1
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
2
|
Yang H, Mou Y, Hu B. Discussion on the common controversies of Helicobacter pylori infection. Helicobacter 2023; 28:e12938. [PMID: 36436202 DOI: 10.1111/hel.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) can persistently colonize on the gastric mucosa after infection and cause gastritis, atrophy, metaplasia, and even gastric cancer (GC). METHODS Therefore, the detection and eradication of H. pylori are the prerequisite. RESULTS Clinically, there are some controversial issues, such as why H. pylori infection is persistent, why it translocases along with the lesser curvature of the stomach, why there is oxyntic antralization, what the immunological characteristic of gastric chronic inflammation caused by H. pylori is, whether H. pylori infection is associated with extra-gastric diseases, whether chronic atrophic gastritis (CAG) is reversible, and what the potential problems are after H. pylori eradication. What are the possible answers? CONCLUSION In the review, we will discuss these issues from the attachment to eradication in detail.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang H, Zhou X, Hu B. The 'reversibility' of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgrad Med 2022; 134:474-479. [PMID: 35382697 DOI: 10.1080/00325481.2022.2063604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-negative bacterium Helicobacter pylori (H. pylori) infection is lifelong and usually acquired in childhood, which is etiologically linked to gastric cancer (GC). H. pylori gastritis is defined as an infectious disease with varying severity in virtually all infected subjects. Chronic atrophic gastritis (CAG) is the precancerous condition with the decrease or the loss of gastric glands, which can further be replaced by metaplasia or fibrosis. Patients with advanced stages of CAG are at higher risk of GC and should be followed up with a high-quality endoscopy every 3 years. H. pylori infection is the most common cause and its eradication is recommended, which may contribute to the regression of CAG. However, it is controversial whether CAG is reversible after eradication therapy. In the review, we discuss recent studies which provide important insights into whether CAG is 'reversibility' and when it may progress into GC after eradicating H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Zhou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Zhan P, Shu X, Chen M, Sun L, Yu L, Liu J, Sun L, Yang Z, Ran Y. miR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. Life Sci 2021; 276:119405. [PMID: 33798550 DOI: 10.1016/j.lfs.2021.119405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
AIMS Gastric cancer stem cells (GCSCs) have been used as a therapeutic target. This study aims to estimate the role of miR-98-5p (termed miR-98) in the development of GCSCs. MAIN METHODS The expression of miR-98 in CD44+ GCSCs was verified by RT-PCR. The miR-98 was overexpressed in CD44+ GCSCs by Lentivirus. The ability of self-renewal, invasion, chemoresistance and tumorigenicity was detected in vitro or in vivo after overexpression of miR-98. The target genes of miR-98 were predicted and verified by luciferase reporter assays. The effects miR-98/BCAT1 signaling on the chemoresistance and tumorigenicity of CD44+ GCSCs were investigated in a xenograft model by rescue experiments. KEY FINDINGS We have shown that miR-98 was decreased in CD44+ GCSCs. The overexpression of miR-98 could inhibit the expression of stem-related genes and the ability of self-renewal, invasion, and tumorigenicity of GCSCs. Also, we found that miR-98 overexpression enhances the sensitivity to cisplatin treatment in vitro. Using a xenograft model, we showed that miR-98 overexpression reversed paclitaxel resistance to CD44+ GCSCs. Finally, we found that branched-chain aminotransferases 1 (BCAT1) is a target gene of miR-98. Overexpressed BCAT1 reversed xenograft tumor formation ability and attenuated the paclitaxel chemosensitivity induced by miR-98 downregulation. Furthermore, BCAT1 restoration affected the expression of invasion and drug resistance-related genes. SIGNIFICANCE This study revealed miR-98 inhibits gastric cancer cell stemness and chemoresistance by targeting BCAT1, suggesting that this miR-98/BCAT1 axis represents a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Panpan Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xiong Shu
- Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, PR China
| | - Meng Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
6
|
Alix M, Gasset E, Bardon-Albaret A, Noel J, Pirot N, Perez V, Coves D, Saulnier D, Lignot JH, Cucchi PN. Description of the unusual digestive tract of Platax orbicularis and the potential impact of Tenacibaculum maritimum infection. PeerJ 2020; 8:e9966. [PMID: 33024633 PMCID: PMC7520087 DOI: 10.7717/peerj.9966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ephippidae fish are characterized by a discoid shape with a very small visceral cavity. Among them Platax orbicularis has a high economic potential due to its flesh quality and flesh to carcass ratio. Nonetheless, the development of its aquaculture is limited by high mortality rates, especially due to Tenacibaculum maritimum infection, occurring one to three weeks after the transfer of fishes from bio-secure land-based aquaculture system to the lagoon cages for growth. Among the lines of defense against this microbial infection, the gastrointestinal tract (GIT) is less studied. The knowledge about the morphofunctional anatomy of this organ in P. orbicularis is still scarce. Therefore, the aims of this study are to characterize the GIT in non-infected P. orbicularis juveniles to then investigate the impact of T. maritimum on this multifunctional organ. Methods In the first place, the morpho-anatomy of the GIT in non-infected individuals was characterized using various histological techniques. Then, infected individuals, experimentally challenged by T. maritimum were analysed and compared to the previously established GIT reference. Results The overlapped shape of the GIT of P. orbicularis is probably due to its constrained compaction in a narrow visceral cavity. Firstly, the GIT was divided into 10 sections, from the esophagus to the rectum. For each section, the structure of the walls was characterized, with a focus on mucus secretions and the presence of the Na+/K+ ATPase pump. An identification key allowing the characterization of the GIT sections using in toto histology is given. Secondly, individuals challenged with T. maritimum exhibited differences in mucus type and proportion and, modifications in the mucosal and muscle layers. These changes could induce an imbalance in the trade-off between the GIT functions which may be in favour of protection and immunity to the disadvantage of nutrition capacities.
