1
|
Derman ID, Rivera T, Garriga Cerda L, Singh YP, Saini S, Abaci HE, Ozbolat IT. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2025; 7:012009. [PMID: 39569402 PMCID: PMC11574952 DOI: 10.1088/2631-7990/ad878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
| | - Laura Garriga Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Shweta Saini
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
- Materials Research Institute, Penn State University, University Park, PA, United States of America
- Cancer Institute, Penn State University, University Park, PA, United States of America
- Neurosurgery Department, Penn State University, University Park, PA, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Moghadam Farid S, Moradi Dehaghi S, Iraji A, Mahdavi M, Saeedi M. Synthesis, biological evaluations, and in silico assessments of phenylamino quinazolinones as tyrosinase inhibitors. Sci Rep 2025; 15:846. [PMID: 39755701 DOI: 10.1038/s41598-024-81328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC50 values of 17.02 ± 1.66 µM, compared to kojic acid as the positive control with an IC50 value of 27.56 ± 1.27 µM. Antioxidant assessment of 9r compounds showed 24.67% inhibition at 100 µM. Molecular docking studies of these derivatives were conducted, revealing their proper fitting within the enzyme's active site. Additionally, density functional theory analysis was performed on the potent derivatives, indicating their stability and reactivity. Notably, the highest values of the energy gap were observed in 9r and 9s derivatives, underscoring their potential efficacy. Further kinetic studies of compound 9r, identified as the most potent derivative, demonstrated a competitive mode of inhibition with a Ki value of 14.87 µM. Molecular dynamics simulations of the 9r-tyrosinase complex revealed stability over time, with a reduction in critical residual fluctuation during the simulation. Overall, these findings contribute to a deeper understanding of the potential therapeutic value of these derivatives as tyrosinase inhibitors.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Aida Iraji
- Department of Persian Medicine, Research Center for Traditional Medicine and History of Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Department of Persian Medicine, Research Center for Traditional Medicine and History of Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Schall MK, Smith GD, Blazer VS, Walsh HL, Wagner T. Factors Influencing the Prevalence of Hyperpigmented Melanistic Lesions in Smallmouth Bass Micropterus dolomieu in the Susquehanna River Basin, Pennsylvania. JOURNAL OF FISH DISEASES 2025; 48:e14033. [PMID: 39440689 DOI: 10.1111/jfd.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Hyperpigmented melanistic lesions (HPMLs) are a visual anomaly documented on the skin of smallmouth bass Micropterus dolomieu in the Susquehanna River Basin, Pennsylvania and in numerous other geographical locations. Currently, there is a lack of information on environmental and fish characteristics that may influence the prevalence of HPMLs associated with a recently described Adomavirus. The goal of this study was to understand potential drivers associated with HPMLs in socioeconomically and ecologically important riverine smallmouth bass populations. A total of 16,220 smallmouth bass were collected and examined for HPMLs between 2012 and 2022 in the Susquehanna River Basin. Overall, HPMLs were documented on 2.9% of fish collected. The interaction between temperature and fish size suggested differing relationships between shorter and longer fish with respect to temperature. Predicted probability of HPML prevalence ranged from 1.1% (95% CI = 0.3, 3.2) at 4°C to 0.01% (CI = 0.00, 0.04) at 26°C for an age-0 (125 mm) fish. In contrast, predicted probability of HPML prevalence ranged from 10.5% (95% CI = 5.8, 18.9) at 4°C to 0.8% (CI = 0.4, 1.5) at 26°C for an adult (322 mm) fish. Overall, HPMLs were more common in longer fish during cooler temperature periods which also corresponds to key life history periods for smallmouth bass (e.g., pre-spawn and overwintering) and could represent different exposure histories for juvenile and adult fish.
Collapse
Affiliation(s)
- Megan K Schall
- Biological Sciences, Penn State Hazleton, 76 University Drive, Hazleton, Pennsylvania, USA
| | - Geoffrey D Smith
- Pennsylvania Fish and Boat Commission, Division of Fisheries Management, Bellefonte, Pennsylvania, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, West Virginia, USA
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, West Virginia, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Alanazi MM, Alsanea S, Kumar A, Alehaideb Z, Matou-Nasri S, AlGhamdi KM. Modulatory effects of oxytocin on normal human cultured melanocyte proliferation, migration, and melanogenesis. Tissue Cell 2024; 91:102579. [PMID: 39388927 DOI: 10.1016/j.tice.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Melanocytes are specialized melanin-producing neural crest-derived cells. Melanocyte proliferation and melanin production (i.e., melanogenesis) are crucial for determining skin color. Disruption of these processes can cause pigmentary skin disorders, including hypo-pigmentary disorders such as vitiligo and hyper-pigmentary disorders such as melasma. Understanding these processes is important for discovering new targets to tackle these skin disorders. Therefore, this study aimed to investigate the effects of oxytocin (OXT) on melanocyte functions. Normal Human Cultured Melanocytes (NHCM) were treated with different OXT doses to investigate OXT effects and mechanisms on NHCM proliferation, migration, and on melanogenesis. OXT significantly increased NHCM proliferation and migration in a dose-dependent manner after 72 h of treatment. In addition, OXT dose-dependently upregulated melanogenesis-related microphtalmia-associated transcription factor, tyrosinase, tyrosinase-related protein (TYRP)-1, and TYRP-2 expression accompanied by an increased trend in melanosome number and maturation stage. Furthermore, OXT at concentrations (62.5-125 nM) increased melanin production. These findings suggest the involvement of OXT receptor (OXTR). In addition, this study demonstrates that OXT stimulates melanocyte proliferation, migration, with a tendency toward melanosome maturation, while it modulates melanin production in a dose-dependent manner. Thus, OXT system including its receptor OXTR may be a potential therapeutic target for skin pigmentary disorders.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia.
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
| | - Khalid M AlGhamdi
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia; Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Monmai C, Kuk YI, Baek SH. Coinhibitory Effects of Resveratrol- and Protopanaxadiol-Enriched Rice Seed Extracts Against Melanogenic Activities in Melan-a Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:3385. [PMID: 39683178 DOI: 10.3390/plants13233385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
In the current study, we aimed to evaluate the combined antimelanogenic effects of resveratrol- and protopanaxadiol (PPD)-enriched rice seed extracts (DJ526 and DJ-PPD) in melan-a cells. The treatment antioxidant capacity was evaluated using the ABTS radical scavenging method. TR_3 (70% [wight (w)/w] of DJ526 and 30% [w/w] of DJ-PPD) markedly increased the antioxidant activity at a level similar to that of DJ526 and DJ-PPD alone. The antimelanogenic activities in melan-a cells were evaluated after co-culturing of treatments at the concentration of 100 μg/mL. The in vitro melan-a cell experiment showed that treatment with the DJ526 and DJ-PPD mixture significantly reduced the cellular tyrosinase activity and melanin content; suppressed the expression of melanogenesis-related genes and proteins; decreased the number and size of melanin-containing cells; upregulated phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B expression levels; and suppressed the expression of p-p38 MAPK. These results show that DJ-PPD does not interfere with the antioxidant and antimelanogeneic activities of DJ526 but enhances the antioxidant and antimelanogeneic activities of DJ526. These findings indicate the potential of resveratrol- and PPD-enriched rice seeds as novel agents for controlling hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Yong-In Kuk
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Hyeon Baek
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
6
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Farhat AA, Almahdi YA, Alshuhani FZ, Xhabija B. Morphological and Optical Profiling of Melanocytes and SK-MEL-28 Melanoma Cells Via Digital Holographic Microscopy and Quantitative Phase Imaging. Adv Biol (Weinh) 2024:e2400346. [PMID: 39526697 DOI: 10.1002/adbi.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Melanoma, which originates from pigment-producing melanocytes, is an aggressive and deadly skin cancer. Despite extensive research, its mechanisms of progression and metastasis remain unclear. This study uses quantitative phase imaging via digital holographic microscopy, Principal Component Analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) to identify the morphological, optical, and behavioral differences between normal melanocytes and SK-MEL-28 melanoma cells. Our findings reveal significant differences in cell shape, size, and internal organization, with SK-MEL-28 cells displaying greater size variability, more polygonal shapes, and higher optical thickness. Phase shift parameters and surface roughness analyses underscore melanoma cells' uniform and predictable textures. Violin plots highlight the dynamic and varied migration of SK-MEL-28 cells, contrasting with the localized movement of melanocytes. Hierarchical clustering of correlation matrices provides further insights into complex morphological and optical relationships. Integrating label-free imaging with robust analytical methods enhances understanding of melanoma's aggressive behavior, supporting targeted therapies and highlighting potential biomarkers for precise melanoma diagnostics and treatment.
