1
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
2
|
Behnoush AH, Khalaji A, Shokri Varniab Z, Rahbarghazi A, Amini E, Klisic A. Urinary and circulatory netrin-1 as biomarker in diabetes and its related complications: a systematic review and meta-analysis. Endocrine 2024; 84:328-344. [PMID: 37996774 DOI: 10.1007/s12020-023-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Novel biomarkers have been suggested for the diagnosis and prognosis of diabetes mellitus. The biomarker utility of netrin-1 in diabetes as an extracellular protein has been investigated. In this systematic review and meta-analysis, we reviewed the role of netrin-1 as a biomarker in prediabetes, diabetes, and complications of diabetes. METHODS PubMed, Embase, Scopus, and Web of Science were systematically searched for studies that measured circulatory and/or urinary netrin-1 levels in diabetes and compared them with non-diabetic patients or evaluated the prognostic role of this marker. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated using random-effect meta-analysis to compare netrin-1 levels between groups. The impact of mean age, male sex percentage, sample size, mean body mass index, and publication year on the overall heterogeneity was assessed using meta-regression. RESULTS Among 413 records from international databases, 19 original studies were included with 2061 cases (1137 diabetics, 196 prediabetics, and 728 healthy controls). Meta-analysis of eight studies measuring netrin-1 in patients with diabetes and comparing it with healthy controls showed no significant difference between the two groups (SMD 0.69, 95% CI -0.78 to 2.16, I2 = 98%, p-value = 0.36). On the other hand, a meta-analysis of netrin-1 levels in patients with prediabetes in comparison with healthy controls revealed that they had lower levels (SMD -0.51, 95% CI -0.81 to -0.21, p-value < 0.01). Diabetic patients with microalbuminuria and macroalbuminuria had significantly higher circulatory netrin-1 levels compared to normoalbuminuric group SMD 1.18, 95% CI 0.83 to 1.53, p-value < 0.01 and SMD 1.67, 95% CI 0.76 to 2.58, p-value < 0.01, respectively). Moreover, no difference in urinary netrin-1 levels was found between micro-, macro-, and normoalbuminuric groups (p-value > 0.05). CONCLUSION Netrin-1 showed promising results as a biomarker in diabetes prognosis. However, more studies are required to confirm our findings, and higher sample size studies are needed to evaluate the diagnostic utility of this marker.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Shokri Varniab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Ardabil, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Amini
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| |
Collapse
|
3
|
Yuan L, Xie L, Zhang H, Zhang Y, Wei Y, Feng J, Cui L, Tian R, Feng J, Yu D, Lv C. Low-dose IL-2 Treatment Rescues Cognitive Deficits by Repairing the Imbalance Between Treg and Th17 Cells at the Middle Alzheimer's Disease Stage. J Neuroimmune Pharmacol 2023; 18:674-689. [PMID: 37962810 DOI: 10.1007/s11481-023-10090-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Multiple studies highlight the role of effector and regulatory CD4+T cells in the pathophysiology of Alzheimer's disease, and foster low-dose IL-2 treatment which induces regulatory CD4+T (Treg) cells expansion and activation as a promising strategy for its treatment. However, studies demonstrating discrepant Treg functions in AD have been reported. In addition, a compromised immune system associated with aging may substantially impact on these processes. Here, we report that there is an altered balance of activity between Treg cells and IL-17-producing helper T (Th17) cells in periphery and brain of APP/PS1 mice along the disease progression. A dramatic loss of the healthy balance of activity between Treg and Th17 cells was found at the middle disease stage. While peripheral low-dose recombinant human IL-2 administration could selectively modulate the abundance of Treg cells and repair the imbalance between Treg and Th17 subsets at the middle disease stage. We further show that modulation of peripheral immune balance through low-dose IL-2 treatment reduces the neuro-inflammation and increases numbers of plaque-associated microglia, accompanied by marked reduction of Aβ plaque deposition and slower cognitive declines in APP/PS1 mice at the middle disease stage. Our study highlights the therapeutic potential of repurposed IL-2 for innovative immunotherapy based on modulation of the homeostasis of CD4+T cell subsets in Alzheimer's disease at the middle disease stage.
Collapse
Affiliation(s)
- Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, Hubei, China
| | - Lei Xie
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hao Zhang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yu Zhang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
| | - Jinhong Feng
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
| | - Li Cui
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China
| | - Rui Tian
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, Hubei, China
| | - Jia Feng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, Hubei, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), #19 Keyuan Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
4
|
Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles of regulatory T cells in Alzheimer's disease. Cell Immunol 2023; 393-394:104778. [PMID: 37907046 DOI: 10.1016/j.cellimm.2023.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-β (Aβ) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Wang F, Qin Y, Li Z. Serum retinol-binding protein 4 in stroke patients: correlation with T helper 17/regulatory T cell imbalance and 3-year cognitive function decline. Front Neurol 2023; 14:1217979. [PMID: 37808505 PMCID: PMC10551125 DOI: 10.3389/fneur.2023.1217979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Retinol-binding protein 4 (RBP4) promotes atherosclerotic progression and neuronal loss, whereas its association with cognitive impairment in stroke is unclear. Hence, this prospective study aimed to explore the association of serum RBP4 with the T helper (Th)17/regulatory T (Treg) cell ratio and its correlation with cognitive impairment in stroke patients. Methods Peripheral blood samples from 265 stroke patients and 50 healthy controls (HCs) were collected at enrollment for serum RBP4 (by enzyme-linked immunosorbent assay) and Th17 and Treg cells (by flow cytometry) determination. Additionally, stroke patients underwent routine follow-ups, and their Mini-Mental State Examination (MMSE) scores were assessed at baseline and in years 1, 2, and 3 after enrollment. Results Serum RBP4 was elevated in stroke patients compared to HCs (p < 0.001), with a good ability to differentiate stroke patients from HCs (area under the curve: 0.815). Serum RBP4 was positively associated with Th17 cells (p < 0.001) and the Th17/Treg cell ratio (p < 0.001) and negatively associated with Treg cells (p = 0.003) in stroke patients, whereas it was only positively associated with the Th17/Treg cell ratio (p = 0.027) but not with Th17 (p = 0.075) or Treg (p = 0.130) cells in HCs. Furthermore, increased serum RBP4 was associated with a lower MMSE score (p < 0.001) and a lower incidence of cognition impairment (p = 0.005) at enrollment in stroke patients, as were Th17 cells and the Th17/Treg cell ratio (all p < 0.050). The 1-, 2-, and 3-year MMSE scores in stroke patients were 25.9 ± 2.0, 25.3 ± 2.3, and 24.9 ± 2.3, respectively. More importantly, serum RBP4 was negatively correlated with 1-, 2-, and 3-year MMSE scores (all p < 0.001) and positively associated with 1-year (p = 0.013), 2-year (p = 0.007), and 3-year (p = 0.001) MMSE score declines in stroke patients. Conclusion Serum RBP4 is positively associated with a Th17/Treg cell imbalance and, more importantly, it is indicative of cognitive function decline within 3 years in stroke patients. Thus, early and timely interventions and physical rehabilitation are more necessary in stroke patients with high serum RBP4.
