1
|
Ding D, Chang L, Men C, Yang B, Pylypenko D, Zhang T, Yu D, Wang F. Does amide proton transfer-weighted MRI have diagnostic and differential value in ovarian cystic and predominantly cystic lesion? Abdom Radiol (NY) 2024:10.1007/s00261-024-04768-w. [PMID: 39694947 DOI: 10.1007/s00261-024-04768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES This study aims to evaluate the diagnostic value of amide proton transfer-weighted (APTw) imaging in distinguishing cystic or predominantly cystic ovarian lesions. MATERIALS AND METHODS 49 patients underwent APTw imaging at 3T-MR before surgery, with 20 volunteers serving as the control group. Participants were divided into the following groups: solid components of normal ovaries (Group A, n = 29), solid components of malignant lesions (Group B, n = 7), cystic fluid of follicles (Group C, n = 31), cystic fluid of benign lesions (Group D, n = 46), functional cysts (Group d1, n = 8), endometriomas (Group d2, n = 28), cystadenomas (Group d3, n = 10), and cystic fluid of malignant lesions (Group E, n = 12). Independent t-tests or Mann-Whitney U tests and one-way ANOVA were used to compare group differences. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficacy in distinguishing between different lesions. RESULTS For solid components, significant differences in MTRasym values were observed between Groups A and B (P < 0.001). For cystic components, significant differences were found between Groups C and D, C and E, d1 and d2, d2 and d3, d1 and d3, C and d2, C and d3, E and d1, and E and d2 (all P < 0.01). ROC analysis of these results showed high AUC values (ranging from 0.813 to 1.0), all P < 0.05. CONCLUSIONS APTw can reveal differences in MTRasym values between normal and diseased ovarian tissues, demonstrating high clinical value in differentiating functional cysts, endometriomas, and cystadenomas, as well as distinguishing benign lesions (functional cysts or endometriomas) from malignant tumors.
Collapse
Affiliation(s)
- Dawei Ding
- Qilu Hospital of Shandong University, Jinan, China
- Qingzhou People's Hospital, Qingzhou, China
| | - Lingyu Chang
- Qilu Hospital of Shandong University, Jinan, China
| | | | - Bo Yang
- Qilu Hospital of Shandong University, Jinan, China
- Qingzhou People's Hospital, Qingzhou, China
| | | | - Tao Zhang
- Weifang People's Hospital, Weifang, China
| | - Dexin Yu
- Qilu Hospital of Shandong University, Jinan, China
| | - Fang Wang
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Pflüger I, Rastogi A, Casagranda S, Papageorgakis C, Behnisch R, Liebig P, Prager M, Ippen FM, Paech D, Wick W, Bendszus M, Brugnara G, Vollmuth P. Amide proton transfer weighted MRI measurements yield consistent and repeatable results in patients with gliomas: a prospective test-retest study. Eur Radiol 2024:10.1007/s00330-024-11197-2. [PMID: 39694884 DOI: 10.1007/s00330-024-11197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES Chemical exchange saturation transfer (CEST) imaging has emerged as a promising imaging biomarker, but its reliability for clinical practice remains uncertain. This study aimed to investigate the robustness of CEST parameters in healthy volunteers and patients with brain tumours. METHODS A total of n = 52 healthy volunteers and n = 52 patients with histologically confirmed glioma underwent two consecutive 3-T MRI scans separated by a 1-min break. The CEST measurements were reconstructed using two models: with and without fluid suppression and included the evaluation of both amide (amidePTw) and amine (aminePTw) offsets. Mean intensity values in healthy volunteers were compared from volumetric segmentations (VOI) of grey matter, white matter, and the whole brain. Mean intensity values in brain tumour patients were assessed from VOI of the contrast-enhancing, non-enhancing and whole tumour, as well as from the normal-appearing white matter. Test-retest reliability was assessed using ICC and Bland-Altman plots. RESULTS The amidePTw/aminePTw signal intensity distribution was significantly affected by fluid suppression (p < 0.001 for each VOI). Test-retest reliability in healthy volunteers showed fair to excellent agreement (ICC = 0.53-0.74), with the highest signal intensity values observed by amidePTw (ICC = 0.73-0.74). In patients, an excellent agreement of both amidePTw and aminePTw measurements was observed across different tumour regions (ICC = 0.76-0.89), with the highest ICC for contrast-enhancing tumour measurements. Bland-Altman analysis indicated negligible systematic bias and no proportional bias in measurement errors. CONCLUSION Measurements from amide/aminePTw imaging obtained from an adequately powered test-retest study yield consistent and reproducible results in glioma patients, as a prerequisite for robust imaging biomarker discovery in neuro-oncology. KEY POINTS Question The clinical reliability of chemical exchange saturation transfer imaging remains uncertain, necessitating further investigation to establish its robustness as a biomarker in neuro-oncology. Findings This study demonstrates that amide/amine proton transfer imaging provides repeatable, high-agreement measurements in glioma patients, particularly in contrast-enhancing tumour regions. Clinical relevance This test-retest study demonstrates that chemical exchange saturation transfer imaging using two models and assessing amide and amine offsets yield consistent and repeatable results in glioma patients, as a prerequisite for robust imaging biomarker discovery for neuro-oncology studies and clinical practice.