Collapse
Affiliation(s)
- Ayah A Farhat
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Yazan A Almahdi
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Fatima Z Alshuhani
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Besa Xhabija
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
8
|
Zhu J, Cen Q, Chang R, Han Y, Lin X. Patchy Dermal Melanocytosis: Differential Diagnosis and Management. J Cosmet Dermatol 2024. [PMID: 39485055 DOI: 10.1111/jocd.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Nevus of Ito and Mongolian spots are distinct clinical presentations of patchy dermal melanocytosis, characterized by similar dermatological manifestations that can pose diagnostic difficulties for clinicians. AIM This review aims to consolidate current understanding and research advancements on these conditions to facilitate clinical diagnosis, differential diagnosis, and management. METHODS A comprehensive search of databases including PubMed and Google Scholar was conducted, along with an analysis of pertinent literature retrieved from reference lists spanning nearly four decades. RESULTS Epidemiological, clinical, and pathological profiles exhibit nuanced differences between the two conditions, with unique expressions under electron microscopy and the regression possibility. It is noteworthy that most Mongolian spots naturally fade with advancing age, in contrast to nevus of Ito, which persist and may potentially evolve into malignant lesions. While picosecond laser treatment has shown greater efficacy than nanosecond lasers, the lower-energy approach holds particular promise in pediatric cases. The therapeutic landscape for patchy dermal melanocytosis is evolving, shifting from selective photothermal action to photomechanical or subcellular photothermal modalities. CONCLUSION This review underscores the importance of meticulous clinical assessment and the potential of innovative therapeutic approaches in managing these conditions.
Collapse
Affiliation(s)
- Jiafang Zhu
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Cen
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Chang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Lin
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Misiąg P, Molik K, Kisielewska M, Typek P, Skowron I, Karwowska A, Kuźnicki J, Wojno A, Ekiert M, Choromańska A. Amelanotic Melanoma-Biochemical and Molecular Induction Pathways. Int J Mol Sci 2024; 25:11502. [PMID: 39519055 PMCID: PMC11546312 DOI: 10.3390/ijms252111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Amelanotic melanoma (AM) is a subtype of hypomelanotic or completely amelanotic melanoma. AM is a rare subtype of melanoma that exhibits a higher recurrence rate and aggressiveness as well as worse surveillance than typical melanoma. AM shows a dysregulation of melanin production, cell cycle control, and apoptosis pathways. Knowing these pathways has an application in medicine due to targeted therapies based on the inhibiting elements of the abovementioned pathways. Therefore, we summarized and discussed AM biochemical and molecular induction pathways and personalized medicine approaches, clinical management, and future directions due to the fact that AM is relatively rare. AM is commonly misdiagnosed. Hence, the role of biomarkers is becoming significant. Nonetheless, there is a shortage of biomarkers specific to AM. BRAF, NRAS, and c-KIT genes are the main targets of therapy. However, the role of BRAF and KIT in AM varied among studies. BRAF inhibitors combined with MAK inhibitors demonstrate better results. Immune checkpoint inhibitors targeting CTLA-4 combined with a programmed death receptor 1 (PD-1) show better outcomes than separately. Fecal microbiota transplantation may overcome resistance to immune checkpoint therapy of AM. Immune-modulatory vaccines against indoleamine 2,3-dioxygenase (IDO) and PD ligand (PD-L1) combined with nivolumab may be efficient in melanoma treatment.
Collapse
Affiliation(s)
- Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paulina Typek
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marcin Ekiert
- Department of Oncology, Wroclaw Medical University, pl. L. Hirszfelda 12, 53-413 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Jeon S, Youn K, Jun M. Discovery of Kuraridin as a Potential Natural Anti-Melanogenic Agent: Focusing on Specific Target Genes and Multidirectional Signaling Pathways. Int J Mol Sci 2024; 25:11227. [PMID: 39457011 PMCID: PMC11509080 DOI: 10.3390/ijms252011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Abnormal melanogenesis upon UV exposure causes excessive oxidative stress, leading to hyperpigmentation disorders. As a key rate-limiting enzyme in melanogenesis, tyrosinase is considered a primary target for depigmenting agents. Sophora flavescens is used as a food and in traditional medicine as a valuable source of prenylated flavonoids. The present study aimed to elucidate the anti-melanogenic effect and potential mechanism of kuraridin, one of the major prenylated flavonoids. Kuraridin showed anti-tyrosinase activity with an IC50 value in the nanomolar range, superior to that of kojic acid, a positive control. It significantly reduced tyrosinase activity with the least cytotoxicity, suppressing melanogenesis in α-MSH-induced B16F10 cells. Furthermore, kuraridin considerably reduced melanogenesis in a 3D human skin model. To elucidate the anti-melanogenic mechanism of kuraridin, target genes (KIT, MAP2K1, and PRKCA) and pathways (c-KIT and ETB-R pathways) were identified using network pharmacology. KIT and MAP2K1 are simultaneously involved in the c-KIT cascade and are considered the most important in melanogenesis. PRKCA acts directly on MITF and its downstream enzymes through another pathway. Docking simulation showed strong interactions between kuraridin and c-KIT, ERK1/2, and PKC encoded by target genes. Overall, the present study showed kuraridin to be a novel natural anti-melanogenic agent in hyperpigmentation disorders.