Collapse
Affiliation(s)
| | | | - Zongyou Li
- Department of Neurology, Fuyang People’s Hospital, Fuyang, China
| |
Collapse
|
6
|
Li W, Rang Y, Liu H, Liu C. Update on new trends and progress of natural active ingredients in the intervention of Alzheimer's disease, based on understanding of traditional Chinese and Western relevant theories: A review. Phytother Res 2023; 37:3744-3764. [PMID: 37380605 DOI: 10.1002/ptr.7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurological disorders causing death in the elderly worldwide. As a neurodegenerative disease that is difficult to prevent and cure, the pathogenesis of AD is complex and there is no effective cure. A variety of natural products derived from plants have been reported to have promising anti-AD activities, including flavonoids, terpenes, phenolic acids and alkaloids, which can effectively relieve the symptoms of AD in a variety of ways. This paper mainly reviews the pharmacological activity and mechanisms of natural products against AD. Although the clinical efficacy of these plants still needs to be determined by further high-quality studies, it may also provide a basis for future researchers to study anti-AD in depth.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
Choi GY, Kim HB, Hwang ES, Park HS, Cho JM, Ham YK, Kim JH, Mun MK, Maeng S, Park JH. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer's disease-like behavioral rat model. Neurotoxicology 2023; 95:35-45. [PMID: 36549596 DOI: 10.1016/j.neuro.2022.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), as the most typical type of dementia, is a chronic neurodegenerative disorder characterized by progressive learning and memory impairment. It is known that the main causes of AD are the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein. Naringin is a flavonoid from citrus fruits, especially in grapefruit, which has anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective activities. However, the effect of naringin in AD caused by Aβ has not been clearly studied, and there are few studies on the electrophysiological aspect. Thus, we investigated the ex vivo neuroprotective effect of naringin through the long-term potentiation (LTP) on organotypic hippocampal slice cultures. We evaluated the in vivo effects of naringin (100 mg/kg/day) orally treated for 20 days on learning, memory, and cognition which was impaired by bilateral CA1 subregion injection of Aβ. Cognitive behaviors were measured 2 weeks after Aβ injection using behavioral tests and the hippocampal expression of apoptotic and neurotrophic regulators were measured by immunoblotting. In hippocampal tissue slices, naringin dose-dependently increased the field excitatory postsynaptic potential (fEPSP) after theta burst stimulation and attenuated Aβ-induced blockade of fEPSP in the hippocampal CA1 area. In Aβ injected rats, naringin improved object recognition memory in the novel object test, avoidance memory in the passive avoidance test and spatial recognition memory in the Morris water maze test. In the hippocampus, naringin attenuated the Aβ-induced cyclooxygenase-2, Bax activation and Bcl-2, CREB, BDNF and TrkB inhibition. These results suggest that naringin has therapeutic potential to reduce neuronal inflammation and apoptosis induced by Aβ related with the BDNF/TrkB/CREB signaling.
Collapse
Affiliation(s)
- Ga-Young Choi
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun-Sang Hwang
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ho-Sub Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Young-Ki Ham
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Hee Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Mi-Kyung Mun
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Ji-Ho Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
8
|
Nedeva I, Gateva A, Assyov Y, Karamfilova V, Velikova T, Kamenov Z. Relationship between circulating netrin-1 levels, obesity, prediabetes and newly diagnosed type 2 diabetes. Arch Physiol Biochem 2022; 128:1533-1538. [PMID: 32654547 DOI: 10.1080/13813455.2020.1780453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Netrin-1 is presumed to have regenerative, angiogenic and anti-inflammatory properties, thus it could play a substantial role in the development of insulin resistance and T2DM. OBJECTIVE The aim of this study was to evaluate the relationship between serum netrin-1 levels and carbohydrate disturbances in patients with obesity. METHODS Sample size consisted of 163 patients, divided into four groups: obesity without carbohydrate disturbances prediabetes and diabetes and healthy controls Netrin-1 level was determined using ELISA method. RESULTS Circulating serum Netrin-1 was significantly lower in patients only with obesity, as well as with those with prediabetes and diabetes in comparison to the control group. Correlation analysis revealed that netrin-1 correlates negatively with BMI, waist, WSR, LDL and positive with sudomotor function. Netrin-1 ≤ 0.17 ng/ml has about 3 fold higher risk for carbohydrate disturbances (OR 3.06, 95% CI 1.48-6.34, p = .003). CONCLUSION Netrin-1 is associated with an increased risk for glycaemic disorders in patients with obesity.
Collapse
Affiliation(s)
- Iveta Nedeva
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Antoaneta Gateva
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Yavor Assyov
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Vera Karamfilova
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Tsvetelina Velikova
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Clinical Laboratory and Clinical Immunology, Laboratory of Clinical Immunology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| |
Collapse
|
9
|
Yan N, Jing H, Wang J, Li Z, Xu K, Wang Q, Zheng J, Shi L, Cao X, Duan X. Arsenic Induces Blood‒Brain Barrier Disruption and Regulates T Lymphocyte Subpopulation Differentiation in the Cerebral Cortex and Hippocampus Associated with the Nrf2 Pathway In Vivo. Biol Trace Elem Res 2022:10.1007/s12011-022-03500-3. [PMID: 36435854 DOI: 10.1007/s12011-022-03500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence has confirmed that the nervous system shows innate and adaptive immunity, which also participates in nerve damage. This study aimed to explore the neuroimmune imbalance induced by arsenic and its possible mechanism. Mice were exposed to NaAsO2 (0, 5, 10, 25, and 50 mg/L) for 1 month by drinking water. Y-maze and Morris water maze tests revealed that arsenic impaired learning and memory. The optical density of Evans blue showed a marked dose-dependent increase in the brain, and the mRNA and protein levels of the BBB tight junctions (TJs), occludin at 25 and 50 mg/L arsenic, and claudin-5 at 50 mg/L arsenic, were markedly decreased in the cerebral cortex. Arsenic downregulated occludin and claudin-5 mRNA expression at 50 mg/L and protein expression at 25 and 50 mg/L in the hippocampus. Immunohistochemical staining showed that 50 mg/L arsenic increased corticocerebral and hippocampal CD3+ T, CD4+ T, and CD8+ T cells; CD4 and CD8 proteins were increased with 25 and 50 mg/L arsenic. Arsenic decreased the corticocerebral and hippocampal Th1, Th17, and regulatory Treg transcription factors T-bet, Rorγt, and Foxp3 and the cytokine IFN-γ, IL-17, and TGF-β mRNA levels and increased the Th2 transcription factor GATA3 and cytokine IL-4 mRNA levels. Moreover, arsenic enhanced the expression of nuclear factor E2-related factor (Nrf2) and its downstream enzymes heme oxygenase-1 (HO-1) and glutathione-S-transferase (GST). In conclusion, these results demonstrate that arsenic exposure induces BBB dysfunction and T lymphocyte infiltration and affects CD4+ T lymphocyte differentiation, which may be associated with Nrf2 activation.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Liaoning, Shenyang, China
| | - Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jie Wang
- Department of Scientific Research, Shenyang Medical College, Liaoning, Shenyang, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jingwen Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Lei Shi
- Affiliated Health School, Shenyang Medical College, Liaoning, Shenyang, China
| | - Xiankui Cao
- Department of General Surgery, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Liaoning, Shenyang, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China.