Collapse
Affiliation(s)
- Irada Pflüger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
| | - Aditya Rastogi
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Stefano Casagranda
- Department of R&D Advanced Applications, Olea Medical, La Ciotat, France
| | | | - Rouven Behnisch
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | | | - Marcel Prager
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Bonn University Hospital, Bonn, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
- Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany.
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.
- Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Xiao G, Zhang XL, Wang SQ, Lai SX, Nie TT, Chen YW, Zhuang CY, Yan G, Wu RH. Quantitative separation of CEST effect by R ex-line-fit analysis of Z-spectra. Sci Rep 2024; 14:21471. [PMID: 39277679 PMCID: PMC11401877 DOI: 10.1038/s41598-024-72141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
The process of chemical exchange saturation transfer (CEST) is quantified by evaluating a Z-spectra, where CEST signal quantification and Z-spectra fitting have been widely used to distinguish the contributions from multiple origins. Based on the exchange-dependent relaxation rate in the rotating frame (Rex), this paper introduces an additional pathway to quantitative separation of CEST effect. The proposed Rex-line-fit method is solved by a multi-pool model and presents the advantage of only being dependent of the specific parameters (solute concentration, solute-water exchange rate, solute transverse relaxation, and irradiation power). Herein we show that both solute-water exchange rate and solute concentration monotonously vary with Rex for Amide, Guanidino, NOE and MT, which has the potential to assist in solving quantitative separation of CEST effect. Furthermore, we achieve Rex imaging of Amide, Guanidino, NOE and MT, which may provide direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and solute concentration, as well as the solute transverse relaxation.
Collapse
Affiliation(s)
- Gang Xiao
- School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, 521041, China
| | - Xiao-Lei Zhang
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Si-Qi Wang
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Shi-Xin Lai
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Ting-Ting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Yao-Wen Chen
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Cai-Yu Zhuang
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Gen Yan
- Department of Radiology, Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, China.
| | - Ren-Hua Wu
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Chakraborty K, Burman R, Nisar S, Miller S, Loschinskey Z, Wu S, Li Y, Bag AK, Khan A, Goodenough C, Wilson N, Haris M, McCormack SE, Reddy R, Ness K, Finkel R, Bagga P. Reliability of In Vivo Creatine-Weighted Chemical Exchange Saturation Transfer (CrCEST) MRI in Calf Skeletal Muscle of Healthy Volunteers at 3 T. J Magn Reson Imaging 2024. [PMID: 39212126 DOI: 10.1002/jmri.29566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Skeletal muscle mitochondrial oxidative phosphorylation (mtOXPHOS) is important for ATP generation and its dysfunction leads to exercise intolerance. Phosphorus magnetic resonance spectroscopy (31P-MRS) is a useful, noninvasive technique for mtOXPHOS assessment but has limitations. Creatine-weighted chemical exchange saturation transfer (CrCEST) MRI is a potential alternative to assess muscle bioenergetics. PURPOSE To evaluate the interscan repeatability, intra- and interobserver reproducibility of CrCEST during mild plantar flexion exercise. STUDY TYPE Retrospective. SUBJECTS Twenty healthy volunteers (age 37.6 ± 12.4 years, 11 females). FIELD STRENGTH/SEQUENCE 3 T/CEST imaging using gradient echo readout. ASSESSMENT τCrCEST (postexercise Cr recovery time) was assessed in two scans for each participant, following mild plantar flexion exercises targeting the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles. Three observers measured τCrCEST for interobserver reproducibility. Three readings by one observer were used to measure intraobserver reproducibility. Two scans were used for within-participant interscan repeatability. STATISTICAL TESTS Paired t tests, intraclass correlation coefficient (ICC), and Pearson correlation were conducted. Bland-Altman plots were used to analyze the interobserver variability. A P-value of 0.05 was considered statistically significant. RESULTS There was excellent intra- (ICC∈ 0.94 - 0.98 $$ \in \left[0.94-0.98\right] $$ ) and interobserver (ICC∈ 0.9 - 0.98 $$ \in \left[0.9-0.98\right] $$ ) reproducibility, with moderate interscan repeatability for τCrCEST in LG and MG (ICC∈ 0.54 - 0.74 $$ \in \left[0.54-0.74\right] $$ ) and poor-to-moderate interscan repeatability in Sol (ICC∈ 0.24 - 0.53 $$ \in \left[0.24-0.53\right] $$ ). Excellent interobserver reproducibility was confirmed by Bland-Altman plots (fixed bias P-value∈ 0.08 - 0.87 $$ \in \left[0.08-0.87\right] $$ ). DATA CONCLUSION CrCEST MRI shows promise in assessing muscle bioenergetics by evaluating τCrCEST during mild plantar flexion exercise with reasonable reliability, particularly in LG and MG. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Kasturee Chakraborty
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ritambhar Burman
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sabah Nisar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Saorla Miller
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zachary Loschinskey
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengjie Wu
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Asim K Bag
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ayaz Khan
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chelsea Goodenough
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirsten Ness
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Finkel
- Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Lamahewage SNS, Atterberry BA, Dorn RW, Gi E, Kimball MR, Blümel J, Vela J, Rossini AJ. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Phys Chem Chem Phys 2024; 26:5081-5096. [PMID: 38259035 DOI: 10.1039/d3cp05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Sujeewa N S Lamahewage
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Benjamin A Atterberry
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Rick W Dorn
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Eunbyeol Gi
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Maxwell R Kimball
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Janet Blümel
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Javier Vela
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Zeng Z, Dong Y, Zou L, Xu D, Luo X, Chu T, Wang J, Ren Q, Liu Q, Li X. GluCEST Imaging and Structural Alterations of the Bilateral Hippocampus in First-Episode and Early-Onset Major Depression Disorder. J Magn Reson Imaging 2023; 58:1431-1440. [PMID: 36808678 DOI: 10.1002/jmri.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Glutamate dysregulation is one of the key pathogenic mechanisms of major depressive disorder (MDD), and glutamate chemical exchange saturation transfer (GluCEST) has been used for glutamate measurement in some brain diseases but rarely in depression. PURPOSE To investigate the GluCEST changes in hippocampus in MDD and the relationship between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional. SUBJECTS Thirty-two MDD patients (34% males; 22.03 ± 7.21 years) and 47 healthy controls (HCs) (43% males; 22.00 ± 3.28 years). FIELD STRENGTH/SEQUENCE 3.0 T; magnetization prepared rapid gradient echo (MPRAGE) for three-dimensional T1-weighted images, two-dimensional turbo spin echo GluCEST, and multivoxel chemical shift imaging (CSI) for proton magnetic resonance spectroscopy (1 H MRS). ASSESSMENT GluCEST data were quantified by magnetization transfer ratio asymmetry (MTRasym ) analysis and assessed by the relative concentration of 1 H MRS-measured glutamate. FreeSurfer was used for hippocampus segmentation. STATISTICAL TESTS The independent sample t test, Mann-Whitney U test, Spearman's correlation, and partial correlation analysis were used. P < 0.05 was considered statistically significant. RESULTS In the left hippocampus, GluCEST values were significantly decreased in MDD (2.00 ± 1.08 [MDD] vs. 2.62 ± 1.41 [HCs]) and showed a significantly positive correlation with Glx/Cr (r = 0.37). GluCEST values were significantly positively correlated with the volumes of CA1 (r = 0.40), subiculum (r = 0.40) in the left hippocampus and CA1 (r = 0.51), molecular_layer_HP (r = 0.50), GC-ML-DG (r = 0.42), CA3 (r = 0.44), CA4 (r = 0.44), hippocampus-amygdala-transition-area (r = 0.46), and the whole hippocampus (r = 0.47) in the right hippocampus. Hamilton Depression Rating Scale scores showed significantly negative correlations with the volumes of the left presubiculum (r = -0.40), left parasubiculum (r = -0.47), and right presubiculum (r = -0.41). DATA CONCLUSION GluCEST can be used to measure glutamate changes and help to understand the mechanism of hippocampal volume loss in MDD. Hippocampal volume changes are associated with disease severity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yingying Dong