Collapse
Affiliation(s)
- Subin Jeon
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| |
Collapse
|
12
|
Aguilera-Durán G, Hernández-Castro S, Loera-García BV, Rivera-Vargas A, Alvarez-Baltazar JM, Cuevas-Flores MDR, Romo-Mancillas A. Ursolic acid interaction with transcription factors BRAF, V600E, and V600K: a computational approach towards new potential melanoma treatments. J Mol Model 2024; 30:373. [PMID: 39387972 DOI: 10.1007/s00894-024-06165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Melanoma is one of the cancers with the highest mortality rate for its ability to metastasize. Several targets have undergone investigation for the development of drugs against this pathology. One of the main targets is the kinase BRAF (RAF, rapidly accelerated fibrosarcoma). The most common mutation in melanoma is BRAFV600E and has been reported in 50-90% of patients with melanoma. Due to the relevance of the BRAFV600E mutation, inhibitors to this kinase have been developed, vemurafenib-OMe and dabrafenib. Ursolic acid (UA) is a pentacyclic triterpene with a privileged structure, the pentacycle scaffold, which allows to have a broad variety of biological activity; the most studied is its anticancer capacity. In this work, we reported the interaction profile of vemurafenib-OMe, dabrafenib, and UA, to define whether UA has binding capacity to BRAFWT, BRAFV600E, and BRAFV600K. Homology modeling of BRAFWT, V600E, and V600K; molecular docking; and molecular dynamics simulations were carried out and interactions and residues relevant to the binding of the inhibitors were obtained. We found that UA, like the inhibitors, presents hydrogen bond interactions, and hydrophobic interactions of van der Waals, and π-stacking with I463, Q530, C532, and F583. The ΔG of ursolic acid in complex with BRAFV600K (- 63.31 kcal/mol) is comparable to the ΔG of the selective inhibitor dabrafenib (- 63.32 kcal/mol) in complex to BRAFV600K and presents a ΔG like vemurafenib-OMe with BRAFWT and V600E. With this information, ursolic acid could be considered as a lead compound for design cycles and to optimize the binding profile and the selectivity towards mutations for the development of new selective inhibitors for BRAFV600E and V600K to new potential melanoma treatments. METHODS The homology modeling calculations were executed on the public servers I-TASSER and ROBETTA, followed by molecular docking calculations using AutoGrid 4.2.6, AutoDockGPU 1.5.3, and AutoDockTools 1.5.6. Molecular dynamics and metadynamics simulations were performed in the Desmond module of the academic version of the Schrödinger-Maestro 2020-4 program, utilizing the OPLS-2005 force field. Ligand-protein interactions were evaluated using Schrödinger-Maestro program, LigPlot + , and PLIP (protein-ligand interaction profiler). Finally, all of the protein figures presented in this article were made in the PyMOL program.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| | - Stephanie Hernández-Castro
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Brenda V Loera-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - Alex Rivera-Vargas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - J M Alvarez-Baltazar
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Ma Del Refugio Cuevas-Flores
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| |
Collapse
|
13
|
Mohammadloo A, Asgari Y, Esmaeili-Bandboni A, Mazloomi MA, Ghasemi SF, Ameri S, Miri SR, Hamzelou S, Mahmoudi HR, Veisi-Malekshahi Z. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol 2024; 66:2830-2840. [PMID: 37934389 DOI: 10.1007/s12033-023-00893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann-Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5 × 10 6 -fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00-1.00, p < 0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96-1.00, p < 0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.
Collapse
Affiliation(s)
- Atefeh Mohammadloo
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Biotechnology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ameri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Shahin Hamzelou
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi-Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Neto MV, Hall MJ, Charneca J, Escrevente C, Seabra MC, Barral DC. Photoprotective Melanin Is Maintained within Keratinocytes in Storage Lysosomes. J Invest Dermatol 2024:S0022-202X(24)02100-6. [PMID: 39303907 DOI: 10.1016/j.jid.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
In the skin, melanin is synthesized by melanocytes within melanosomes and transferred to keratinocytes. After being phagocytosed by keratinocytes, melanin polarizes to supranuclear caps that protect against the genotoxic effects of UVR. We provide evidence that melanin-containing phagosomes undergo a canonical maturation process, with the sequential acquisition of early and late endosomal markers. Subsequently, these phagosomes fuse with active lysosomes, leading to the formation of a melanin-containing phagolysosome that we named melanokerasome. Melanokerasomes achieve juxtanuclear positioning through lysosomal trafficking regulators Rab7 and RILP. Mature melanokerasomes exhibit lysosomal markers, elude connections with the endo/phagocytic pathway, are weakly degradative, retain undigested cargo, and are likely tethered to the nuclear membrane. We propose that they represent a lysosomal-derived storage compartment that has exited the lysosome cycle, akin to the formation of lipofuscin in aged cells and dysfunctional lysosomes in lysosomal storage and age-related diseases. This storage lysosome allows melanin to persist for long periods, where it can exert its photoprotective effect efficiently.
Collapse
Affiliation(s)
- Matilde V Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Michael J Hall
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - João Charneca
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
15
|
Ji G, Zhang M, Ju X, Liu Y, Shan Y, Tu Y, Zou J, Shu J, Li H, Zhao W. Dynamic Transcriptome Profile Analysis of Mechanisms Related to Melanin Deposition in Chicken Muscle Development. Animals (Basel) 2024; 14:2702. [PMID: 39335292 PMCID: PMC11428610 DOI: 10.3390/ani14182702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The pectoral muscle is an important component of skeletal muscle. The blackness of pectoral muscles can directly affect the economic value of black-boned chickens. Although the genes associated with melanogenesis in mammals and birds have been thoroughly investigated, only little is known about the key genes involved in muscle hyperpigmentation during embryonic development. Here, we analyzed melanin deposition patterns in the pectoral muscle of Yugan black-boned chickens and compared differentially expressed genes (DEGs) between the muscles of Wenchang (non-black-boned chickens) and Yugan black-boned chickens on embryonic days 9, 13, 17, and 21. Melanin pigments were found to gradually accumulate in the muscle fibers over time. Using RNA-seq, there were 40, 97, 169, and 94 genes were identified as DEGs, respectively, between Yugan black-boned chicken muscles and Wenchang chickens at embryonic day 9, 13, 17, and 21 stages (fold change ≥2.0, false discovery rate (FDR) < 0.05). Thirteen DEGs, such as MSTRG.720, EDNRB2, TYRP1, and DCT, were commonly identified among the time points observed. These DEGs were mainly involved in pigmentation, melanin biosynthetic and metabolic processes, and secondary metabolite biosynthetic processes. Pathway analysis of the DEGs revealed that they were mainly associated with melanogenesis and tyrosine metabolism. Moreover, weighted gene co-expression network analysis (WGCNA) was used to detect core modules and central genes related to melanogenesis in the muscles of black-boned chickens. A total of 24 modules were identified. Correlation analysis indicated that one of them (the orange module) was positively correlated with muscle pigmentation traits (r > 0.8 and p < 0.001). Correlations between gene expression and L* values of the breast muscle were investigated in Yugan and Taihe black-boned chickens after hatching. The results confirmed that EDNRB2, GPNMB, TRPM1, TYR, and DCT expression levels were significantly associated with L* values (p < 0.01) in black-boned chickens (p < 0.05). Our results suggest that EDNRB2, GPNMB, TRPM1, TYR, and DCT are the essential genes regulating melanin deposition in the breast muscle of black-boned chickens. MSTRG.720 is a potential candidate gene involved in melanin deposition in the breast muscles of Yugan black-boned chickens.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weidong Zhao
- Taihe Fengsheng Agricultural and Livestock Co., Ltd., Ji’an 343732, China
| |
Collapse
|
16
|
Cappai MG, Senes A, Pilo G. Albinism and Blood Cell Profile: The Peculiar Case of Asinara Donkeys. Animals (Basel) 2024; 14:2641. [PMID: 39335231 PMCID: PMC11429210 DOI: 10.3390/ani14182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The complete blood cell count (CBC) was screened in a group of 15 donkeys, of which 8 were of Asinara breed (oculocutaneous albinism type 1, OCA1) and 7 of Sardo breed (gray coat). All donkeys were kept under same management and dietary conditions and underwent periodic health monitoring in the month of June 2024, at the peak of the positive photoperiod, at Mediterranean latitudes. One aliquot of whole blood, drawn from each individual into K2-EDTA containing tubes, was analyzed for the complete blood cell count through an automatic analyzer, within two hours of sampling. Data were analyzed and compared by one-way ANOVA, where the breed was an independent variable. All animals appeared clinically healthy, though mild eosinophilia was observed in Sardo donkeys. The red blood cell line showed peculiar traits for Asinara donkeys, which displayed significantly higher circulating red blood cell numbers than gray coat Sardo donkeys (RBC, 5.19 vs. 3.80 1012/mL ± 0.98 pooled-St. Dev, respectively; p = 0.017). RBCs also exhibited a smaller diameter and higher degree of anisocytosis in Asinara donkeys, along with lower hematocrit value, albeit within physiological ranges. Taken all together, such hematological profile depicts a peculiar trait of the red blood cell line in albino donkeys during the positive photoperiod.