Collapse
Affiliation(s)
- Maud Alix
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institute of Marine Research, Bergen, Norway
| | - Eric Gasset
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Agnes Bardon-Albaret
- Ifremer, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, French Polynesia
| | - Jean Noel
- BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France.,IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France
| | - Nelly Pirot
- BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France.,IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France
| | - Valérie Perez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Denis Coves
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Denis Saulnier
- Ifremer, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, French Polynesia
| | | | | |
Collapse
|
7
|
Kamar SS, Latif NSA, Elrefai MFM, Amin SN. Gastroprotective effects of nebivolol and simvastatin against cold restraint stress-induced gastric ulcer in rats. Anat Cell Biol 2020; 53:301-312. [PMID: 32993280 PMCID: PMC7527116 DOI: 10.5115/acb.20.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Gastric ulcer is one of the most serious diseases. Nebivolol (Neb), a β1-blocker, exhibits vasodilator and anti-oxidative properties, simvastatin (Sim) antihyperlipidemic drug, exhibits anti-oxidative, anti-inflammatory properties and promote endogenous nitric oxide (NO) production. The aim of this study was to evaluate the gastroprotective effects of Neb and Sim against cold restraint stress (CRS)-induced gastric ulcer in rats. Rats were restrained, and maintained at 4°C for 3 hours. Animals were divided into six groups; control group, CRS group, and four treatment groups received ranitidine (Ran), Neb, Sim and both Neb and Sim. Treatments were given orally on a daily basis for 7 days prior to CRS. The gastroprotective effects of Neb and Sim were assessed biochemically by measuring variations in prostaglandins E2, NO, reduced glutathione and malondialdehyde, and functionally by estimating force of contractions of isolated rat fundus in the studied groups in response to acetylecholine stimulation and morphologically using hematoxylin and eosin staining, periodic acid Schiff's reaction and immunohistochemistry for cyclooxygenase 2 in gastric mucosa. CRS caused significant ulcerogenic effect. Alternatively, pretreatment with Ran, Neb, and Sim significantly corrected biochemical findings, pharmacological and histological studies.
Collapse
Affiliation(s)
- Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Bhanu SP, Pentyala S, Sankar DK. Incidence of hypoplastic posterior communicating artery and fetal posterior cerebral artery in Andhra population of India: a retrospective 3-Tesla magnetic resonance angiographic study. Anat Cell Biol 2020; 53:272-278. [PMID: 32647075 PMCID: PMC7527118 DOI: 10.5115/acb.20.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior communicating arteries (PCoA) are important component of collateral circulation between the anterior and posterior part of circle of Willis (CW). The hypoplasia or aplasia of PCoA will reflect on prognosis of the neurological diseases. Precise studies of the incidence of hypoplastic PCoA in Andhra Pradesh population of India are hitherto unreported, since the present study was undertaken. Two hundred and thirty one magnetic resonance angiography (MRA) images were analyzed to identify the hypoplasia of PCoA and presence of fetal type of posterior cerebral artery (f-PCA) in patients with different neurological symptoms. All the patients underwent 3.0T MRI exposure. The results were statistically analysed. A total of 63 (27.3%) PCoA hypoplasia and 13 cases with f-PCA (5.6%) cases were identified. The hypoplastic PCoA was noted more in males than females (P<0.05) and right side hypoplasia was common than the left (P<0.04); bilateral hypoplasia of PCoA was seen in 37 cases out of 63 and is significant. The hypoplastic cases of the present study also were associated with variations of anterior cerebral arteries and one case was having vertebral artery hypoplasia. Incidence of PCoA as unilateral or bilateral with other associated anomalies of CW is more prone to develop stroke, migraine and cognitive dysfunction. Knowledge of these variations in the PCoA plays a pivotal role in diagnoses of neurological disorders and in neurovascular surgeries and angiographic point of view.
