objective. A systematic review of the pathophysiology factors involved in vascular calcification and its genetic influence was performed. Methods. A systematic review was conducted in the Medline and PubMed databases and were searched for studies concerning vascular calcification using the keywords and studies published until 2020/01 in English. Inclusion Criteria. Studies in vitro, animal models, and humans. These include cohort (both retrospective and prospective cohort studies), case-control, cross-sectional, and systematic reviews. Exclusion Criteria. Studies before 2003 of the existing literature.
Collapse
|
43
|
Wang N, Yuan Y, Sun S, Liu G. microRNA-204-5p Participates in Atherosclerosis Via Targeting MMP-9. Open Med (Wars) 2020; 15:231-239. [PMID: 32266319 PMCID: PMC7126203 DOI: 10.1515/med-2020-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/31/2020] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate the role and mechanism of microRNA-204-5p (miR-204-5p) in atherosclerosis (AS)-related abnormal human vascular smooth muscle cells (hVSMCs) function. Firstly, we analyzed the expression of miR-204-5p and found that the miR-204-5p expression level was clearly downregulated in atherosclerotic plaque tissues and blood samples compared to the normal controls. Then, matrix metallopeptidase-9 (MMP-9) was predicted to be the potential target of miR-204-5p by TargetScan and this prediction was confirmed by luciferase assays. Besides, we observed that miR-204-5p could negatively regulate the expression of MMP-9 in hVSMCs. Subsequently, Thiazolyl Blue Tetrazolium Bromide (MTT) assay, transwell assay and flow cytometry were performed to detect the proliferation, migration and apoptosis of hVSMCs. Down-expression of miR-204-5p led to the promotion of proliferation and migration accompanied with the suppression of apoptosis in hVSMCs, and these effects were reversed by MMP-9-siRNA. In addition, overexpressed miR-204-5p could inhibit hVSMC proliferation and migration and promote the apoptosis of hVSMCs. However, the effects were also abrogated by overexpressed MMP-9. Together, our findings showed that miR-204-5p plays an important role in the growth and migration of hVSMCs by targeting MMP-9, which might be a novel biomarker and promising therapeutic target for AS.
Collapse
Affiliation(s)
- Na Wang
- Clinical laboratory, Guang'anmen Hospital Southern District, Chinese Academy of Chinese Medical Science, Beijing 102618, China
| | - Yuliang Yuan
- Clinical laboratory, Guang'anmen Hospital Southern District, Chinese Academy of Chinese Medical Science, Beijing 102618, China
| | - Shipeng Sun
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Science, No. 5 North Line Pavilion, Xicheng District, Beijing 100053, China
| | - Guijian Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Science, No. 5 North Line Pavilion, Xicheng District, Beijing 100053, China
| |
Collapse
|
44
|
Shi S, Song L, Liu Y, He Y. Activation of CREB Protein With Tabersonine Attenuates STAT3 During Atherosclerosis in Apolipoprotein E-Deficient Mice. Dose Response 2020; 18:1559325820912067. [PMID: 32231468 PMCID: PMC7088227 DOI: 10.1177/1559325820912067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
Objective: Atherosclerosis is a pathological condition of fat deposition in the arteries, which causes cardiovascular disorders. Management of atherosclerosis remains a challenge and conventional drugs used for its management have several limitations. This study evaluated the protective effect of tabersonine against atherosclerosis and assessed its molecular mechanism of action. Methods: Atherosclerosis was induced by feeding apolipoprotein E (ApoE)-deficient mice a high-fat diet. Mice were treated with 20 or 40 mg/kg of tabersonine intraperitoneally for the 12-week duration of the study. Atherosclerosis markers and nitric oxide were measured in the sera of ApoE-deficient mice. Mediators of inflammation and markers of oxidative stress were assessed using enzyme-linked immunosorbent assays. Western blotting, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry analyses were conducted to determine the protein expression in aortic tissue. Results: The tabersonine-treatment groups had an improved lipid profile and enhanced liver function, compared to the ApoE treatment group. Tabersonine treatment resulted in reduced levels of nitric oxide, cytokines, and oxidative stress, compared to the ApoE group. The altered expression levels of protein inhibitor activated STAT-3 (PIAS3), signal transducer and activator of transcription-3 (STAT-3), and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IkBα) in ApoE-deficient mice were ameliorated by tabersonine treatment. Moreover, cAMP-response-element-binding (CREB) expression was elevated in aortic tissue of tabersonine treatment groups, compared to the ApoE group. Conclusion: These results suggested that tabersonine ameliorates the expression of STAT-3 by activating CREB protein in atherosclerotic ApoE-deficient mice.