| |
Collapse
|
10
|
Jing H, Yan N, Fan R, Li Z, Wang Q, Xu K, Hu X, Zhang L, Duan X. Arsenic Activates the NLRP3 Inflammasome and Disturbs the Th1/Th2/Th17/Treg Balance in the Hippocampus in Mice. Biol Trace Elem Res 2022; 201:3395-3403. [PMID: 36100822 DOI: 10.1007/s12011-022-03421-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
Arsenic exerts neurotoxicity and immunomodulatory effects. Studies have shown that the nervous system is not considered to be an immune-privileged site. However, the effect of arsenic-induced neuroimmune toxicity has rarely been reported. We aimed to investigate the toxic effects of arsenic on the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the Th1/Th2/Th17/Treg balance in the brain tissue of mice. Mice were exposed to NaAsO2 (0, 2.5, 5, and 10 mg/kg) for 24 h. Our results showed that 10 mg/kg arsenic exposure significantly decreased brain and hippocampal indices (p < 0.05). The mRNA and protein levels of the blood‒brain barrier (BBB) tight junction protein occludin were decreased in the 5 and 10 mg/kg arsenic-treated groups. Compared with those in the control group, NLRP3 protein levels in 10 mg/kg arsenic-treated mice, caspase-1 protein levels in 2.5, 5, and 10 mg/kg arsenic-treated mice, and IL-1β protein levels in 5 and 10 mg/kg arsenic-treated mice were increased in the hippocampus (p < 0.05). In addition, arsenic induced a hippocampal inflammatory response by upregulating the mRNA levels of the proinflammatory factors IL-6 and TNF-α and downregulating the mRNA level of the anti-inflammatory factor IL-10. Moreover, arsenic decreased the mRNA levels of the Th1 and Th2 transcription factors T-bet and GATA3 and the cytokines IFN-γ and IL-4 and increased the mRNA levels of the Th17 transcription factor RORγt and the cytokine IL-22 (p < 0.05). Collectively, our study demonstrated that arsenic could induce immune-inflammatory responses by regulating the NLRP3 inflammasome and CD4+ T lymphocyte differentiation. These results provide a novel strategy to block the arsenic-induced impairment of neuroimmune responses.
Collapse
Affiliation(s)
- Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Xinkang Hu
- Clinical Medicine ("5+3" integrated Training), The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
11
|
Sun Y, Xu L, Cai Q, Wang M, Wang X, Wang S, Ni Z. Research progress on the pharmacological effects of matrine. Front Neurosci 2022; 16:977374. [PMID: 36110092 PMCID: PMC9469773 DOI: 10.3389/fnins.2022.977374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Matrine possesses anti-cancer properties, as well as the prevention and treatment of allergic asthma, and protection against cerebral ischemia-reperfusion injury. Its mechanism of action may be (1) regulation of cancer cell invasion, migration, proliferation, and cell cycle to inhibit tumor growth; (2) reduction of oxidized low-density lipoprotein and advanced glycation end products from the source by exerting anti-inflammatory and antioxidant effects; (3) protection of brain damage and cortical neurons by regulating apoptosis; (4) restoration of the intestinal barrier and regulation of the intestinal microbiota. This article aims to explore matrine’s therapeutic potential by summarizing comprehensive information on matrine’s pharmacology, toxicity, and bioavailability.
Collapse
Affiliation(s)
- Yanan Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Lu Xu
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Qihan Cai
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Mengmeng Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Xinliang Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Siming Wang
- School of Basic Medical Science, Hebei University, Baoding, China
- *Correspondence: Siming Wang,
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, Baoding, China
- Clinical Medical College, Hebei University, Baoding, China
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, China
- *Correspondence: Siming Wang,
| |
Collapse
|
12
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
14
|
Regulation of Th17/Treg Balance by 27-Hydroxycholesterol and 24S-Hydroxycholesterol Correlates with Learning and Memory Ability in Mice. Int J Mol Sci 2022; 23:ijms23084370. [PMID: 35457188 PMCID: PMC9028251 DOI: 10.3390/ijms23084370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of cholesterol metabolism and its oxidative products-oxysterols-in the brain is known to be associated with neurodegenerative diseases. It is well-known that 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC) are the main oxysterols contributing to the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanism of how 27-OHC and 24S-OHC cause cognitive decline remains unclear. To verify whether 27-OHC and 24S-OHC affect learning and memory by regulating immune responses, C57BL/6J mice were subcutaneously injected with saline, 27-OHC, 24S-OHC, 27-OHC+24S-OHC for 21 days. The oxysterols level and expression level of related metabolic enzymes, as well as the immunomodulatory factors were measured. Our results indicated that 27-OHC-treated mice showed worse learning and memory ability and higher immune responses, but lower expression level of interleukin-10 (IL-10) and interferon (IFN-λ2) compared with saline-treated mice, while 24S-OHC mice performed better in the Morris water maze test than control mice. No obvious morphological lesion was observed in these 24S-OHC-treated mice. Moreover, the expression level of interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein 3α (MIP-3α) were significantly decreased after 24S-OHC treatment. Notably, compared with 27-OHC group, mice treated with 27-OHC+24S-OHC showed higher brain 24S-OHC level, accompanied by increased CYP46A1 expression level while decreased CYP7B1, retinoic acid-related orphan receptor gamma t (RORγt) and IL-17A expression level. In conclusion, our study indicated that 27-OHC is involved in regulating the expression of RORγt, disturbing Th17/Treg balance-related immune responses which may be associated with the learning and memory impairment in mice. In contrast, 24S-OHC is neuroprotective and attenuates the neurotoxicity of 27-OHC.