Collapse
Affiliation(s)
- Sharmila P Bhanu
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Suneetha Pentyala
- Department of of Radiology, Narayana Medical College & General Hospital, Nellore, Andhra Pradesh, India
| | - Devi K Sankar
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| |
Collapse
|
9
|
Chen X, Zhang D, Jiang F, Shen Y, Li X, Hu X, Wei P, Shen X. Prognostic Prediction Using a Stemness Index-Related Signature in a Cohort of Gastric Cancer. Front Mol Biosci 2020; 7:570702. [PMID: 33134315 PMCID: PMC7504590 DOI: 10.3389/fmolb.2020.570702] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background With characteristic self-renewal and multipotent differentiation, cancer stem cells (CSCs) have a crucial influence on the metastasis, relapse and drug resistance of gastric cancer (GC). However, the genes that participates in the stemness of GC stem cells have not been identified. Methods The mRNA expression-based stemness index (mRNAsi) was analyzed with differential expressions in GC. The weighted gene co-expression network analysis (WGCNA) was utilized to build a co-expression network targeting differentially expressed genes (DEG) and discover mRNAsi-related modules and genes. We assessed the association between the key genes at both the transcription and protein level. Gene Expression Omnibus (GEO) database was used to validate the expression levels of the key genes. The risk model was established according to the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Furthermore, we determined the prognostic value of the model by employing Kaplan-Meier (KM) plus multivariate Cox analysis. Results GC tissues exhibited a substantially higher mRNAsi relative to the healthy non-tumor tissues. Based on WGCNA, 17 key genes (ARHGAP11A, BUB1, BUB1B, C1orf112, CENPF, KIF14, KIF15, KIF18B, KIF4A, NCAPH, PLK4, RACGAP1, RAD54L, SGO2, TPX2, TTK, and XRCC2) were identified. These key genes were clearly overexpressed in GC and validated in the GEO database. The protein-protein interaction (PPI) network as assessed by STRING indicated that the key genes were tightly connected. After LASSO analysis, a nine-gene risk model (BUB1B, NCAPH, KIF15, RAD54L, KIF18B, KIF4A, TTK, SGO2, C1orf112) was constructed. The overall survival in the high-risk group was relatively poor. The area under curve (AUC) of risk score was higher compared to that of clinicopathological characteristics. According to the multivariate Cox analysis, the nine-gene risk model was a predictor of disease outcomes in GC patients (HR, 7.606; 95% CI, 3.037-19.051; P < 0.001). We constructed a prognostic nomogram with well-fitted calibration curve based on risk score and clinical data. Conclusion The 17 mRNAsi-related key genes identified in this study could be potential treatment targets in GC treatment, considering that they can inhibit the stemness properties. The nine-gene risk model can be employed to predict the disease outcomes of the patients.
Collapse
Affiliation(s)
- Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Dawei Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xueju Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
10
|
El-Salhy M, Hausken T, Hatlebakk JG. Density of Musashi‑1‑positive stem cells in the stomach of patients with irritable bowel syndrome. Mol Med Rep 2020; 22:3135-3140. [PMID: 32945509 PMCID: PMC7453583 DOI: 10.3892/mmr.2020.11412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) affects ~12% of the global population. Although the etiology of IBS is not completely understood, several factors are known to serve a pivotal role in its pathophysiology, including genetic factors, diet, the intestinal microbiota, gastrointestinal endocrine cells and low‑grade inflammation. Musashi‑1 is expressed by stem cells and their early progeny, and is used as a stem cell marker. The low density of intestinal endocrine cells in patients with IBS is thought to be caused by decreased numbers of intestinal stem cells and their differentiation into enteroendocrine cells. The present study employed Musashi‑1 as a marker to detect stem cells in the stomach of 54 patients with IBS and 51 healthy subjects. The patients and controls underwent standard gastroscopy, and biopsy samples were taken from the corpus and antrum. Immunohistochemical staining of gastrin, somatostatin and Mushasi‑1 was carried out and semi‑quantified by computerized image analysis. The density (number of positive cells/mm2 epithelium) of gastrin‑positive cells in the controls and patients with IBS were 337.9±560 and 531.0±908 (median ± range; P<0.0001), respectively. For somatostatin‑positive cells, the density reached 364.4±526.0 in the healthy controls and 150.7±514.0 in patients with IBS (P<0.0001). The density of Musashi‑1‑positive cells was defined as the number of cells per gastric or pyloric gland neck. In the corpus, Musashi‑1‑positive cells density reached 3.0±7.0 in the corpus of the healthy controls and 3.8±7.7 in the patients with IBS. Moreover, the corresponding values in the antrum were 6.0±6.0 and 6.0±6.0, respectively. The Musashi‑1‑positive cell density did not differ significantly between the controls and patients with IBS in the corpus or antrum (P=0.4 and 0.3, respectively). These findings indicated that changes in the stomach endocrine cells observed in patients with IBS may not be explained by an abnormality in stem cells like those found in the small and large intestines of these patients.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, 5020 Bergen; 3National Centre for Functional Gastrointestinal Disorders, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, 5020 Bergen; 3National Centre for Functional Gastrointestinal Disorders, 5021 Bergen, Norway
| |
Collapse
|
11
|
Distinct biological characterization of the CD44 and CD90 phenotypes of cancer stem cells in gastric cancer cell lines. Mol Cell Biochem 2019; 459:35-47. [PMID: 31073886 DOI: 10.1007/s11010-019-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Recent study implicates that gastric cancer stem cells (CSCs) are capable of generating multiple types of cells to promote tumor growth and heterogeneity important for the development of gastric cancer. However, knowledge is limited regarding the expression and characteristics of marker-positive gastric CSCs. Therefore, gastric CSCs from a series of human gastric cancer cell lines (SNU-5, SNU-16, BGC-823, PAMC-82, MKN-45, and NCI-N87) using four putative CSC surface markers (CD44, CD90, CD133, and epithelial-cell adhesion molecule) were investigated the underlying mechanisms regulating such subpopulations. Only SNU-5 and SNU-16 exhibited independent co-expression of CD44+ and CD90+, which exhibited spheroid-colony formation in vitro and tumor formation in immunodeficient mice. Functional studies revealed that CD44+ cells were more invasive compared with CD90+ cells, whereas CD90+ cells exhibited higher levels of proliferation than CD44+ cells. Furthermore, serial xenotransplantation in mice of CD44+/CD90+ cells derived from SNU-5 and SNU-16 revealed rapid growth of CD90+ cells in subcutaneous lesions and a high metastatic capacity of CD44+ cells in the lung. Mechanistic analyses revealed that CD44+ cells underwent epithelial-to-mesenchymal transition (EMT) following acquisition of mesenchymal features, whereas CD90+ cells enhanced the activation of retinoblastoma phosphorylation at Ser780 and oncogenic cell cycle regulators. The expression of CD44 and CD90 in gastric cancer tissues was associated with distant metastasis and the differentiation state of tumors. These results demonstrated that CD44 and CD90 are specific biomarkers capable of identifying and isolating metastatic and tumorigenic CSCs through their ability to regulate EMT and the cell cycle in gastric cancer cell lines.