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Linxuan Zou
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- Department of Radiology, Cancer Hospital of Chongqing University, Chongqing, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Liu Y, Gauthier GC, Gendelman HE, Bade AN. Dual-Peak Lorentzian CEST MRI for antiretroviral drug brain distribution. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:63-69. [PMID: 37027345 PMCID: PMC10070014 DOI: 10.1515/nipt-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
Objectives Spatial-temporal biodistribution of antiretroviral drugs (ARVs) can now be achieved using MRI by utilizing chemical exchange saturation transfer (CEST) contrasts. However, the presence of biomolecules in tissue limits the specificity of current CEST methods. To overcome this limitation, a Lorentzian line-shape fitting algorithm was developed that simultaneously fits CEST peaks of ARV protons on its Z-spectrum. Case presentation This algorithm was tested on the common first line ARV, lamivudine (3TC), that has two peaks resulting from amino (-NH2) and hydroxyl (-OH) protons in 3TC. The developed dual-peak Lorentzian function fitted these two peaks simultaneously, and used the ratio of -NH2 and -OH CEST contrasts as a constraint parameter to measure 3TC presence in brains of drug-treated mice. 3TC biodistribution calculated using the new algorithm was compared against actual drug levels measured using UPLC-MS/MS. In comparison to the method that employs the -NH2 CEST peak only, the dual-peak Lorentzian fitting algorithm showed stronger correlation with brain tissue 3TC levels, signifying estimation of actual drug levels. Conclusions We concluded that 3TC levels can be extracted from confounding CEST effects of tissue biomolecules resulting in improved specificity for drug mapping. This algorithm can be expanded to measure a variety of ARVs using CEST MRI.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabriel C. Gauthier
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Banerjee P, Roy S, Chakraborty S. Recent advancement of imaging strategies of the lymphatic system: Answer to the decades old questions. Microcirculation 2022; 29:e12780. [PMID: 35972391 DOI: 10.1111/micc.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
9
|
Zhang N, Zhang H, Gao B, Miao Y, Liu A, Song Q, Lin L, Wang J. 3D Amide Proton Transfer Weighted Brain Tumor Imaging With Compressed SENSE: Effects of Different Acceleration Factors. Front Neurosci 2022; 16:876587. [PMID: 35692419 PMCID: PMC9178274 DOI: 10.3389/fnins.2022.876587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The aim of the current study was to evaluate the performance of compressed SENSE (CS) for 3D amide proton transfer weighted (APTw) brain tumor imaging with different acceleration factors (AFs), and the results were compared with those of conventional SENSE. Methods Approximately 51 patients with brain tumor (22 males, 49.95 ± 10.52 years) with meningiomas (n = 16), metastases (n = 12), or gliomas (n = 23) were enrolled. All the patients received 3D APTw imaging scans on a 3.0 T scanner with acceleration by CS (AFs: CS2, CS3, CS4, and CS5) and SENSE (AF: S1.6). Two readers independently and subjectively evaluated the APTw images relative to image quality and measured confidence concerning image blur, distortion, motion, and ghosting artifacts, lesion recognition, and contour delineation with a 5-point Likert scale. Mean amide proton transfer (APT) values of brain tumors (APTtumor), the contralateral normal-appearing white matter (APTCNAWM), and the peritumoral edema area (if present, APTedema) and the tumor volume (VAPT) were measured for objective evaluation and determination of the optimal AF. The Ki67 labeling index was also measured by using standard immunohistochemical staining procedures in samples from patients with gliomas, and the correlation between tumor APT values and the Ki67 index was analyzed. Results The image quality of AF = CS5 was significantly lower than that of other groups. VAPT showed significant differences among the six sequences in meningiomas (p = 0.048) and gliomas (p = 0.023). The pairwise comparison showed that the VAPT values of meningiomas measured from images by CS5 were significantly lower, and gliomas were significantly larger than those by SENSE1.6 and other CS accelerations, (p < 0.05). APTtumor (p = 0.191) showed no significant difference among the three types of tumors. The APTtumor values of gliomas measured by APTw images with the SENSE factor of 1.6 and the CS factor of 2, 3, and 4 (except for CS5) were all positively correlated with Ki67. Conclusion Compressed SENSE could be successfully extended to accelerated 3D APTw imaging of brain tumors without compromising image quality using the AF of 4.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Qingwei Song,