Collapse
|
15
|
Zhang Y, Song S, Li H, Wang X, Song L, Xue J. Polysaccharide from Ganoderma lucidum alleviates cognitive impairment in a mouse model of chronic cerebral hypoperfusion by regulating CD4 +CD25 +Foxp3 + regulatory T cells. Food Funct 2022; 13:1941-1952. [PMID: 35088782 DOI: 10.1039/d1fo03698j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ganoderma lucidum (G. lucidum) is a kind of edible and medicinal mushroom. G. lucidum polysaccharide-1 (GLP-1) is one of the polysaccharides purified from crude GLP. Chronic cerebral hypoperfusion (CCH) as the common pathological basis of various forms of dementia is an important cause of cognitive impairment. In this study, a step-down test was used to evaluate the cognitive ability of CCH mice. Flow cytometry was used to detect the proportion of CD4+CD25+Foxp3+ regulatory T (Foxp3+Treg) cells. ELISA analysis and western blot analysis were used to detect the transforming growth factor-β1 (TGF-β1) and Interleukin-10 (IL-10) levels that Foxp3+Treg cells secreted. Metabolomic analysis based on gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of GLP-1 on dysfunctional metabolism caused by inflammation. Results indicate that GLP-1 exhibited an alleviating cognitive impairment effect on CCH mice. The mechanism was related to GLP-1 by increasing Foxp3+Treg cell levels to increase levels of IL-10 and TGF-β1 and regulate abnormal energy metabolism. These findings could provide preliminary results to exploit G. lucidum as a health care product or functional food for the adjuvant therapy of cognitive impairment of CCH.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Shuang Song
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Haitao Li
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Lianlian Song
- Department of Pathology, Traditional Chinese Medicine Academy of Sciences of Jilin Province, Changchun 130021, PR China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
16
|
Zhang R, Liao W, Wu K, Hua L, Wu M, Li C, Cai F. Matrine alleviates spatial learning and memory impairment in diabetic mice by inhibiting endoplasmic reticulum stress and through modulation of PK2/PKRs pathway. Neurochem Int 2022; 154:105289. [PMID: 35074478 DOI: 10.1016/j.neuint.2022.105289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Clinical and epidemiological studies indicate that diabetic cognitive impairment often occurs in diabetes mellitus patients. Matrine (Mat), an active component of Sophora flavescens Ait root extracts, has widely pharmacological activities including anti-tumor, anti-diabetes, cardioprotective and neuroprotective effects. The present study was designed to elucidate the possibly neuroprotective effects of Mat against diabetic spatial learning and memory impairment caused by high-fat diet and streptozotocin injection in mice. The results showed that Mat treatment significantly ameliorated fasting blood glucose level, impaired glucose tolerance, and lipid metabolism disorder in diabetic mice. In addition, diabetic mice exhibited spatial learning and memory impairment in the Morris water maze test, which could be attenuated by Mat treatment. Moreover, administration of Mat remarkably alleviated histological damage in diabetic hippocampus. Also, further investigations showed that Mat treatment abated endoplasmic reticulum stress induced hippocampal ultra-structure injury as evidenced by increasing the numbers of rough endoplasmic reticulum and mitochondria, as well as down-regulating endoplasmic reticulum stress related protein levels (GRP78, CHOP, ATF6 and Caspase-12). Furthermore, administration of Mat enhanced hippocampal protein expressions of PK2, PKR1 and PKR2, which decreased significantly in diabetic mice. Collectively, these findings suggested that Mat could ameliorate diabetes-induced spatial learning and memory impairment, possibly by alleviating ER stress, and partly through modulation of PK2/PKRs pathway.
Collapse
Affiliation(s)
- Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wenli Liao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; Basic Medical School, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ke Wu
- School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Liangliang Hua
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Mengyu Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cairong Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; Clinical Medical School, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
17
|
Zhang Y, Wang X, Yang X, Yang X, Xue J, Yang Y. Ganoderic Acid A To Alleviate Neuroinflammation of Alzheimer's Disease in Mice by Regulating the Imbalance of the Th17/Tregs Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14204-14214. [PMID: 34798773 DOI: 10.1021/acs.jafc.1c06304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ganoderic acid A (GAA) is a kind of lanostane-type triterpenoid isolated from Ganoderma lucidum. Imbalance of the Th17/Tregs axis exists in the progress of neuroinflammation of Alzheimer's disease (AD). In this study, the alleviating neuroinflammatory effect of GAA on d-galactose mice was studied from the aspect of regulating the imbalance of the Th17/Tregs axis. The Morris water maze test was used to evaluate the cognitive ability of AD mice. Flow cytometry was used to detect the percentages of IL-17A, IL-17F, IL-21, IL-22, and CD4+CD25+Foxp3+ in peripheral blood. Transmission electron microscopy was used to assess the cerebral mitochondrial ultrastructure. Metabolomic analysis based on gas chromatography-mass spectrometry was used to evaluate the mitochondrial dysfunction metabolism. Western blot analysis was used to detect the protein expressions of cytokines secreted by Th17 cells and Treg cells in the brain. As the results show, GAA has an alleviating neuroinflammatory effect on AD mice via regulating the imbalance of the Th17/Tregs axis. The potential mechanism was related to inhibition of the JAK/STAT signaling pathway induced by Th17 cells and enhancement of the mitochondrial oxidative phosphorylation by regulating Treg cells, thereby improving mitochondrial dysfunction of AD mice.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, P. R. China
| | - Xiudong Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yanjun Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| |
Collapse
|
18
|
Hsu WC, Ramesh S, Shibu MA, Chen MC, Wang TF, Day CH, Chen RJ, Padma VV, Li CC, Tseng YC, Huang CY. Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153442. [PMID: 33412494 DOI: 10.1016/j.phymed.2020.153442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemoresistance remains the main obstacle in hepatocellular carcinoma (HCC) therapy. Despite significant advances in HCC therapy, HCC still has a poor prognosis. Thus, there is an urgent need to identify a treatment target to reverse HCC chemotherapy resistance. Platycodon grandiflorus (PG) is a perennial herb that has been used as food and traditional Chinese medicine for thousands of years in Northeast Asia. Platycodin D (PD), a main active triterpenoid saponin found in the root of PG, has been reported to possess anticancer properties in several cancer cell lines, including HCC; however, the reversal effect of this molecule on HCC chemoresistance remains largely unknown. PURPOSE This study aimed to investigate the role and the mechanism of PD-mediated reversal of the histone deacetylase inhibitor (HDACi) resistance in HCC cells. METHODS Human HCC cells (HA22T) and HDACi-resistant (HDACi-R) cells were used. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Combination index was used to calculate the synergism potential. Expression of ERK1/2 (total/phospho), cofilin-1 (total/phospho) and apoptosis-related protein was determined using western blotting. Mitochondrial membrane potential was assessed using the JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide) probe. Apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Mitochondrial reactive oxygen species generation was measured using the MitoSOX Red fluorescent probe. RESULTS We found that PD treatment inhibited cell viability both in HA22T HCC and HDACi-R cells. Inhibition of ERK1/2 by PD98059 could reverse drug resistance in HDACi-R cells treated with PD98059 and PD. Nevertheless, pre-treatment with U46619, an ERK1/2 activator, rescued PD-induced apoptosis by decreasing levels of apoptosis-related proteins in HCC cells. The combined treatment of PD with apicidin a powerful HDACi, dramatically enhanced the apoptotic effect in HDACi-R cells. CONCLUSION For the first time, we showed that PD reversed HDACi resistance in HCC by repressing ERK1/2-mediated cofilin-1 phosphorylation. Thus, PD can potentially be a treatment target to reverse HCC chemotherapy resistance in future therapeutic trials.