Collapse
Affiliation(s)
- Maria Grazia Cappai
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Alice Senes
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Giovannantonio Pilo
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100 Sassari, Italy
| |
Collapse
|
17
|
Wortsman X, Araya I, Maass M, Valdes P, Zemelman V. Ultrasound Patterns of Vitiligo at High Frequency and Ultra-High Frequency. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1605-1610. [PMID: 38747480 DOI: 10.1002/jum.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVES To detect ultrasonographic anatomical alterations in all the skin layers in patients with vitiligo. METHODS A prospective observational color Doppler ultrasound study was performed in nonsegmental face and/or neck vitiligo patients without a history of previous treatments. Two sites, a lesional area and a contralateral clinically healthy region, were ultrasonographically studied and compared in the same patient. All cases were studied in high-frequency (24 MHz) and ultra-high-frequency (70 MHz) ultrasound devices with the highest axial spatial resolution available in the market. Demographic data of the sample, ultrasound grayscale, and color Doppler features were recorded and analyzed. RESULTS Ten patients met the study criteria (60% females; mean age 49 years). All cases presented ultrasonographic undulation of the epidermis in the affected zones vs 50% in the healthy control regions, being more prominent in the vitiligo areas. Eighty percent demonstrated intense hypoechoic thin plaques in the upper dermis (subepidermal). All vitiligo areas presented thickening and hypoechogenicity of the regional hair follicles and/or pilosebaceous units. Ninety percent showed prominent sebaceous glands, and 20% demonstrated a hypoechoic cap surrounding the sebaceous glands in the lesional areas. Dermal hypervascularity was detected in 100% of the affected regions and 40% of the clinically healthy areas. CONCLUSION Ultrasound can identify subclinical inflammatory cutaneous patterns in the epidermis, dermis, hair follicles, pilosebaceous units, and sebaceous glands in vitiligo. This noninvasive information can support early detection, monitoring, and research, including the clinical trials of drugs used to manage this devastating disease.
Collapse
Affiliation(s)
- Ximena Wortsman
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Diagnostic Imaging and Research of the Skin and Soft Tissues, Santiago, Chile
| | - Irene Araya
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Maximiliano Maass
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pilar Valdes
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Viviana Zemelman
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Yang F, Yang L, Kuroda Y, Lai S, Takahashi Y, Sayo T, Namiki T, Nakajima K, Sano S, Inoue S, Tsuruta D, Katayama I. Disorganisation of basement membrane zone architecture impairs melanocyte residence in vitiligo. J Pathol 2024; 264:30-41. [PMID: 38989633 DOI: 10.1002/path.6321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin β1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Sylvia Lai
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshito Takahashi
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Tetsuya Sayo
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
19
|
Lin TK, Tsai CL, Tsai BCK, Kuo CH, Ho TJ, Hsieh DJY, Kuo WW, Huang CY. Low-concentration imiquimod treatment promotes enhanced skin barrier functions through epidermal melanization reaction regulation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4360-4371. [PMID: 38760990 DOI: 10.1002/tox.24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Lun Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, Institute of Sports Sciences, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
20
|
Kong I, Ka-Wing Yuen G, Wu QY, Sui-Sui Guo M, Gao J, Ting-Xia Dong T, Wah-Keung Tsim K. Acetylcholine regulates the melanogenesis of retinal pigment epithelia cells via a cAMP-dependent pathway: A non-neuronal function of cholinergic system in retina. Heliyon 2024; 10:e36207. [PMID: 39253121 PMCID: PMC11382043 DOI: 10.1016/j.heliyon.2024.e36207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
The turnover rate of melanogenesis in retinal pigment epithelium (RPE) and its molecular signaling remain unclear. This study aimed to investigate the role of cholinergic signaling in the process of melanogenesis of cultured RPE cells. Here, a human retinal pigment epithelia cell line, ARPE-19 cell, was used to study the process of melanogenesis. The mRNA and protein expressions of cholinergic molecules, e.g., acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and melanogenic molecules i.e., tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), and melanin pigment were measured during melanogenesis of cultured ARPE-19 cells. Forskolin (a cAMP inducing agent), acetylcholine (ACh) and bethanechol (Bch; a muscarinic AChR agonist) were used to induce melanogenesis in the cultures. Muscarinic acetylcholine receptor (mAChR) antagonists were employed to identify the receptor subtype. During melanogenesis of ARPE-19 cells, the mRNA and protein expressions of cholinergic molecules, e.g., AChE and BChE, were increased along with melanogenic molecules, i.e., TYR, MITF and melanin pigment. Forskolin, ACh, and Bch induced an upregulation of melanogenesis in cultured ARPE-19 cultures: the induction was parallel to an increase of AChE expression. The Bch-induced enzymatic activities and mRNA levels of AChE and TYR were fully blocked by the treatments of gallamine (a M2 specific antagonist), tropicamide (a M4 specific antagonist) and atropine (non-specific antagonist for mAChRs). Cholinergic signaling via M2/M4 mAChRs regulates melanogenesis in cultured ARPE-19 cells through a cAMP-dependent pathway. This study provides insights into the regulation of RPE cell melanogenesis via a non-neuronal function of cholinergic system.
Collapse
Affiliation(s)
- Ivan Kong
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Gary Ka-Wing Yuen
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Qi-Yun Wu
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Maggie Sui-Sui Guo
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jin Gao
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Wang H, Hu W, Xiang F, Lei Z, Zhang X, Zhang J, Ding Y, Kang X. Differentiation of cultured hair follicle neural crest stem cells into functional melanocytes. Heliyon 2024; 10:e35295. [PMID: 39170163 PMCID: PMC11336637 DOI: 10.1016/j.heliyon.2024.e35295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Many autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. However, primary cultured melanocytes have a limited number of in vitro passages. The production of functional epidermal melanocytes from stem cells provides an unprecedented source of cell therapy for vitiligo. This study explores the clinical application of melanocytes induced by hair follicle neural crest stem cells (HFNCSCs). This study established an in vitro differentiation model of HFNCSCs into melanocytes. Results demonstrate that most differentiated melanocytes expressed the proteins C-KIT, MITF, S-100B, TYRP1, TYRP2, and tyrosinase. The HFNCSC-derived melanocytes were successfully transplanted onto the dorsal skin of mice and survived in the local tissues, expressing marker protein of melanocytes. In conclusion, HFNCSCs in mice can be induced to differentiate into melanocytes under specific conditions. These induced melanocytes exhibit the potential to facilitate repigmentation in the lesion areas of vitiligo-affected mice, suggesting a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
22
|
Kahale F, Alemi H, Naderi A, Deshpande N, Lee S, Wang S, Singh RB, Dohlman T, Yin J, Jurkunas U, Dana R. Neuropeptide alpha-Melanocyte stimulating hormone preserves corneal endothelial morphology in a murine model of Fuchs dystrophy. Sci Rep 2024; 14:18842. [PMID: 39138334 PMCID: PMC11322312 DOI: 10.1038/s41598-024-69416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Fuchs endothelial corneal dystrophy is a heterogenous disease with multifactorial etiology, and genetic, epigenetic, and exogenous factors contributing to its pathogenesis. DNA damage plays a significant role, with ultraviolet-A (UV-A) emerging as a key contributing factor. We investigate the potential application of neuropeptide α-melanocyte stimulating hormone (α-MSH) in mitigating oxidative stress induced endothelial damage. First, we examined the effects of α-MSH on a cultured human corneal endothelial cell line (HCEnC-21T) exposed to hydrogen peroxide (H2O2) induced oxidative DNA damage. We performed immunofluorescence and flow cytometry to assess DNA damage and cell death in the cultured cells. Additionally, we used an established mouse model that utilizes ultraviolet light to induce corneal endothelial cell damage resulting in decreased CEnC number, increased cell size variability, and decreased percentage of hexagonal cells. This endothelial decompensation leads to an increase in corneal thickness. Following UV-A exposure, the mice were systemically treated with α-MSH, either immediately after exposure (early treatment) or beginning two weeks post-exposure (delayed treatment). To evaluate treatment efficacy, we analyzed CEnC density and morphology using in vivo confocal microscopy, and central corneal thickness using anterior segment optical coherence tomography. Our findings demonstrated that α-MSH treatment effectively protects HCEnC-21T from free-radical induced oxidative DNA damage and subsequent cell death. In vivo, α-MSH treatment, mitigated the loss of CEnC density, deterioration of cell morphology and suppression of the resultant corneal swelling. These results underline the potential application of α-MSH as a therapeutic agent for mitigating corneal endothelial damage.