Collapse
|
12
|
Zhu YD, Hu L, Li P, Zhang M, Liu YQ. Effects of Celastrus orbiculatus on Epithelial Mesenchymal Transition in Gastric Mucosal Epithelial Cells by Inhibiting Lgr5 Expression from Rats with Gastric Precancerous Lesions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1129-1143. [PMID: 29976080 DOI: 10.1142/s0192415x18500593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extract of Celastrus orbiculatus (COE) has been shown to possess anti-Helicobacter pylori (H. pylori) activity and anticancer effects in vitro and in vivo. However, the molecular mechanism by which COE on precancerous lesions of gastric cancer (PLGC) has not been fully elucidated so far. The purpose of this study is to evaluate the effect and mechanism of COE in the rat model of PLGC, after the rat model of PLGC was successfully constructed. The effects of COE in gastric mucosa of rats with PLGC were tested using routine pathology and a transmission electron microscope (TEM) analysis. The protein and mRNA expression levels of epithelial mesenchymal transition (EMT) markers (E-cadherin, N-cadherin and Vimentin) and leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) were detected adopting techniques of immunohistochemistry (IHC), real-time PCR (RT-PCR) and western blot assays. The body weight of PLGC rats was significantly higher in the COE group than that in the untreated group. The process of PLGC was significantly reversed after COE treatment, shown by observing the changes of histopathological morphology and ultrastructure. Gastric mucosal epithelial cells in COE high dose (COE-H) group showed significantly higher expression levels of E-cadherin, and lower expression levels of N-cadherin, Vimentin and Lgr5 than those of the untreated group. COE could suppress the spatial distribution of Lgr5[Formula: see text] cell changes in PLGC rats. These findings suggested that the therapeutic mechanisms of COE in treating PLGC might be related with its effects on reversing the EMT process and inhibiting Lgr5 expression.
Collapse
Affiliation(s)
- Yao-Dong Zhu
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Lei Hu
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Ping Li
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Mei Zhang
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Yan-Qing Liu
- † Chinese Medical Institution, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
13
|
Minami T, Yuasa N, Takeuchi E, Miyake H, Nagai H, Miyata K, Kiriyama A. Superficially Spreading Signet-Ring Cell Carcinoma Perpendicularly Colliding with Gastric Adenoma: a Rare Case Report. J Gastrointest Cancer 2018; 50:609-612. [PMID: 29441461 DOI: 10.1007/s12029-018-0076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Takayuki Minami
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan.