Collapse
Affiliation(s)
- Wei-Chung Hsu
- Department of Radiation Oncology, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan; Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Microbiology, PRIST Deemed to be University, Thanjavur 614 904, Tamil Nadu, India
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Chen Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
19
|
Yang L, Liu Y, Wang Y, Li J, Liu N. Azeliragon ameliorates Alzheimer's disease via the Janus tyrosine kinase and signal transducer and activator of transcription signaling pathway. Clinics (Sao Paulo) 2021; 76:e2348. [PMID: 33681944 PMCID: PMC7920406 DOI: 10.6061/clinics/2021/e2348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES TTP488, an antagonist of the receptor for advanced glycation end-products, was evaluated as a potential treatment for patients with mild-to-moderate Alzheimer's disease (AD). However, the mechanism underlying the protective action of TTP488 against AD has not yet been fully explored. METHODS Healthy male rats were exposed to aberrant amyloid β (Aβ) 1-42. Lipopolysaccharide (LPS) and the NOD-like receptor family pyrin domain containing 1 (NLRP1) overexpression lentivirus were injected to activate the NLRP1 inflammasome and exacerbate AD. TTP488 was administered to reverse AD injury. Finally, tofacitinib and fludarabine were used to inhibit the activity of Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) to prove the relationship between the JAK/STAT signaling pathway and TTP488. RESULTS LPS and NLRP1 overexpression significantly increased the NLRP1 levels, reduced neurological function, and aggravated neuronal damage, as demonstrated by the impact latency time of, time spent by, and length of the platform covered by, the mice in the Morris water maze assay, Nissl staining, and immunofluorescence staining in rats with AD. CONCLUSIONS TTP488 administration successfully reduced AD injury and reversed the aforementioned processes. Additionally, tofacitinib and fludarabine administration could further reverse AD injury after the TTP488 intervention. These results suggest a new potential mechanism underlying the TTP488-mediated alleviation of AD injury.
Collapse
Affiliation(s)
- Lijuan Yang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Yepei Liu
- Medical Image Center, Xingtai City Fifth Hospital, Xingtai, Hebei 054008, China
| | - Yuanyuan Wang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Junsheng Li
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| | - Na Liu
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| |
Collapse
|
20
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
21
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol 2020; 11:01067. [PMID: 33041782 PMCID: PMC7526649 DOI: 10.3389/fphar.2020.01067] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Zhang H, Wei M, Sun Q, Yang T, Lu X, Feng X, Song M, Cui L, Fan H. Lycopene ameliorates chronic stress-induced hippocampal injury and subsequent learning and memory dysfunction through inhibiting ROS/JNK signaling pathway in rats. Food Chem Toxicol 2020; 145:111688. [PMID: 32810585 DOI: 10.1016/j.fct.2020.111688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
The natural carotenoid lycopene (LYC) has strong antioxidant and neuroprotective capacities. This study investigated the effects and mechanisms of LYC on chronic stress-induced hippocampal lesions and learning and memory dysfunction. Rats were administered LYC and/or chronic restraint stress (CRS) for 21 days. Morris water maze results demonstrated that LYC prevented CRS-induced learning and memory dysfunction. Histopathological staining and transmission electron microscopy observation revealed that LYC ameliorated CRS-induced hippocampal microstructural and ultrastructural damage. Furthermore, LYC alleviated CRS-induced oxidative stress by reducing reactive oxygen species (ROS) production and enhancing antioxidant enzyme activities. LYC also improved CRS-induced hippocampal mitochondrial dysfunction by recovering mitochondrial membrane potential, and complex I (NADH dehydrogenase) and II (succinate dehydrogenase) activities. Moreover, LYC reduced CRS-induced apoptosis via the mitochondrial apoptotic pathway, and decreased the number of terminal deoxynucleotidyl transferase dUTP nick-end-labeled positive cells. Additionally, western blot analysis demonstrated that LYC inhibited CRS-induced activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Correlation analysis indicated that ROS levels, JNK activation, and the mitochondrial apoptotic pathway were positively correlated. Further investigation of the underlying mechanisms revealed that the ROS scavenger N-acetyl-l-cysteine inhibited CRS-induced JNK activation. Furthermore, the JNK inhibitor SP600125 relieved CRS-induced hippocampal mitochondrial dysfunction, apoptosis via the mitochondrial apoptotic pathway, and learning and memory dysfunction. Together, these results suggest that LYC alleviates hippocampal oxidative stress, mitochondrial dysfunction, and apoptosis by inhibiting the ROS/JNK signaling pathway, thereby improving CRS-induced hippocampal injury and learning and memory dysfunction. This study provides a theoretical basis and new therapeutic strategies for the application of LYC to relieve chronic stress encephalopathy.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mian Wei
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiangyu Lu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiujing Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Miao Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Cui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Fischer M, Ruhnau J, Schulze J, Obst D, Flöel A, Vogelgesang A. Spermine and spermidine modulate T-cell function in older adults with and without cognitive decline ex vivo. Aging (Albany NY) 2020; 12:13716-13739. [PMID: 32603310 PMCID: PMC7377836 DOI: 10.18632/aging.103527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023]
Abstract
The global increase in neurodegenerative disorders is one of the most crucial public health issues. Oral polyamine intake was shown to improve memory performance which is thought to be mediated at least in part via increased autophagy induced in brain cells. In Alzheimer’s Disease, T-cells were identified as important mediators of disease pathology. Since autophagy is a central regulator of cell activation and cytokine production, we investigated the influence of polyamines on T-cell activation, autophagy, and the release of Th1/Th2 cytokines from blood samples of patients (n=22) with cognitive impairment or dementia in comparison to healthy controls (n=12) ex vivo. We found that spermine downregulated all investigated cytokines in a dose-dependent manner. Spermidine led to an upregulation of some cytokines for lower dosages, while high dosages downregulated all cytokines apart from upregulated IL-17A. Autophagy and T-cell activation increased in a dose-dependent manner by incubation with either polyamine. Although effects in patients were seen in lower concentrations, alterations were similar to controls. We provide novel evidence that supplementation of polyamines alters the function of T-cells. Given their important role in dementia, these data indicate a possible mechanism by which polyamines would help to prevent structural and cognitive decline in aging.