Collapse
Affiliation(s)
- Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Hamid Alemi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Amirreza Naderi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Neha Deshpande
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Ula Jurkunas
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
23
|
Mohamed EM, Abd Elaleem HL, Ahmed MAH, Rageh MA. Efficacy and Safety of 577-nm Yellow Laser in the Treatment of Pigmented Epidermal Lesions. Lasers Surg Med 2024; 56:551-556. [PMID: 38890816 DOI: 10.1002/lsm.23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Freckles and lentigines are common pigmented problems which not only cause substantial cosmetic morbidity but also create psychosocial concern. The available modalities for the treatment of pigmented lesions are often unsatisfactory for patients, require a long treatment period, and often cause skin irritation. With the advent of lasers, safe and effective treatment options for epidermal pigmentation have become more varied for different Fitzpatrick skin types. We aimed to evaluate the efficacy and safety of 577-nm yellow laser in the treatment of pigmented epidermal lesions. METHODS This study was carried out on 50 patients presented with pigmented epidermal lesions (25 presented with freckles and 25 presented with lentigines). Each patient received four treatment sessions with a 577-nm diode laser at 2-week intervals. RESULTS There was significant improvement in freckles and lentigines, as 23 out of 50 patients showed marked improvement, 11 patients showed moderate improvement, 10 patients showed mild improvement, and only six patients had no changes. Moreover, 23 patients were very satisfied, 18 patients were satisfied, and nine patients were not satisfied. As regards the safety of the 577-nm yellow laser, there was no significant adverse effect among patients except pain, erythema, and hyperpigmentation, which resolved within one month after treatment. CONCLUSIONS This study showed that the 577-nm yellow laser is an effective, safe, and well-tolerated device in the treatment of freckles and lentigines.
Collapse
Affiliation(s)
- Essamelden M Mohamed
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Hazem L Abd Elaleem
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mona A H Ahmed
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mahmoud A Rageh
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
Vieira EG, de Paiva REF, Miguel RB, de Oliveira APA, Franco de Melo Bagatelli F, Oliveira CC, Tuna F, da Costa Ferreira AM. An engineered POSS drug delivery system for copper(II) anticancer metallodrugs in a selective application toward melanoma cells. Dalton Trans 2024; 53:12567-12581. [PMID: 39005067 DOI: 10.1039/d4dt00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this work, a polyhedral silsesquioxane (POSS) was used as an engineered drug delivery system for two oxindolimine-copper(II) anticancer complexes, [Cu(isaepy)]+ and [Cu(isapn)]+. The interest in hybrid POSS comes from the necessity of developing materials that can act as adjuvants to improve the cytotoxicity of non-soluble metallodrugs. Functionalization of POSS with a triazole ligand (POSS-atzac) permitted the anchorage of such copper complexes, producing hybrid materials with efficient cytotoxic effects. Structural and morphological characterizations of these copper-POSS systems were performed by using different techniques (IR, NMR, thermogravimetric analysis). A combination of continuous-wave (CW) and pulsed EPR (HYSCORE) spectroscopies conducted at the X-band have enabled the complete characterization of the coordination environment of the copper ion in the POSS-atzac matrix. Additionally, the cytotoxic effects of the loaded materials, [Cu(isapn)]@POSS-atzac and [Cu(isaepy)]@POSS-atzac, were assessed toward melanomas (SK-MEL), in comparison to non-tumorigenic cells (fibroblast P4). Evaluation of their nuclease activity or ability to facilitate cleavage of DNA indicated concentrations as low as 0.6 μg mL-1, while complete DNA fragmentation was observed at 25 μg mL-1. By using adequate scavengers, investigations on active intermediates responsible for their cytotoxicity were performed, both in the absence and in the presence of ascorbate as a reducing agent. Based on the observed selective cytotoxicity of these materials toward melanomas, investigations on the reactivity of these complexes and corresponding POSS-materials with melanin, a molecule that contributes to melanoma resistance to chemotherapy, were carried out. Results indicated the main role of the binuclear copper species, formed at the surface of the silica matrix, in the observed reactivity and selectivity of these copper-POSS systems.
Collapse
Affiliation(s)
- Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Raphael Enoque Ferraz de Paiva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Rodrigo Bernardi Miguel
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Ana Paula Araujo de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Felipe Franco de Melo Bagatelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Carla Columbano Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Floriana Tuna
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
26
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Mazepa E, Cunha ES, Valerio HP, Di Mascio P, Batista M, Marchini FK, Meira WV, Noleto GR, Winnischofer SMB, Martinez GR. Unveiling novel targets in melanoma under melanogenesis stimulation and photodynamic therapy by redox proteomics. Photochem Photobiol 2024. [PMID: 38961772 DOI: 10.1111/php.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Melanogenesis-stimulated B16-F10 cells enter in a quiescent state, present inhibited mitochondrial respiration and increased reactive oxygen species levels. These alterations suggest that these cells may be under redox signaling, allowing tumor survival. The aim of this study was to evaluate redox-modified proteins in B16-F10 cells after melanogenesis stimulation and rose bengal-photodynamic therapy (RB-PDT). A redox proteomics label-free approach based on the biotin switch assay technique with biotin-HPDP and N-ethylmaleimide was used to assess the thiol-oxidized protein profile. Aconitase was oxidized at Cys-448 and Cys-451, citrate synthase was oxidized at Cys-202 and aspartate aminotransferase (Got2) was oxidized at Cys-272 and Cys-274, exclusively after melanogenesis stimulation. After RB-PDT, only guanine nucleotide-binding protein subunit beta-2-like 1 (Gnb2l1) was oxidized (Cys-168). In contrast, melanogenesis stimulation followed by RB-PDT led to the oxidation of different cysteines in Gnb2l1 (Cys-153 and Cys-249). Besides that, glyceraldehyde-3-phosphate dehydrogenase (Gapdh) presented oxidation at Cys-245, peptidyl-prolyl cis-trans isomerase A (Ppia) was oxidized at Cys-161 and 5,6-dihydroxyindole-2-carboxylic acid oxidase (Tyrp1) was oxidized at Cys-65, Cys-30, and Cys-336 after melanogenesis stimulation followed by RB-PDT. The redox alterations observed in murine melanoma cells and identification of possible target proteins are of great importance to further understand tumor resistance mechanisms.
Collapse
Affiliation(s)
- Ester Mazepa
- Postgraduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Paraná, Brazil
| | - Elizabeth Sousa Cunha
- Postgraduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Paraná, Brazil
| | - Hellen Paula Valerio
- Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Biochemistry Department, Chemistry Institute, USP, São Paulo, São Paulo, Brazil
| | - Michel Batista
- Laboratory for Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory for Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil
| | - Willian Vanderlei Meira
- Postgraduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Paraná, Brazil
| | - Guilhermina Rodrigues Noleto
- Postgraduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Paraná, Brazil
| | | | - Glaucia Regina Martinez
- Postgraduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Paraná, Brazil
| |
Collapse
|
28
|
Xu P, Yang L, Lai S, Yang F, Kuroda Y, Zhang H, Tsuruta D, Katayama I. Effects of EGFR-TKI on epidermal melanin unit integrity: Therapeutic implications for hypopigmented skin disorders. Pigment Cell Melanoma Res 2024; 37:514-529. [PMID: 38705722 DOI: 10.1111/pcmr.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.