| | - Norihiro Yuasa
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Eiji Takeuchi
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Hideo Miyake
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Hidemasa Nagai
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Kanji Miyata
- Department of Surgery, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Ayami Kiriyama
- Department of Pathology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| |
Collapse
|
14
|
Lee DH, Lee SY, Oh SC. Hedgehog signaling pathway as a potential target in the treatment of advanced gastric cancer. Tumour Biol 2017. [DOI: 10.1177/1010428317692266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dae-Hee Lee
- Division of Brain Korea 21 Program for Biomedicine Science, College of Medicine, Korea University, Seoul, Republic of Korea
- Division of Oncology and Hematology, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Suk-young Lee
- Division of Oncology and Hematology, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Division of Brain Korea 21 Program for Biomedicine Science, College of Medicine, Korea University, Seoul, Republic of Korea
- Division of Oncology and Hematology, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
15
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
16
|
McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol 2017; 66:36-42. [PMID: 28238948 DOI: 10.1016/j.semcdb.2017.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
The stomach is a digestive organ that has important roles in human physiology and pathophysiology. The developmental origin of the stomach is the embryonic foregut, which also gives rise a number of other structures. There are several signaling pathways and transcription factors that are known to regulate stomach development at different stages, including foregut patterning, stomach specification, and gastric regionalization. These developmental events have important implications in later homeostasis and disease in the adult stomach. Here we will review the literature that has shaped our current understanding of the molecular mechanisms that coordinate gastric organogenesis. Further we will discuss how developmental paradigms have guided recent efforts to differentiate stomach tissue from pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - James M Wells
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Endocrinology Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
17
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Barat S, Chen X, Cuong Bui K, Bozko P, Götze J, Christgen M, Krech T, Malek NP, Plentz RR. Gamma-Secretase Inhibitor IX (GSI) Impairs Concomitant Activation of Notch and Wnt-Beta-Catenin Pathways in CD44 + Gastric Cancer Stem Cells. Stem Cells Transl Med 2017; 6:819-829. [PMID: 28186678 PMCID: PMC5442767 DOI: 10.1002/sctm.16-0335] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSC) are associated with tumor resistance and are characterized in gastric cancer (GC). Studies have indicated that Notch and wnt-beta-catenin pathways are crucial for CSC development. Using CD44+ CSCs, we investigated the role of these pathways in GC carcinogenesis. We performed cell proliferation, wound healing, invasion, tumorsphere, and apoptosis assays. Immunoblot analysis of downstream signaling targets of Notch and wnt-beta-catenin were tested after gamma-secretase inhibitor IX (GSI) treatment. Immunohistochemistry, immunofluorescence, and Fluorescence activated cell sorting (FACS) were used to determine CD44 and Hairy enhancer of split-1 (Hes1) expression in human GC tissues. CD44+ CSCs were subcutaneously injected into NMR-nu/nu mice and treated with vehicle or GSI. GC patients with expression of CD44 and Hes1 showed overall reduced survival. CD44+ CSCs showed high expression of Hes1. GSI treatment showed effective inhibition of cell proliferation, migration, invasion, tumor sphere formation of CD44+ CSCs, and induced apoptosis. Importanly, Notch1 was found to be important in mediating a crosstalk between Notch and wnt-beta-catenin in CD44+ CSCs. Our study highlights a crosstalk between Notch and wnt-beta-catenin in gastric CD44+ CSCs. Expression of CD44 and Hes1 is associated with patient overall survival. GSI could be an alternative drug to treat GC. Stem Cells Translational Medicine 2017;6:819-829.
Collapse
Affiliation(s)
- Samarpita Barat
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Xi Chen
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Julian Götze
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | | | - Till Krech
- Institute of Pathology, Universitötsklinik Hamburg Eppendorf, Hamburg, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Ruben R Plentz
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| |
Collapse
|
19
|
Kwon RJ, Han ME, Kim JY, Liu L, Kim YH, Jung JS, Oh SO. ZHX1 Promotes the Proliferation, Migration and Invasion of Cholangiocarcinoma Cells. PLoS One 2016; 11:e0165516. [PMID: 27835650 PMCID: PMC5105949 DOI: 10.1371/journal.pone.0165516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Zinc-fingers and homeoboxes 1 (ZHX1) is a transcription repressor that has been associated with the progressions of hepatocellular carcinoma, gastric cancer, and breast cancer. However, the functional roles of ZHX1 in cholangiocarcinoma (CCA) have not been determined. We investigated the expression and roles of ZHX1 during the proliferation, migration, and invasion of CCA cells. In silico analysis and immunohistochemical studies showed amplification and overexpression of ZHX1 in CCA tissues. Furthermore, ZHX1 knockdown using specific siRNAs decreased CCA cell proliferation, migration, and invasion, whereas ZHX1 overexpression promoted all three characteristics. In addition, results suggested EGR1 might partially mediate the effect of ZHX1 on the proliferation of CCA cells. Taken together, these results show ZHX1 promotes CCA cell proliferation, migration, and invasion, and present ZHX1 as a potential target for the treatment of CCA.
Collapse
Affiliation(s)
- Ryuk-Jun Kwon
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Ji-young Kim
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Liangwen Liu
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Jin-Sup Jung
- Department of Physiology, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- Gene & Therapy Research Center for Vessel-associated Diseases, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan, 50612, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Prognostic values of four Notch receptor mRNA expression in gastric cancer. Sci Rep 2016; 6:28044. [PMID: 27363496 PMCID: PMC4929462 DOI: 10.1038/srep28044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
Notch ligands and receptors are frequently deregulated in several human malignancies including gastric cancer. The activation of Notch signaling has been reported to contribute to gastric carcinogenesis and progression. However, the prognostic roles of individual Notch receptors in gastric cancer patients remain elusive. In the current study, we accessed the prognostic roles of four Notch receptors, Notch 1-4, in gastric cancer patients through "The Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information include a total of 876 gastric cancer patients. All four Notch receptors' high mRNA expression was found to be correlated to worsen overall survival (OS) for all gastric cancer patients followed for 20 years. We further accessed the prognostic roles of individual Notch receptors in different clinicopathological features using Lauren classification, pathological grades, clinical grades, HER2 status and different choices of treatments of gastric cancer patients. These results indicate that there are critical prognostic values of the four Notch receptors in gastric cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of gastric cancer and to develop tools to more accurately predict their prognosis.