Collapse
Affiliation(s)
| | - Johanna Ruhnau
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Juliane Schulze
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Daniela Obst
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
| | | |
Collapse
|
25
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front Pharmacol 2020; 11:588. [PMID: 32477114 PMCID: PMC7232545 DOI: 10.3389/fphar.2020.00588] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Matrine is an alkaloid isolated from the traditional Chinese medicine Sophora flavescens Aiton. At present, a large number of studies have proved that matrine has an anticancer effect can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, and inhibit cancer cell metastasis. It also has the effect of reversing anticancer drug resistance and reducing the toxicity of anticancer drugs. In addition, studies have reported that matrine has a therapeutic effect on Alzheimer's syndrome, encephalomyelitis, asthma, myocardial ischemia, rheumatoid arthritis, osteoporosis, and the like, and its mechanism is mainly related to the inhibition of inflammatory response and apoptosis. Its treatable disease spectrum spans multiple systems such as the nervous system, circulatory system, and immune system. The antidisease effect and mechanism of matrine are diverse, so it has high research value. This review summarizes recent studies on the pharmacological mechanism of matrine, with a view to providing reference for subsequent research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Yang B, Li H, Zhang T, Wang Z, Li H, Zhang Y. Nonlinear and mixed inhibitory effect of matrine on the cytotoxicity of oligomeric amyloid-β protein. Neurochem Int 2020; 137:104746. [PMID: 32325190 DOI: 10.1016/j.neuint.2020.104746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
The formation of amyloid β-protein (1-42) (Aβ42) oligomers and Aβ42 oligomer cytotoxicity are two defining characteristics of the etiology of Alzheimer's disease (AD). In this study, we found that matrine (Mat) could maintain or even enhance the cytotrophic effect of Aβ42 monomers by inhibiting their aggregation and by working in a manner similar to synergy with Aβ42 monomers. Moreover, Mat could also exert a cytoprotective effect by actively promoting the disaggregation of immature Aβ42 oligomers in a concentration-dependent manner. Although Mat at intermediate concentrations (1-50 μM) exhibited both cytotrophic and cytoprotective effects on SH-SY5Y cells, Mat at higher concentrations (100 μM) only exhibited a cytoprotective effect. Molecular docking studies reveal that these differences are a result of the different interactions between Mat and Aβ42 oligomers that occur at different molecular ratios. Our results support the hypothesis that there may be a Mat-like metabolite in the human brain that acts as a molecular chaperone for Aβ42 monomers. A deficiency in this chaperone would result in the gradual aggregation of Aβ42 monomers, and eventually, formation of toxic Aβ42 oligomers. In addition, reduction or clearance of Aβ42 aggregates or deposits and inhibition or elimination of the toxicity of oligomeric Aβ42, were not always directly correlated. Finally, the site(s) responsible for cytotoxicity in Aβ42 oligomers may be located in the integrated region of the N-terminal fragments of Aβ42 chains. This study provides valuable insights into the mechanisms involved in the development of natural drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Hongli Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhenxing Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; School of Life Science, Jilin University, Changchun 130012, China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
28
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
29
|
Ham HJ, Han JH, Lee YS, Kim KC, Yun J, Kang SK, Park Y, Kim SH, Hong JT. Bee Venom Soluble Phospholipase A2 Exerts Neuroprotective Effects in a Lipopolysaccharide-Induced Mouse Model of Alzheimer's Disease via Inhibition of Nuclear Factor-Kappa B. Front Aging Neurosci 2019; 11:287. [PMID: 31736738 PMCID: PMC6839038 DOI: 10.3389/fnagi.2019.00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/07/2019] [Indexed: 01/04/2023] Open
Abstract
Neuroinflammation is important in the pathogenesis and development of Alzheimer's disease (AD). In the AD brain, microglial activation and upregulation of pro-inflammatory mediators both induce amyloid beta (Aβ) accumulation. Regulatory T cells (Tregs) and nuclear factor-kappa B (NF-κB) signaling have been implicated in AD development through their effects on neuroinflammation and microglial activation. The bee venom soluble phospholipase A2 (bv-sPLA2) enzyme is known to exert anti-inflammatory and anti-immune effects. Here, we investigated the inhibitory effects of bv-sPLA2 on memory deficiency in a lipopolysaccharide (LPS)-induced mouse model of AD. We examined whether bv-sPLA2 (0.02, 0.2, and 2 mg/kg by i.p. injection three times for 1 week) could inhibit neuroinflammation and memory impairment in LPS-treated mice (250 μg/kg by i.p. injection daily for 1 week). We also assessed the effects of bv-sPLA2 administration (0.01, 0.1, and 1 μg/ml) on LPS (1 μg/ml)-treated microglial BV-2 cells. In the LPS-injected mouse brain, sPLA2 treatment rescued memory dysfunction and decreased Aβ levels, through the downregulation of amyloidogenic proteins, and decreased the expression of inflammatory proteins and pro-inflammatory cytokines. Moreover, the LPS-mediated increase in inflammatory protein expression was attenuated bv-sPLA2 treatment in BV-2 cells. Treatment with bv-sPLA2 also downregulated signaling by NF-κB, which is considered to be an important factor in the regulation of neuroinflammatory and amyloidogenic responses, both in vivo and in vitro. Additionally, co-treatment with NF-κB (5 μM) and bv-sPLA2 (0.1 μg/ml) exerted more marked anti-inflammatory effects, compared to bv-sPLA2 treatment alone. These results indicate that bv-sPLA2 inhibits LPS-induced neuroinflammation and amyloidogenesis via inhibition of NF-κB.