Collapse
Affiliation(s)
- Ping Xu
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Sylvia Lai
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fei Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
29
|
Maciel SVSA, Oliveira IPP, Senes BB, Silva JAIDV, Feitosa FLB, Alves JS, Costa RB, de Camargo GMF. Genomic regions associated with coat color in Gir cattle. Genome 2024; 67:233-242. [PMID: 38579337 DOI: 10.1139/gen-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Indicine cattle breeds are adapted to the tropical climate, and their coat plays an important role in this process. Coat color influences thermoregulation and the adhesion of ectoparasites and may be associated with productive and reproductive traits. Furthermore, coat color is used for breed qualification, with breeders preferring certain colors. The Gir cattle is characterized by a wide variety of coat colors. Therefore, we performed genome-wide association studies to identify candidate genes for coat color in Gir cattle. Different phenotype scenarios were considered in the analyses and regions were identified on eight chromosomes. Some regions and many candidate genes are influencing coat color in the Gir cattle, which was found to be a polygenic trait. The candidate genes identified have been associated with white spotting patterns and base coat color in cattle and other species. In addition, a possible epistatic effect on coat color determination in the Gir cattle was suggested. This is the first published study that identified genomic regions and listed candidate genes associated with coat color in Gir cattle. The findings provided a better understanding of the genetic architecture of the trait in the breed and will allow to guide future fine-mapping studies for the development of genetic markers for selection.
Collapse
|
30
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
31
|
Zhang W, Luosang C, Yuan C, Guo T, Wei C, Liu J, Lu Z. Selection signatures of wool color in Gangba sheep revealed by genome-wide SNP discovery. BMC Genomics 2024; 25:606. [PMID: 38886664 PMCID: PMC11181613 DOI: 10.1186/s12864-024-10464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cuicheng Luosang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
32
|
Bae S, Lee JN, Hyun CG. Anti-Melanogenic and Anti-Inflammatory Effects of 2'-Hydroxy-4',6'-dimethoxychalcone in B16F10 and RAW264.7 Cells. Curr Issues Mol Biol 2024; 46:6018-6040. [PMID: 38921030 PMCID: PMC11202956 DOI: 10.3390/cimb46060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2'-hydroxy-3,4'-dimethoxychalcone (3,4'-DMC), 2'-hydroxy-4,4'-dimethoxychalcone (4,4'-DMC), 2'-hydroxy-3',4'-dimethoxychalcone (3',4'-DMC), and 2'-hydroxy-4',6'-dimethoxychalcone (4',6'-DMC). Among the derivatives of 2'-hydroxy-4'-methoxychalcone, 4',6'-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4',6'-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), β-catenin, glycogen synthase kinase-3β (GSK3β), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-β-catenin. Additionally, treatment with 4',6'-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4',6'-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4',6'-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4',6'-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments.
Collapse
Affiliation(s)
- Sungmin Bae
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jung-No Lee
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Republic of Korea;
| | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
33
|
Milner SM. Sunburn. EPLASTY 2024; 24:QA17. [PMID: 39233706 PMCID: PMC11374383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Stephen M Milner
- Professor of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland (Ret)
| |
Collapse
|
34
|
Jelača S, Jovanovic I, Bovan D, Pavlovic S, Gajovic N, Dunđerović D, Dajić-Stevanović Z, Acović A, Mijatović S, Maksimović-Ivanić D. Antimelanoma Effects of Alchemilla vulgaris: A Comprehensive In Vitro and In Vivo Study. Diseases 2024; 12:125. [PMID: 38920557 PMCID: PMC11202689 DOI: 10.3390/diseases12060125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Due to the rich ethnobotanical and growing evidence-based medicine records, the Alchemillae herba, i.e., the upper parts of the Lady's mantle (Alchemilla vulgaris L.), was used for the assessment of antimelanoma activity. The ethanolic extract of A. vulgaris strongly suppressed the viability of B16F1, B16F10, 518A2, and Fem-X cell lines. In contrast to the in vitro study, where the B16F1 cells were more sensitive to the treatment than the more aggressive counterpart B16F10, the results obtained in vivo using the corresponding syngeneic murine model were quite the opposite. The higher sensitivity of B16F10 tumors in vivo may be attributed to a more complex response to the extract compared to one triggered in vitro. In addition, the strong immunosuppressive microenvironment in the B16F1 model is impaired by the treatment, as evidenced by enhanced antigen-presenting potential of dendritic cells, influx and activity of CD4+ T and CD8+ T lymphocytes, decreased presence of T regulatory lymphocytes, and attenuation of anti-inflammatory cytokine production. All these effects are supported by the absence of systemic toxicity. A. vulgaris extract treatment results in a sustained and enhanced ability to reduce melanoma growth, followed by the restoration of innate and adopted antitumor immunity without affecting the overall physiology of the host.
Collapse
Affiliation(s)
- Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Dijana Bovan
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia;
| | - Zora Dajić-Stevanović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Aleksandar Acović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| |
Collapse
|
35
|
Goździewska-Harłajczuk K, Hamouzová P, Klećkowska-Nawrot J, Čížek P. Morphological adaptation of the tongue of okapi (Okapia johnstoni Artiodactyla, Giraffidae)-Anatomy, histology, and ultrastructure. J Morphol 2024; 285:e21743. [PMID: 38825877 DOI: 10.1002/jmor.21743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to describe the morphology of the tongue of the okapi, and to compare the results with other ruminants including browsers, intermediates and grazers. The material was collected post-mortem from two animals from a Zoological Garden. The structure of the okapi tongue, focusing of the shape of the tongue, lingual surface, its papillae and lingual glands, was examined using gross morphology, light and polarized microscopy, and by scanning electron microscopy. The okapi tongue was characterized by dark pigmentation on the lingual dorsum (except lingual torus) and on the whole ventral surface. Two types of filiform papillae were observed, with additional, even 6-8 projections at their base. The round fungiform papillae were present at a higher density, up to 16/cm2, on the ventro-lateral area of the lingual apex. Round and elongate vallate papillae were arranged in two parallel lines between the body and root of the tongue. Numerous taste buds were detected within the epithelium of their vallum, while fungiform papillae had sparse taste buds. A lack of foliate papillae was noted. Very small conical papillae, some lenticular in shape, were present on the lingual torus. Thick collagen type I fibers were dominant over collagen type III fibers in the connective tissue of the lingual papillae. The mucous acini units were dominant among lingual glands, indicating that the secretion of okapi lingual glands was mostly mucous. In many aspects, the tongue of okapi resembles the tongue of other ruminants. The specific lingual shape and lingual surface, together with the lingual glands, support the processing of plant food, such as young and soft leaves. Although okapi tongue is characterized by smaller conical papillae compared to other ruminants, its high number of vallate papillae is similar that found in other browsers, intermediate and grazers. Thus the number of gustatory papillae rather indicates that this feature is not related to the type of feeding.
Collapse
Affiliation(s)
- Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pavla Hamouzová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Petr Čížek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
36
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
37
|
Li H, Wilhelm M, Baumbach CM, Hacker MC, Szardenings M, Rischka K, Koenig A, Schulz-Kornas E, Fuchs F, Simon JC, Lethaus B, Savković V. Laccase-Treated Polystyrene Surfaces with Caffeic Acid, Dopamine, and L-3,4-Dihydroxyphenylalanine Substrates Facilitate the Proliferation of Melanocytes and Embryonal Carcinoma Cells NTERA-2. Int J Mol Sci 2024; 25:5927. [PMID: 38892114 PMCID: PMC11172616 DOI: 10.3390/ijms25115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.