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
10
|
BADE AN, GENDELMAN HE, MCMILLAN J, LIU Y. Chemical exchange saturation transfer for detection of antiretroviral drugs in brain tissue. AIDS 2021; 35:1733-1741. [PMID: 34049358 PMCID: PMC8373768 DOI: 10.1097/qad.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antiretroviral drug theranostics facilitates the monitoring of biodistribution and efficacy of therapies designed to target HIV type-1 (HIV-1) reservoirs. To this end, we have now deployed intrinsic drug chemical exchange saturation transfer (CEST) contrasts to detect antiretroviral drugs within the central nervous system (CNS). DESIGN AND METHODS CEST effects for lamivudine (3TC) and emtricitabine (FTC) were measured by asymmetric magnetization transfer ratio analyses. The biodistribution of 3TC in different brain sub-regions of C57BL/6 mice treated with lipopolysaccharides was determined using MRI. CEST effects of 3TC protons were quantitated by Lorentzian fitting analysis. 3TC levels in plasma and brain regions were measured using ultraperformance liquid chromatography tandem mass spectrometry to affirm the CEST test results. RESULTS CEST effects of the hydroxyl and amino protons in 3TC and FTC linearly correlated to drug concentrations. 3TC was successfully detected in vivo in brain sub-regions by MRI. The imaging results were validated by measurements of CNS drug concentrations. CONCLUSION CEST contrasts can be used to detect antiretroviral drugs using MRI. Such detection can be used to assess spatial--temporal drug biodistribution. This is most notable within the CNS where drug biodistribution may be more limited with the final goal of better understanding antiretroviral drug-associated efficacy and potential toxicity.
Collapse
Affiliation(s)
- Aditya N. BADE
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. GENDELMAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - JoEllyn MCMILLAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong LIU
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
11
|
Abstract
Magnetic resonance (MR) imaging is a crucial tool for evaluation of the skull base, enabling characterization of complex anatomy by utilizing multiple image contrasts. Recent technical MR advances have greatly enhanced radiologists' capability to diagnose skull base pathology and help direct management. In this paper, we will summarize cutting-edge clinical and emerging research MR techniques for the skull base, including high-resolution, phase-contrast, diffusion, perfusion, vascular, zero echo-time, elastography, spectroscopy, chemical exchange saturation transfer, PET/MR, ultra-high-field, and 3D visualization. For each imaging technique, we provide a high-level summary of underlying technical principles accompanied by relevant literature review and clinical imaging examples.
Collapse
Affiliation(s)
- Claudia F Kirsch
- Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY
| | - Mai-Lan Ho
- Associate Professor of Radiology, Director of Research, Department of Radiology, Director, Advanced Neuroimaging Core, Chair, Asian Pacific American Network, Secretary, Association for Staff and Faculty Women, Nationwide Children's Hospital and The Ohio State University, Columbus, OH; Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY.
| |
Collapse
|
12
|
Abstract
MRI is a commonly used diagnostic tool in neurology, and all neurologists should possess a working knowledge of imaging fundamentals. An overview of current and impending MRI techniques is presented to help the referring clinician communicate better with the imaging department, understand the utility and limitations of current and emerging technology, improve specificity and appropriateness when ordering MRI studies, and recognize key findings.
Collapse
Affiliation(s)
- Nandor K Pinter
- Dent Neurologic Institute, 3980A Sheridan Drive, Suite 101, Amherst, NY 14226, USA; Department of Neurosurgery, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph V Fritz
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 501, Amherst, NY 14226, USA; NeuroNetPro, Amherst, NY, USA.
| |
Collapse
|