Collapse
|
21
|
Zhou L, Zhang W. Role of Helicobacter pylori infection in generation of gastric cancer stem cells. Shijie Huaren Xiaohua Zazhi 2016; 24:2767-2777. [DOI: 10.11569/wcjd.v24.i18.2767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a key cause of gastric cancer, and gastric cancer stem cells play an important role in the development of gastric cancer. Therefore in this paper, we try to explore the relationship between H. pylori infection and stem cells in gastric cancer. H. pylori infection promotes the generation of gastric cancer stem cells through the epithelial-mesenchymal transition (EMT). In addition, H. pylori participates in the processes of the formation and progression of gastric cancer stem cells by affecting related signal pathways, such as Wnt/β-catenin, Hh/SHH, Notch, FGF/BMP. On this basis, we disscuss the challenges and future directions in the research of H. pylori infection and gastric cancer stem cells.
Collapse
|
22
|
Wen Z, Feng S, Wei L, Wang Z, Hong D, Wang Q. Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med 2015; 36:1657-63. [PMID: 26497016 DOI: 10.3892/ijmm.2015.2383] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer stem cells (GCSCs) have an important role in metastasis and recurrence of gastric cancer, and novel treatment strategies that target GCSCs are urgently required. Although evodiamine (Evo), a derivative of the traditional herbal medicine Evodia rutaecarpa, has been reported to have various biological effects, its effect on GCSCs remains unknown. In order to determine the effect of Evo on apoptosis of GCSCs, an MTS assay, flow cytometry and western blot analysis were performed. The effect of Evo on self‑renewal in GCSCs was measured by alterations in the sphere formation ability, the expression of induced‑pluripotent stem cell factors, expression of epithelial-to-mesenchymal transition (EMT) factors and oxaliplatin resistance of gastric cancer cells (GCCs). Evo inhibited proliferation, promoted the Bax/B‑cell lymphoma 2 ratio and altered active caspase‑3 expression of GCSCs. In addition, Evo decreased the sphere formation ability, the expression of Sox2, KLF4, Bmi‑1 and Oct4, and oxaliplatin resistance in GCCs. Evo decreased the expression of Slug, Twist, Zeb1 and vimentin, suggesting an inhibitory effect on EMT. Furthermore, the expression of β‑catenin, c‑Myc and cyclin D1 was decreased in Evo‑treated spheroids from GCCs. In conclusion, Evo inhibited the Wnt/β‑catenin signaling pathway to inhibit proliferation and stem cell properties of GCSCs and repressed the EMT. The present findings highlight the prospect of Evo as a CSCs-targeted therapy in gastric cancer.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shujiong Feng
- Department of Gastroenterology, Hangzhou Geriatric Hospital, The North Branch of Hangzhou First People's Hospital Group, Hangzhou, Zhejiang 310012, P.R. China
| | - Lijuan Wei
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhimin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Defei Hong
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
23
|
Hoffmann W. [Continual self-renewal of the gastric epithelium by cell differentiation: implications for carcinogenesis]. DER PATHOLOGE 2015; 35 Suppl 2:202-6. [PMID: 25394968 DOI: 10.1007/s00292-014-1996-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The gastric mucosa and its glands represent a close interactive barrier to the outside world. This delicate surface is protected by a multilayered mucus barrier which contains among others the mucins MUC5AC and MUC6 and the trefoil factor family peptide TFF2. Furthermore, two types of gastric glands form delicate homeostatic systems, i.e. the fundic and antral glands, which show continual bidirectional self-renewal via differentiation from stem and progenitor cells. It was the aim of this study to analyze the self-renewal of these gastric units. MATERIAL AND METHODS Three characteristic regions (i.e. foveolar, proliferative zone and lower gland regions) were isolated from fundic and antral units by the use of laser microdissection and expression profiles concerning known marker genes were generated by reverse transcription polymerase chain reaction (RT-PCR) analysis. RESULTS The surface mucous cells (SMCs) of fundic and antral units characteristically differed in the expression of certain secretory genes. Furthermore, the maturation of mucous neck cells and their trans-differentiation into chief cells as well as the maturation of antral SMCs and antral gland cells occurred in a stepwise manner. DISCUSSION The correct maturation particularly of mucous neck cells and their trans-differentiation into chief cells is critical for homeostatic self-renewal of fundic units. Dysregulation of this multistep process can result in generation of the spasmolytic polypeptide-expressing metaplasia (SPEM) lineage which is characterized by its strong ectopic TFF2 expression. Chronic inflammation is known to support SPEM formation. The SPEM lineage is a precancerous lesion which can further differentiate into intestinal metaplasia.
Collapse
Affiliation(s)
- W Hoffmann
- Institut für Molekularbiologie und Medizinische Chemie, Medizinische Fakultät, Otto-von-Guericke-Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland,
| |
Collapse
|
24
|
Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int J Mol Sci 2015; 16:19153-69. [PMID: 26287172 PMCID: PMC4581291 DOI: 10.3390/ijms160819153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.