Collapse
Affiliation(s)
- Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Martin Wilhelm
- Department of Ear, Nose and Throat Diseases, and Head and Neck Surgery, University of Greifswald, 17475 Greifswald, Germany;
| | - Christina Marie Baumbach
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University of Halle-Wittenberg, 06108 Halle, Germany;
| | - Michael C. Hacker
- Institute of Pharmaceutic Technology and Biopharmaceutics, Department of Pharmacy, Math.-Nat. Faculty, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
- Institute for Pharmacy, Faculty of Medicine, Leipzig University, Eilenburger Straße 15 A, 04317 Leipzig, Germany
| | - Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany;
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany;
| | - Andreas Koenig
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Florian Fuchs
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany; (A.K.)
| | - Jan Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
38
|
Monmai C, Kim JS, Baek SH. Resveratrol-Enriched Rice Callus Extract Inhibits Oxidative and Cellular Melanogenic Activities in Melan-A Cells. Antioxidants (Basel) 2024; 13:625. [PMID: 38929064 PMCID: PMC11201182 DOI: 10.3390/antiox13060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive production of melanin can cause skin diseases and hyperpigmentation. In this study, resveratrol contained in Dongjin rice seed (DJ526) was increased through callus induction. The antioxidant capacity of resveratrol-enriched rice callus was evaluated using the ABTS radical scavenging method and was equivalent to that of vitamin C. DJ526 rice callus extract significantly increased antioxidant activities in a concentration-dependent manner. The anti-melanogenesis effects of DJ526 rice callus extract were also evaluated in melan-a cells. Resveratrol-enriched rice callus extract significantly (i) decreased the size and number of melanin-containing cells, (ii) suppressed the activity of cellular tyrosinase and melanin content, (iii) downregulated the expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2, (iv) increased the expression of phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B, and (v) inhibited the activation of phosphorylated p38 in melan-a cells. From the above observations, DJ526 rice callus extract showed strong antioxidant and anti-melanogenesis activity at the concentration test. These findings indicate the potential of resveratrol-enriched rice callus as a novel agent for controlling hyperpigmentation.
Collapse
Affiliation(s)
| | | | - So-Hyeon Baek
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea; (C.M.); (J.-S.K.)
| |
Collapse
|
39
|
Bjørgen H, Koppang EO. The melano-macrophage: The black leukocyte of fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109523. [PMID: 38522495 DOI: 10.1016/j.fsi.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Melanin and the process of melanin synthesis or melanogenesis have central roles in the immune system of insects, and production of melanin-synthesizing enzymes from their haemocytes may be induced following activation through danger signals. Melanin-containing macrophage-like cells have been extensively studied in amphibians and they are also present in reptiles. In fish, melano-macrophages are especially recognized with respect to melano-macrophage centres (MMCs), hypothesized to be analogues of germinal centres in secondary lymphoid organs of mammals and some birds. Melano-macrophages are in addition present in several inflammatory conditions, in particular melanised focal changes, or black spots, in the musculature of farmed Atlantic salmon, Salmo salar. Melanins are complex compounds that may be divided into different forms which all have the ability to absorb and scatter light. Other functions include the quenching of free radicals and a direct effect on the immune system. According to the common view held in the pigment cell community, vertebrate melanin synthesis with melanosome formation may only occur in cells of ectodermal origin. However, abundant information suggests that also myeloid cells of ectothermic vertebrates may be classified as melanocytes. Here, we discuss these opposing views and review relevant literature. Finally, we review the current status on the research concerning melanised focal muscle changes that represent the most severe quality problem in Norwegian salmon production, but also other diseases where melano-macrophages play important roles.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
40
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
41
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
42
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
43
|
Wang L, Xue Z, Tian Y, Zeng W, Zhang T, Lu H. A single-cell transcriptome atlas of Lueyang black-bone chicken skin. Poult Sci 2024; 103:103513. [PMID: 38350389 PMCID: PMC10875617 DOI: 10.1016/j.psj.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
As the largest organ of the body, the skin participates in various physiological activities, such as barrier function, sensory function, and temperature regulation, thereby maintaining the balance between the body and the natural environment. To date, compositional and transcriptional profiles in chicken skin cells have not been reported. Here, we report detailed transcriptome analyses of cell populations present in the skin of a black-feather chicken and a white-feather chicken using single-cell RNA sequencing (scRNA-seq). By analyzing cluster-specific gene expression profiles, we identified 12 cell clusters, and their corresponding cell types were also characterized. Subsequently, we characterized the subpopulations of keratinocytes, myocytes, mesenchymal cells, fibroblasts, and melanocytes. It is worth noting that we have identified a subpopulation of keratinocytes involved in pigment granule capture and a subpopulation of melanocytes involved in pigment granule deposition, both of which have a higher cell abundance in black-feather chicken compared to white-feather chicken. Meanwhile, we also compared the cellular heterogeneity features of Lueyang black-bone chicken skin with different feather colors. In addition, we also screened out 12 genes those could be potential markers of melanocytes. Finally, we validated the specific expression of SGK1, WNT5A, CTSC, TYR, and LAPTM5 in black-feather chicken, which may be the key candidate genes determining the feather color differentiation of Lueyang black-bone chicken. In summary, this study first revealed the transcriptome characteristics of chicken skin cells via scRNA-seq technology. These datasets provide valuable information for the study of avian skin characteristics and have important implications for future poultry breeding.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Yingmin Tian
- School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| |
Collapse
|
44
|
Kruijt CC, de Wit GC, van Minderhout HM, Schalij-Delfos NE, van Genderen MM. Clinical and mutational characteristics of oculocutaneous albinism type 7. Sci Rep 2024; 14:7572. [PMID: 38555393 PMCID: PMC10981718 DOI: 10.1038/s41598-024-57969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
The purpose of this paper is to expand on the phenotype of oculocutaneous albinism type 7 (OCA7). We described three patients with OCA7: two from a consanguineous family of Kurdish origin and one patient of Dutch origin. We compared them with all patients described to date in the literature. All newly described patients had severely reduced visual acuity (VA), nystagmus, hypopigmentation of the fundus, severe foveal hypoplasia, and chiasmal misrouting. None had iris translucency. All patients had normal pigmentation of skin and hair. We found one novel mutation in the Dutch patient: c.565G > A; p.(Gly189Ser). We compared our patients to the 15 described in the literature to date. All 18 patients had substantially pigmented skin and hair, very poor VA (0.4-1.3 logMAR), nystagmus, (mild) ocular hypopigmentation, foveal hypoplasia, and misrouting. Although pigmentation levels were mildly affected in OCA7, patients had a severe ocular phenotype with VA at the poorer end of the albinism spectrum, severe foveal hypoplasia, and chiasmal misrouting. OCA7 patients had a phenotype restricted to the eyes, and similar to that of X-linked ocular albinism. We therefore propose to rename the disorder in ocular albinism type 2. Unfolding the role of LRMDA in OCA7, may bring us a step closer in identifying the responsible factors for the co-occurrence of foveal hypoplasia and misrouting.
Collapse
Affiliation(s)
- C C Kruijt
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.