Collapse
Affiliation(s)
- Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Ji Hye Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Ki Cheon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Shin Kook Kang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - YangSu Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Se Hyun Kim
- INISTst Company Limited, Gyeonggi-do, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| |
Collapse
|
30
|
Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Front Immunol 2019; 10:2171. [PMID: 31572381 PMCID: PMC6751344 DOI: 10.3389/fimmu.2019.02171] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogenic mechanisms of T cells in several central nervous system (CNS) disorders are well-established. However, more recent studies have uncovered compelling beneficial roles of T cells in neurological diseases, ranging from tissue protection to regeneration. These divergent functions arise due to the diversity of T cell subsets, particularly CD4+ T cells. Here, we review the beneficial impact of T cell subsets in a range of neuroinflammatory and neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and CNS trauma. Both T cell-secreted mediators and direct cell contact-dependent mechanisms deliver neuroprotective, neuroregenerative and immunomodulatory signals in these settings. Understanding the molecular details of these beneficial T cell mechanisms will provide novel targets for therapeutic exploitation that can be applied to a range of neurological disorders.
Collapse
Affiliation(s)
- Frances L Evans
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
31
|
Inhibition of protein phosphatase 1 stimulates noncanonical ER stress eIF2α activation to enhance fisetin-induced chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Cancers (Basel) 2019; 11:cancers11070918. [PMID: 31261976 PMCID: PMC6678694 DOI: 10.3390/cancers11070918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common fatal type of malignant tumor that has highly metastatic and recurrent properties. Fisetin is a natural flavonoid found in various vegetables and fruits which exhibits anti-cancer and anti-inflammatory properties, as well as other effects. Thus, we hypothesized that fisetin can act as an adjuvant therapy in cancer or drug-resistant cancer cells, and further investigated the molecular mechanisms underlying the development of drug-resistance in HCC cells. We found that fisetin effectively inhibited the cell viability of not only parental cells but also histone deacetylase inhibitors-resistant (HDACis-R) cells and enhanced the chemosensitivity of HCC cells. Interestingly, fisetin did not induce cell apoptosis through the activation of the endoplasmic reticulum (ER) stress sensor of protein kinase R (PKR)-like endoplasmic reticulum kinase, but rather through the non-canonical pathway of the protein phosphatase 1 (PP1)-mediated suppression of eIF2α phosphorylation. Moreover, fisetin-induced cell apoptosis was reversed by treatment with PP1 activator or eIF2α siRNA in HCC cells. Based on these observations, we suggest that PP1-eIF2α pathways are significantly involved in the effect of fisetin on HCC apoptosis. Thus, fisetin may act as a novel anticancer drug and new chemotherapy adjuvant which can improve the efficacy of chemotherapeutic agents and diminish their side-effects.
Collapse
|
32
|
Sun L, Ju T, Wang T, Zhang L, Ding F, Zhang Y, An R, Sun Y, Li Y, Lu Y, Zhang X, Chi L. Decreased Netrin-1 and Correlated Th17/Tregs Balance Disorder in Aβ 1-42 Induced Alzheimer's Disease Model Rats. Front Aging Neurosci 2019; 11:124. [PMID: 31191297 PMCID: PMC6548067 DOI: 10.3389/fnagi.2019.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023] Open
Abstract
There is increasing evidence indicating that inflammation represents a key pathological component of Alzheimer’s disease (AD). A possible factor that may contribute to this process is netrin-1, a neuronal guidance molecule. This molecule has been shown to exert an unexpected immunomodulatory function. However, the potential changes and correlations of netrin-1 with T helper 17/regulatory T cells (Th17/Tregs) as related to inflammation in AD has yet to be examined. In this study, netrin-1 and Th17/Tregs balance were investigated, and the relationship among netrin-1, Th17/Tregs and cognitive function were analyzed in a rat model of AD. In this model, a bilateral intracerebroventricular administration of Amyloid β1-42 (Aβ1–42) was used to produce spatial learning and memory deficits, as well as increased neuronal apoptosis, which were detected 7 days after injection for AD7d group and 14 days for AD14d group. Netrin-1 concentrations were significantly down regulated in both serum and cerebrospinal fluid (CSF) of these AD rats, effects which were strongly correlated with cognitive deficits. Increased levels of interleukin (IL)-17 and deceased IL-10 were observed in both the circulation and CSF and were also correlated with the percent of time spent in the target quadrant of AD in these rats. These changes resulted in netrin-1 concentrations being negatively correlated with IL-17 but positively correlated with IL-10 concentrations in the serum and CSF. We also found that the Th17/Tregs balance was disrupted in these AD rats. Collectively, these findings reveal that the reduction in netrin-1 and the correlated disruption of Th17/Tregs balance in AD rats may diminish the immunosuppressive effect of netrin-1 on Th17/Tregs in AD pathogenesis.
Collapse
Affiliation(s)
- Lina Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Ju
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Ding
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ran An
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - You Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yidan Lu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lijun Chi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Zhu T, Zhang F, Li H, He Y, Zhang G, Huang N, Guo M, Li X. Long-term icariin treatment ameliorates cognitive deficits via CD4 + T cell-mediated immuno-inflammatory responses in APP/PS1 mice. Clin Interv Aging 2019; 14:817-826. [PMID: 31190768 PMCID: PMC6511656 DOI: 10.2147/cia.s208068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is the most common neurodegenerative disorder that also involves neuroinflammation in addition to many other features. Icariin (ICA) as one of the active ingredients of Chinese herbal medicine has the immunomodulating function. This study aimed to investigate the immunotherapeutic potential of ICA on AD. Methods: APP/PS1 mice and wild type C57BL/6 mice were subjected to orally ICA administration (60 mg/kg/d) for 8 months. Then, the ethological and biochemical experiments, such as Morris water maze assay, Aβ ELISA, blood T cell flow cytometry, and plasma and brain cytokines array, were conducted to evaluate the effects of ICA administration. Results: ICA significantly improved spatial learning and memory retention in APP/PS1 mice. Long-term application of ICA could also reduce hippocampus Aβ deposition, modulate the differentiation of CD4+ T cells, and modulate the release of inflammatory cytokines in plasma and brain tissue. Conclusion: ICA shows the neuroprotective effects via modulating the CD4+ T lymphocyte-related immuno-inflammatory responses in APP/PS1 mice and may be a promising drug against AD progression.