Collapse
|
25
|
Overexpression of NRG1 promotes progression of gastric cancer by regulating the self-renewal of cancer stem cells. J Gastroenterol 2015; 50:645-56. [PMID: 25381017 DOI: 10.1007/s00535-014-1008-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer stem cells (GCSCs) have been successfully isolated from patients. However, the molecular mechanisms underlying the self-renewal of GCSCs and their relationship with the microenvironment are poorly characterized. METHODS GCSCs and cancer-associated fibroblasts (CAFs) were cultured directly from gastric cancer patients. The self-renewal of GCSCs was assayed by sphere formation assay and in vivo tumorigenicity. Expression of neuregulin1 (NRG1) was examined by immunohistochemistry, real-time PCR and western blotting. RESULTS CAFs increased the self-renewal of GCSCs by secreting NRG1. NRG1 activated NF-κB signaling and this activation regulated GCSC self-renewal. Moreover, NF-κB-active GCSCs were tumorigenic, however NF-κB-inactive GCSCs were not. The overexpression of NRG1 in stromal cells and cancer cells was observed in the tumor tissues of gastric cancer patients and was associated with clinical stage lymph node metastasis and survival in gastric cancer patients. In addition, we also found that NRG1 can regulate the proliferation and invasion of gastric cancer cells. CONCLUSIONS These results indicate that NRG1, which can be secreted by CAFs or cancer cells, promotes progression of gastric cancer by regulating the self-renewal of GCSCs and its overexpression is associated with a prognosis of gastric cancer.
Collapse
|
26
|
Woo SR, Oh YT, An JY, Kang BG, Nam DH, Joo KM. Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness. Anat Cell Biol 2015; 48:44-53. [PMID: 25806121 PMCID: PMC4371180 DOI: 10.5115/acb.2015.48.1.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant World Health Organization grade IV brain tumor. GBM patients have a poor prognosis because of its resistance to standard therapies, such as chemotherapy and radiation. Since stem-like cells have been associated with the treatment resistance of GBM, novel therapies targeting the cancer stem cell (CSC) population is critically required. However, GBM CSCs share molecular and functional characteristics with normal neural stem cells (NSCs). To elucidate differential therapeutic targets of GBM CSCs, we compared surface markers of GBM CSCs with adult human NSCs and found that GD2 and CD90 were specifically overexpressed in GBM CSCs. We further tested whether the GBM CSC specific markers are associated with the cancer stemness using primarily cultured patient-derived GBM cells. However, results consistently indicated that GBM cells with or without GD2 and CD90 had similar in vitro sphere formation capacity, a functional characteristics of CSCs. Therefore, GD2 and CD90, GBM specific surface markers, might not be used as specific therapeutic targets for GBM CSCs, although they could have other clinical utilities.
Collapse
Affiliation(s)
- Seon Rang Woo
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| | - Young Taek Oh
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| | - Jae Yeol An
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bong Gu Kang
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea. ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea. ; Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol 2015; 32:48. [PMID: 25636508 DOI: 10.1007/s12032-015-0492-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer may appear by frequent genetic or epigenetic changes in oncogenes, tumor suppressor or DNA mismatch repair genes. Molecular studies show the possibility of involvement of certain cancer pathways in gastric cancer. In this respect, DNA methylation is one of the most important epigenetic alterations in gastric cancer and identifying the signaling mechanism and also methylation of some genes that are involved in gastric cancer can help to improve treatment strategies. Relatively, there are many reported methylation alteration of genes in stem cells in all kinds of tumors with some of these genes having a key role in tumor development. Correspondingly, KLF5, CDX1/2, WNT1 and FEM1A are considerable genes in gastric cancer, although many researches and studies have illustrated that sonic hedgehog and expression of its signaling cascade proteins are related in gastric cancer. Relatively, modification in these genes causes many eclectic cancers such as rhabdomyosarcoma and diverse kinds of digestive system tumor development. Conspicuously, these master genes have a noticeable role in stem cell's growth regulation as well as other kinds of cancer such as breast cancer and leukemia. Hence, we concluded that research and studies on methylation and expression of these genes and also the investigation of molecular signaling in gastric cancer can acquire impressive conclusions in order to control and treat this common place and serious problem.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
28
|
Akhavan-Niaki H, Samadani AA. Molecular insight in gastric cancer induction: an overview of cancer stemness genes. Cell Biochem Biophys 2014; 68:463-73. [PMID: 24078401 DOI: 10.1007/s12013-013-9749-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.
Collapse
Affiliation(s)
- Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
29
|
Pizzi M, Saraggi D, Fassan M, Megraud F, Di Mario F, Rugge M. Secondary prevention of epidemic gastric cancer in the model of Helicobacter pylori-associated gastritis. Dig Dis 2014; 32:265-74. [PMID: 24732192 DOI: 10.1159/000357857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Irrespective of its etiology, long-standing, non-self-limiting gastric inflammation (mostly in Helicobacter pylori-associated cases) is the cancerization ground on which epidemic (intestinal-type) gastric carcinoma (GC) can develop. The natural history of invasive gastric adenocarcinoma encompasses gastritis, atrophic mucosal changes, and intraepithelial neoplasia (IEN). The topography, the extent and the severity of the atrophic changes significantly correlate with the risk of developing both IEN and GC. In recent years, both noninvasive (serological) tests and invasive (endoscopy/biopsy) procedures have been proposed to stratify patients according to different classes of GC risk. As a consequence, different patient-tailored GC secondary prevention strategies have been put forward. This review summarizes the histological features of H. pylori-related gastritis and the natural history of the disease. Histological and serological strategies to assess GC risk as well as the clinical management of atrophic gastritis patients are also discussed.