- Department of Ophthalmology, Leiden University Medical Center, J3-S, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - G C de Wit
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - H M van Minderhout
- Department of Ophthalmology, Medical Center Haaglanden, The Hague, The Netherlands
| | - N E Schalij-Delfos
- Department of Ophthalmology, Leiden University Medical Center, J3-S, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - M M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Kadamb R, Anton ML, Purwin TJ, Chua V, Seeneevassen L, Teh J, Angela Nieto M, Sato T, Terai M, Roman SR, De Koning L, Zheng D, Aplin AE, Aguirre-Ghiso J. Lineage commitment pathways epigenetically oppose oncogenic Gαq/11-YAP signaling in dormant disseminated uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583565. [PMID: 38496663 PMCID: PMC10942354 DOI: 10.1101/2024.03.05.583565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mechanisms driving late relapse in uveal melanoma (UM) patients remains a medical mystery and major challenge. Clinically it is inferred that UM disseminated cancer cells (DCCs) persist asymptomatic for years-to-decades mainly in the liver before they manifest as symptomatic metastasis. Here we reveal using Gαq/11 mut /BAP wt human uveal melanoma models and human UM metastatic samples, that the neural crest lineage commitment nuclear receptor NR2F1 is a key regulator of spontaneous UM DCC dormancy in the liver. Using a quiescence reporter, RNA-seq and multiplex imaging we revealed that rare dormant UM DCCs upregulate NR2F1 expression and genes related to neural crest programs while repressing gene related to cell cycle progression. Gain and loss of function assays showed that NR2F1 silences YAP1/TEAD1 transcription downstream of Gαq/11 signaling and that NR2F1 expression can also be repressed by YAP1. YAP1 expression is repressed by NR2F1 binding to its promoter and changing the histone H3 tail activation marks to repress YAP1 transcription. In vivo CRISPR KO of NR2F1 led dormant UM DCCs to awaken and initiate relentless liver metastatic growth. Cut&Run and bulk RNA sequencing further confirmed that NR2F1 epigenetically stimulates neuron axon guidance and neural lineage programs, and it globally represses gene expression linked to G-protein signaling to drive dormancy. Pharmacological inhibition of Gαq/11 mut signaling resulted in NR2F1 upregulation and robust UM growth arrest, which was also achieved using a novel NR2F1 agonist. Our work sheds light on the molecular underpinnings of UM dormancy revealing that transcriptional programs driven by NR2F1 epigenetically short-circuit Gαq/11 signaling to its downstream target YAP1. Highlights Quiescent solitary uveal melanoma (UM) DCCs in the liver up- and down-regulate neural crest and cell cycle progression programs, respectively.NR2F1 drives solitary UM DCC dormancy by antagonizing the Gαq/11-YAP1 pathway; small molecule Gαq/11 inhibition restores NR2F1 expression and quiescence. NR2F1 short-circuits oncogenic YAP1 and G-protein signaling via a chromatin remodeling program. Loss of function of NR2F1 in dormant UM DCCs leads to aggressive liver metastasis. Graphical abstract
Collapse
|
46
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
47
|
Kim JH, Sim WJ, Nam J, Park SH, Song JH, Nam TG, Kim JH, Lim W, Lim TG. Skin-whitening effects of Spergularia marina by suppressing MITF translocation. Food Sci Biotechnol 2024; 33:925-933. [PMID: 38371694 PMCID: PMC10866852 DOI: 10.1007/s10068-023-01376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 02/20/2024] Open
Abstract
Spergularia marina is a plant that grows in salty regions along the coastline and exerts radical-scavenging and anti-inflammatory effects. In this study, we investigated the skin-whitening effects of S. marina extract (SME) in B16F10 melanoma cells. SME was found to exert radical-scavenging effects. It suppressed α-melanocyte-stimulating hormone-induced melanogenesis and tyrosinase activity. We also assessed the melanin production signaling pathway to identify the inhibitory action mechanism of SME on melanogenesis. SME decreased the protein expression levels of tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase, which play important roles in melanogenesis. Furthermore, western blotting revealed that SME inhibited the nuclear translocation of melanocyte inducing transcription factor (MITF), which is a transcription factor for TRP-1, TRP-2, and tyrosinase, suggesting that SME exerts its skin-whitening effect by inhibiting MITF nuclear translocation. Therefore, SME may potentially be used in skin-whitening medicines and cosmetics.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jisoo Nam
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Soo-Hyun Park
- Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Ji-Hye Song
- Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Tae Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyounggi University, Suwon, 16227 Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin (Women’s) University, Seoul, 01133 Republic of Korea
| | - Wonchul Lim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
48
|
Chen H, Wu Y, Wang B, Kui M, Xu J, Ma H, Li J, Zeng J, Gao W, Chen K. Skin healthcare protection with antioxidant and anti-melanogenesis activity of polysaccharide purification from Bletilla striata. Int J Biol Macromol 2024; 262:130016. [PMID: 38365139 DOI: 10.1016/j.ijbiomac.2024.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In this study, we investigated the structural characterization and biological activities of Bletilla striata polysaccharides (BSPs) for their role as antioxidants and anti-melanogenesis agents in skin healthcare protection. Three neutral polysaccharides (BSP-1, BSP-2, and BSP-3) with molecular weights of 269.121 kDa, 57.389 kDa, and 28.153 kDa were extracted and purified. Their structural characteristics were analyzed by ion chromatography, GC-MS, and 1D/2D NMR. The results showed that BSP-1, which constitutes the major part of BSPs, was composed of α-D-Glcp, β-D-Glcp, β-D-Manp, and 2-O-acetyl-β-D-Manp, with the branched-chain accompanied by β-D-Galp and α-D-Glcp. BSP-1, BSP-2, and BSP-3 can enhance the total antioxidant capacity of skin fibroblasts with non-toxicity. Meanwhile, BSP-1, BSP-2, and BSP-3 could significantly inhibit the proliferative activity of melanoma cells. Among them, BSP-1 and BSP-2 showed more significance in anti-melanogenesis, tyrosinase inhibition activity, and cell migration inhibition. BSPs have effective antioxidant capacity and anti-melanogenesis effects, which should be further emphasized and developed as skin protection components.
Collapse
Affiliation(s)
- Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China.
| | - Minghong Kui
- Guangdong Guanhao High-Tech Co., Ltd., No. 313 Donghai Avenue, Donghai Island, Zhanjiang 524072, PR China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Hongsheng Ma
- Guangdong Guanhao New Material R & D Co., Ltd., Xiangjiang Financial Business Center, Nansha District, Guangzhou 511457, PR China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| |
Collapse
|
49
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
50
|
Trisnawaty S, Gunadi JW, Ratnawati H, Lesmana R. Carotenoids in red fruit ( Pandanus conoideus Lam.) have a potential role as an anti‑pigmentation agent (Review). Biomed Rep 2024; 20:54. [PMID: 38357234 PMCID: PMC10865171 DOI: 10.3892/br.2024.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Melasma is a persistent condition characterized by excessive melanin production in the skin. The management of melasma necessitates a protracted treatment duration, which is associated with diminished levels of patient satisfaction. One effective strategy for mitigating occurrence of melasma is consumption of nutricosmetics with depigmentation properties. The present review aimed to investigate the potential of red fruit as a depigmentation agent. Carotenoids serve a crucial role in human nutrition as a precursor to vitamin A. Carotenoids serve as scavengers of reactive oxygen species generated by ultraviolet radiation. Carotenoids promote skin health. Red fruit, a fruit originating from Papua (Indonesia) has anti-pigmentation properties associated with its ability to block melanogenesis through various protein pathways such as PKA, ERK, and AKT signaling pathways. The consumption of food rich in carotenoids, such as red fruit, has advantageous properties to reduce hyperpigmentation and skin brightening.
Collapse
Affiliation(s)
- Sri Trisnawaty
- Master Program of Skin Ageing and Aesthetic Medicine, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
- Maranatha Biomedical Research Laboratory, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Hana Ratnawati
- Department of Histology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|