Collapse
Affiliation(s)
- Sen Shi
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Song
- Department of Anesthesia, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanzheng He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
45
|
Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37. Cent Eur J Immunol 2020; 44:447-454. [PMID: 32140058 PMCID: PMC7050054 DOI: 10.5114/ceji.2019.92807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) have historically been considered masters of allergy, but there is substantial evidence supporting their contribution to tissue microorganism clearance. Their activation through the cross-linking of bound IgE provokes mast cell degranulation and activates tyrosine kinase (Syk and Lyn), leading to cytokine/chemokine generation and release. Current consensus holds that mast cells participate in the body’s defense against numerous pathogens, including bacteria, fungi, viruses and parasites, but also contribute to the inflammatory response induced by these biological agents. In the light of the latest findings, we describe the cross-talk between mast cells and pathogenic microorganisms. This review summarizes our current understanding of the host immune response, with emphasis on the roles of MCs and the cytokine/chemokine network in provoking inflammation and generating protective immunity. This review addresses the ability of microorganisms to activate MCs provoking inflammation. We describe some MC-specific biological activities related to infections and discuss the evidence of MC mechanisms involved in the microbial activation which cause cytokine/chemokine generation-mediated inflammation, and provide a description of novel functions of mast cells during microbial infection. Interleukin (IL)-37 binds the α chain of the IL-18 receptor and suppresses MyD88-mediated inflammatory responses. IL-37 plays a pathological role in certain infections by inhibiting the production of pro-inflammatory cytokines, such as IL-1 and TNF. Here we report the interrelationship between IL-37, inflammatory cytokines and mast cells. Our report offers opportunities for the design of new therapeutic interventions in inflamed tissue induced by microorganism infections, acting on manipulation of mast cells and/or inflammatory cytokine blockage.
Collapse
|
46
|
Miki S, Suzuki JI, Kunimura K, Morihara N. Mechanisms underlying the attenuation of chronic inflammatory diseases by aged garlic extract: Involvement of the activation of AMP-activated protein kinase. Exp Ther Med 2019; 19:1462-1467. [PMID: 32010323 PMCID: PMC6966139 DOI: 10.3892/etm.2019.8372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is an ubiquitously expressed serine/threonine kinase and an important regulator of energy metabolism. The decreased activity of AMPK induced by low-grade chronic inflammation has been implicated in several diseases, including type 2 diabetes and atherosclerosis. However, the activation of AMPK by natural and synthetic products can ameliorate these diseases through the inhibition of inflammation. For example, aged garlic extract (AGE) has been shown to enhance the phosphorylation of Thr172 of the α-subunit of AMPK in several tissues of disease model animals. In addition, AGE has been reported to suppress the progression of atherosclerotic plaque formation in an animal model of atherosclerosis. Moreover, AGE has been found to decrease the level of plasma glycated albumin and to improve hyperglycemia in an animal model of type 2 diabetes. These inhibitory effects of AGE are induced by the suppression of the inflammatory response. In the present review, we discuss the mechanisms through which AGE activates AMPK, as well as the mechanisms through which the activation of AMPK by AGE modulates the inflammatory response in disease models.