Collapse
Affiliation(s)
- Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Kuang RG, Kuang Y, Luo QF, Zhou CJ, Ji R, Wang JW. Expression and significance of Musashi-1 in gastric cancer and precancerous lesions. World J Gastroenterol 2013; 19:6637-6644. [PMID: 24151393 PMCID: PMC3801380 DOI: 10.3748/wjg.v19.i39.6637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate expression of stem cell marker Musashi-1 (Msi-1) in relationship to tumorigenesis and progression of intestinal-type gastric cancer (GC).
METHODS: Endoscopic biopsy specimens and surgical specimens were obtained, including 54 cases of intestinal-type GC, 41 high-grade intraepithelial neoplasia, 57 low-grade intraepithelial neoplasia, 31 intestinal metaplasia, and 36 normal gastric mucosa. Specimens were fixed in 10% paraformaldehyde, conventionally dehydrated, embedded in paraffin, and sliced in 4-μm-thick serial sections. Two-step immunohistochemical staining was used to detect Msi-1 and proliferating cell nuclear antigen (PCNA) expression. Correlation analysis was conducted between Msi-1 and PCNA expression. The relationship between Msi-1 expression and clinicopathological parameters of GC was analyzed statistically.
RESULTS: There were significant differences in Msi-1 and PCNA expression in different pathological tissues (χ2 = 15.37, P < 0.01; χ2 = 115.36, P < 0.01). Msi-1 and PCNA-positive cells were restricted to the isthmus of normal gastric glands. Expression levels of Msi-1 and PCNA in intestinal metaplasia were significantly higher than in normal mucosa (U = 392.0, P < 0.05; U = 40.50, P < 0.01), whereas there was no significant difference compared to low or high-grade intraepithelial neoplasia. Msi-1 and PCNA expression in intestinal-type GC was higher than in high-grade intraepithelial neoplasia (U = 798.0, P < 0.05; U = 688.0, P < 0.01). There was a significantly positive correlation between Msi-1 and PCNA expression (rs = 0.20, P < 0.01). Msi-1 expression in GC tissues was correlated with their lymph node metastasis and tumor node metastasis stage (χ2 = 12.62, P < 0.01; χ2 = 11.24, P < 0.05), but not with depth of invasion and the presence of distant metastasis.
CONCLUSION: Msi-1-positive cells may play a key role in the early events of gastric carcinogenesis and may be involved in invasion and metastasis of GC.
Collapse
|
31
|
He Z, Subramaniam D, Zhang Z, Zhang Y, Anant S. Honokiol as a Radiosensitizing Agent for Colorectal cancers. CURRENT COLORECTAL CANCER REPORTS 2013; 9. [PMID: 24307888 DOI: 10.1007/s11888-013-0191-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radioresistance is a frustrating obstacle for patients with colorectal cancers (CRCs) undergoing radiotherapy. There is an urgent need to find an effective agent to increase the sensitivity of CRCs to radiation. Honokiol, an active compound purified from Magnolia, was found to radiosensitize colorectal cancer cells both in vitro and in vivo. However, the mechanisms control important signaling that enhances radiosensitivity is currently unknown. In this study, we have reviewed important signaling pathways that are closely related to radiosensitization, such as cell cycle arrest, tumor angiogenesis, JAK/STAT3 signaling pathway and Mismatch repair. Studies show that honokiol can interfere with these pathways at different levels. With overall analysis, it may bring light on finding the possible mechanism by which honokiol acts as a radiosensitizing agent for CRCs.
Collapse
Affiliation(s)
- Zhiyun He
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China ; Department of General Surgery, Second Hospital of Lanzhou, University of Lanzhou, Gansu 730030, China ; Department of Molecular and Integrative Physiology, Kansas City, Kansas, USA
| | | | | | | | | |
Collapse
|
32
|
Tanabe S. Perspectives of gene combinations in phenotype presentation. World J Stem Cells 2013; 5:61-67. [PMID: 23951387 PMCID: PMC3744131 DOI: 10.4252/wjsc.v5.i3.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023] Open
Abstract
Cells exhibit a variety of phenotypes in different stages and diseases. Although several markers for cellular phenotypes have been identified, gene combinations denoting cellular phenotypes have not been completely elucidated. Recent advances in gene analysis have revealed that various gene expression patterns are observed in each cell species and status. In this review, the perspectives of gene combinations in cellular phenotype presentation are discussed. Gene expression profiles change during cellular processes, such as cell proliferation, cell differentiation, and cell death. In addition, epigenetic regulation increases the complexity of the gene expression profile. The role of gene combinations and panels of gene combinations in each cellular condition are also discussed.
Collapse
|