Collapse
Affiliation(s)
- Tianrui Zhu
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Heng Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Yi He
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710021, People's Republic of China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Nana Huang
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Mingming Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| |
Collapse
|
34
|
Cristiano C, Volpicelli F, Lippiello P, Buono B, Raucci F, Piccolo M, Iqbal AJ, Irace C, Miniaci MC, Perrone Capano C, Calignano A, Mascolo N, Maione F. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment. Br J Pharmacol 2019; 176:3544-3557. [PMID: 30673121 DOI: 10.1111/bph.14586] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a common neurodegenerative disease characterized by a neuroinflammatory state, and to date, there is no cure and its treatment represents a large unmet clinical need. The involvement of Th17 cells in the pathogenesis of AD-related neuroinflammation has been reported in several studies. However, the role of the cytokine, IL-17 has not been well addressed. Herein, we investigate the effects of IL-17 neutralizing antibody (IL-17Ab) injected by i.c.v. or intranasal (IN) routes on amyloid-β (Aβ)-induced neuroinflammation and memory impairment in mice. EXPERIMENTAL APPROACH Aβ1-42 was injected into cerebral ventricles of adult CD1 mice. These mice received IL-17Ab via i.c.v. either at 1 h prior to Aβ1-42 injection or IN 5 and 12 days after Aβ1-42 injection. After 7 and 14 days of Aβ1-42 administration, we evaluated olfactory, spatial and working memory and performed biochemical analyses on whole brain and specific brain areas. KEY RESULTS Pretreatment with IL-17Ab, given, i.c.v., markedly reduced Aβ1-42 -induced neurodegeneration, improved memory function, and prevented the increase of pro-inflammatory mediators in a dose-dependent manner at 7 and 14 days. Similarly, the double IN administration of IL-17Ab after Aβ1-42 injection reduced neurodegeneration, memory decline, and the levels of proinflammatory mediators and cytokines. CONCLUSION AND IMPLICATIONS These findings suggest that the IL-17Ab reduced neuroinflammation and behavioural symptoms induced by Aβ. The efficacy of IL-17Ab IN administration in reducing Aβ1-42 neurodegeneration points to a possible future therapeutic approach in patients with AD. LINKED ARTICLES This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati Traverso," Developmental Biology and Genetics division, CNR, Naples, Italy
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Benedetta Buono
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carla Perrone Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati Traverso," Developmental Biology and Genetics division, CNR, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:147-181. [DOI: 10.1016/bs.pmbts.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Wu Z, You Z, Chen P, Chen C, Chen F, Shen J, Xu H. Matrine Exerts Antidepressant-Like Effects on Mice: Role of the Hippocampal PI3K/Akt/mTOR Signaling. Int J Neuropsychopharmacol 2018; 21:764-776. [PMID: 29668939 PMCID: PMC6070064 DOI: 10.1093/ijnp/pyy028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Current antidepressants in clinical use always take weeks or even months to exert full therapeutic effects, and sometimes have serious side effects. Thus, it is very necessary to develop novel antidepressants with better efficacy and fewer adverse effects. The present study focused on investigating the antidepressant potential of matrine and its possible mechanisms of action. METHODS The forced swim test, tail suspension test, and chronic unpredictable mild stress model of depression were used to reveal the antidepressant-like effects of matrine on mice. Western blotting, immunohistochemistry, and lentivirus were further used together to explore the antidepressant mechanism of matrine. RESULTS It was found that matrine exhibited significant antidepressant actions in the forced swim test and tail suspension test without affecting the locomotor activity of mice. Chronic matrine administration fully reversed the chronic unpredictable mild stress-induced depressive-like symptoms in forced swim test, tail suspension test, and sucrose preference test. After that, western blotting analysis revealed that chronic matrine treatment restored the decreasing effects of chronic unpredictable mild stress on the PI3K/Akt/mammalian target of rapamycin signaling in hippocampus, but not prefrontal cortex. Furthermore, pharmacological and genetic blockade of the PI3K/Akt/mammalian target of rapamycin signaling in hippocampus abolished the antidepressant actions of matrine on mice. CONCLUSIONS Taken together, matrine produces antidepressant-like effects on mice via promoting the hippocampal PI3K/Akt/ mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Neurosurgery, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Zhengchen You
- Department of Burns and Plastic Surgery, Taizhou People’s Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Peng Chen
- Department of Neurosurgery, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Cheng Chen
- Department of Neurosurgery, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Fei Chen
- Department of Neurosurgery, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Xu
- Department of Neurosurgery, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China,Correspondence: Hui Xu, MD, Department of Neurosurgery, The Sixth People’s Hospital of Nantong, No. 500 Yonghe Road, Nantong 226011, Jiangsu, China ()
| |
Collapse
|
37
|
Ganji A, Salehi I, Nazari M, Taheri M, Komaki A. Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 2017; 32:1255-1265. [PMID: 28536937 DOI: 10.1007/s11011-017-0022-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
A high-fat diet (HFD) causes deficits in learning and memory by increasing oxidative stress. Antioxidants are known to improve learning and memory. Since Hypericum scabrum (H. scabrum) extract is rich in antioxidants, the aim of this study was to investigate the effects of the administration of H. scabrum extract on passive avoidance learning (PAL), novel object recognition (NOR), and locomotor activity in male rats on a HFD. Fifty-four male Wistar rats (weighing 220 ± 10 g) were divided into the following six groups: (1) Control (standard diet), (2) Ext100 (standard diet supplemented with 100 mg/kg extract once/day), (3) Ext300 (standard diet supplemented with 300 mg/kg extract once/day), (4) HFD (high-fat diet), (5) HFD + Ext100, and (6) HFD + Ext300. Rats in these groups were maintained on their respective diets for 3 months. In the PAL test, the step-through latencies in the retention test (STLr) were significantly higher in the HFD + extract group than in the HFD group. The time spent in the dark compartment (TDC) was significantly lesser and the time spent in exploring the novel object was significantly greater in the HFD + extract group than in the HFD group. In the HFD-fed rats, the activity of catalase had significantly decreased, and level of malondialdehyde had significantly increased; H. scabrum extract administration significantly reversed these changes. In conclusion, these results suggested that the administration of H. scabrum extract and its strong antioxidant properties enhanced learning and memory and reversed the memory impairment induced by chronic HFD consumption.
Collapse
Affiliation(s)
- Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Kurdistan Institute of Education, Kurdistan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Nazari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
38
|
Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism. Mol Neurobiol 2016; 54:5201-5212. [DOI: 10.1007/s12035-016-0066-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
|