Collapse
Affiliation(s)
- Satomi Miki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Kayo Kunimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Naoaki Morihara
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan.,Research and Development, Wakunaga of America Co., Ltd., Mission Viejo, CA 92691, USA
| |
Collapse
|
47
|
Orexin-A Exerts Equivocal Role in Atherosclerosis Process Depending on the Duration of Exposure: In Vitro Study. Nutrients 2019; 12:nu12010053. [PMID: 31878149 PMCID: PMC7019720 DOI: 10.3390/nu12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Orexin-A is a peptide hormone that plays a crucial role in feeding regulation and energy homeostasis. Diurnal intermittent fasting (DIF) has been found to increase orexin-A plasma levels during fasting hours, while Ramadan fasting which resembles DIF, has led to beneficial effects on endothelial function. Herein, we aimed to investigate the effects of orexin-A on the expression of molecules involved in the atherogenesis process: Monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase-1 and 2 (TIMP-1 and TIMP-2), in human aortic endothelial cells (HAECs). HAECs were incubated with orexin-A at concentrations of 40 ng/mL, 200 ng/mL and 400 ng/mL for 6, 12 and 24 h. The mRNA levels of MCP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2 and orexin-1 receptor were measured by real-time qPCR. We also evaluated the MMP-2, p38, phospho-p38, NF-κΒ/p65 as well as TIMP-1 protein levels by Western blot and ELISA, respectively. MMP-2 activity was measured by gelatin zymography. Short-term 6-h incubation of HAECs with orexin-A at a high concentration (400 ng/mL) decreased MCP-1, MMP-2 expression, MMP-2/TIMP-1 ratio (p < 0.05), and MMP-2 activity, while incubation for 24 h increased MCP-1, MMP-2 expression (p < 0.05), MMP-2/TIMP-1 and MMP-2/TIMP-2 ratio (p < 0.01 and p < 0.05, respectively) as well as MMP-2 activity. The dual effects of orexin-A are mediated, at least in part, via regulation of p38 and NF-κΒ pathway. Orexin-A may have an equivocal role in atherosclerosis process with its effects depending on the duration of exposure.
Collapse
|
48
|
Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin Attenuates Atherosclerosis Via Modulating Signal Transducer And Activator Of Transcription 3-Mediated Inflammatory Response. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3899-3911. [PMID: 31819365 PMCID: PMC6874161 DOI: 10.2147/dddt.s207185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Background Inflammatory factors play a crucial role throughout the development and progression of atherosclerosis, which has been considered as a chronic vascular inflammatory disease. Luteolin, a natural flavonoid which exists in many natural medicinal materials, has anti-inflammatory, anti-fibrotic and other pharmacological effects. Recently, the protective effects of luteolin on the cardiovascular disease have been reported. However, there is a paucity of studies on anti-atherosclerosis. Therefore, the anti-atherosclerosis potential of luteolin remains to be elucidated. Method ApoE-/- mice were fed with a high-fat diet to induce atherosclerosis in an animal model, where they were treated with oral administration of luteolin for 12 weeks. Primary mouse peritoneal macrophages challenged with oxidized low-density lipoprotein (oxLDL) were used for in vitro mechanistic study. The effectiveness of luteolin in the ApoE-/- mouse model of atherosclerosis was estimated in the aortic sinus and enface, and the underlying mechanisms were explored by molecular modeling study and siRNA-induced gene silencing. Results Our results showed that luteolin remarkably attenuated atherosclerosis in high-fat diet-induced ApoE-/- mouse via alleviating inflammation. We further found that luteolin decreased oxLDL-induced inflammation by inhibiting signal transducer and activator of transcription 3 (STAT3) in vitro, respectively. Further molecular modeling analysis indicated that luteolin interacted with STAT3 primarily through hydrogen bond interaction. Conclusion Luteolin could be a promising candidate molecule for atherosclerosis, and STAT3 may be a potential therapeutic target that could prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoji Ding
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Bo Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiaodong Wang
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| |
Collapse
|
49
|
A Genomic Approach to Characterize the Vulnerable Patient – a Clinical Update. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Atherosclerosis is the elemental precondition for any cardiovascular disease and the predominant cause of ischemic heart disease that often leads to myocardial infarction. Systemic risk factors play an important role in the starting and progression of atherosclerosis. The complexity of the disease is caused by its multifactorial origin. Besides the traditional risk factors, genetic predisposition is also a strong risk factor. Many studies have intensively researched cardioprotective drugs, which can relieve myocardial ischemia and reperfusion injury, thereby reducing infarct size. A better understanding of abnormal epigenetic pathways in the myocardial pathology may result in new treatment options. Individualized therapy based on genome sequencing is important for an effective future medical treatment. Studies based on multiomics help to better understand the pathophysiological mechanism of several diseases at a molecular level. Epigenomic, transcriptomic, proteomic, and metabolomic research may be essential in detecting the pathological phenotype of myocardial ischemia and ischemic heart failure.
Collapse
|
50
|
El Yazouli L, Seghrouchni F, Hejaji H, Bouazza M, Alami AA, Dakka N, Radouani F. Cell-mediated immune response associated with Chlamydia pneumoniae infection in atherosclerotic patients. Microb Pathog 2019; 139:103860. [PMID: 31707079 DOI: 10.1016/j.micpath.2019.103860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chlamydia pneumoniae is an obligate intracellular bacterium that activates cell mediated immune responses; several investigations have demonstrated its strong implication in atherosclerosis. OBJECTIVES The main objective of our study was to explore the cell-mediated immune response to C. pneumoniae infection in patients with atherosclerosis by evaluating CD14, CD8 and CD4 expression. METHODS This investigation involved a total of 27 patients with atherosclerosis and 32 controls, among patients recruited to evaluate the association of C. pneumoniae with atherosclerosis. C. pneumoniae DNA was detected in PBMCs by nested PCR as described in our previous studies. CD4, CD8 and CD14 expression was measured by flow cytometry and data analysis was performed using FlowJo software. RESULTS The results revealed an increase in MFI expression of CD4, CD8 and CD14 in Cpn DNA+ subjects among both patients and healthy subject controls (CD4 Cpn DNA+ = 829.11 vs. CD4 Cpn DNA- = 571.14; CD8 Cpn DNA+ = 1562 vs. CD8 Cpn DNA- = 699; CD14 Cpn DNA+ = 1513.83 vs. CD14 Cpn DNA- = 1170.70), with a statistically significant difference (p < 0.05). Furthermore, the comparison of CD4, CD8 and CD14 expression between Cpn DNA+ patients and Cpn DNA+ healthy subject controls showed a statistically significant increase in expression in the former group (p < 0.05). CONCLUSION These data provide incentive to further explore the role of C. pneumoniae in stimulating and changing mechanisms of the cell-mediated immune response induced by C. pneumoniae antigens. This may alter immune cell-mediated responses via increased expression of CD4, CD8 and CD14 during inflammation and the development of thrombosis, leading to fatal atherosclerosis.
Collapse
Affiliation(s)
- Loubna El Yazouli
- Institut Pasteur du Maroc, Chlamydiae and Mycoplasmas Laboratory, Casablanca, 20360, Morocco; Laboratory of Human Pathologies Biology, Genomic Center of Human Pathologies, Faculty of Sciences, Mohammed V University of Rabat, Morocco
| | - Fouad Seghrouchni
- Cellular Immunology Laboratory, Institut National d'Hygiène, Rabat, Morocco
| | - Hicham Hejaji
- Cardiovascular Surgery Department, Ibn Rochd CHU, Casablanca, Morocco
| | | | | | - Nadia Dakka
- Laboratory of Human Pathologies Biology, Genomic Center of Human Pathologies, Faculty of Sciences, Mohammed V University of Rabat, Morocco
| | - Fouzia Radouani
- Institut Pasteur du Maroc, Chlamydiae and Mycoplasmas Laboratory, Casablanca, 20360, Morocco.
| |
Collapse
|