1
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Raza MA, Kim E, Shakeel M, Fiaz M, Ma L, Kim H, Kim CY, Liu Z, Huang K, Park K, Javed MT, Kim MO. Evaluation of zinc oxide and copper oxide nanoparticles as potential alternatives to antibiotics for managing fowl typhoid in broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:962-980. [PMID: 39398308 PMCID: PMC11466733 DOI: 10.5187/jast.2023.e91] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/05/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2024]
Abstract
Antimicrobial resistance poses challenges to humans and animals, especially to the poultry sector in control of fowl typhoid with antibiotics, leading to increased mortality and food insecurity. Therefore, it is essential to develop more effective medications as alternatives to antibiotics. Currently, zinc oxide and copper oxide nanoparticles are of such significant interest due to their antibacterial properties. This study aimed to evaluate antimicrobial activity of zinc oxide and copper oxide nanoparticles against fowl typhoid in broilers. Ninety broiler chicks were raised under suitable management conditions. On day 10 of age, chicks were divided into six groups: control negative, control positive, T1, T2, T3, and T4. On day 19 of age, chicks in all groups except control negative were infected with Salmonella gallinarum (0.2 mL, 108 CFU/mL). After appearance of clinical signs, the treatments (Florfenicol; 50 mg/L drinking water [T1], and zinc oxide + copper oxide nanoparticles; 25 + 10 mg/kg/d [T2], 37.5 + 15 mg/kg/d [T3], and 50 + 20 mg/kg/d [T4]) were administered to chicks. Chicks were sacrificed on 26th and 30th day of age, and samples of blood and tissue were obtained. Hematological analysis with gross and histopathological examination of spleen, thymus and bursa of Fabricius was performed. Results revealed that there was no visible congestion in spleen and thymus of T3 and T4 at 11th day post infection. Antibody level against new castle's disease and lymphoproliferative response showed no significant difference in all groups. However, phagocytic response in nanoparticles treated groups exhibited a notable (p < 0.01) distinction compared to control positive. Notably, T3 demonstrated the highest level of phagocytic activity. Hematological parameters, including lymphocytes, heterophils, eosinophils, and heterophils/lymphocytes ratio in groups T2, T3, and T4, indicated significant (p < 0.01) difference compared to control positive. However, lymphocytes, heterophils, and heterophils/lymphocytes ratio in groups T2, T3, and T4 showed no significant difference when compared to T1. Nanoparticle treated groups showed decreased (p < 0.01) congestion of spleen and thymus as compared to control positive. Overall, zinc oxide and copper oxide nanoparticles have potential to serve as an alternative to florfenicol in treatment of fowl typhoid.
Collapse
Affiliation(s)
- Muhammad Atif Raza
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Muhammad Shakeel
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Muhammad Fiaz
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Lei Ma
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Chae Yeon Kim
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Zhibin Liu
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Ke Huang
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Kanghyun Park
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| | - Muhammad Tariq Javed
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
3
|
Xiao X, Guo K, Liu J, Liu Y, Yang C, Xu Y, Deng B. The Effect of Sodium Alginate-Coated Nano-Zinc Oxide on the Growth Performance, Serum Indexes and Fecal Microbial Structure of Weaned Piglets. Animals (Basel) 2023; 14:146. [PMID: 38200877 PMCID: PMC10778004 DOI: 10.3390/ani14010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High dose of zinc oxide (ZnO) could improve growth performance and alleviate disease status, whereas it caused serious environmental pollution and bacterial resistance. This study was to investigate whether low doses of sodium alginate-coated nano zinc oxide (saZnO), a new type of zinc resource, could serve as a potential alternative to pharmacological doses of traditional ZnO in weaned piglets. A total of 144 crossbred piglets were randomly allocated into three groups, including a basal diet without the addition of Zn (CON), a basal diet with 1600 mg Zn/kg from traditional ZnO (ZnO), and a basal diet with 500 mg Zn/kg from saZnO (saZnO). The experiment lasted for 28 days. The results showed that supplementing with ZnO and saZnO for 14 and 28 days significantly improved body weight (BW) and average daily gain (ADG) (p < 0.01) and markedly reduced the feed intake-to-gain ratio (F/G) (p < 0.05) and diarrhea rate. In addition, dietary ZnO and saZnO significantly increased the activities of the total antioxidant capacity (T-AOC) and alkaline phosphatase (ALP) (p < 0.01). Supplementing with saZnO also promoted the levels of superoxide dismutase (SOD), IgM and copper- and zinc-containing superoxide dismutase (Cu/Zn-SOD) in serum (p < 0.05), whereas a ZnO addition decreased the concentration of malondialdehyde (MDA) (p < 0.05), indicating the beneficial effect of Zn on antioxidant and immune functions. Piglets fed the ZnO diet showed higher serum Zn accumulations than those fed the CON and saZnO diets at d 28 (p < 0.01), and supplementing with ZnO and saZnO markedly contributed to Zn excretion in feces, especially in the ZnO diet (p < 0.01). Additionally, piglets fed the saZnO diet had greater valeric acid concentrations (p < 0.05) in their feces, while other short chain fatty acids (SCFAs) were not affected by different treatments (p > 0.05). Microbial alpha diversity was reduced in the saZnO group compared with the CON group (p < 0.05), while an obvious separation of microbial composition, the marker of beta diversity, was shown among the three groups (p < 0.05). At the genus level, six genera, including Clostridium_sensu_stricto_1, Terrisporobacter, f_Muribaculaceae, Subdoligranulum and Intestinibacter, were pronouncedly increased in the ZnO and saZnO groups (p < 0.05); another nine species were dramatically downregulated, such as f_Lachnospiraceae, f_Prevotellaceae, f_Butyricicoccaceae and f_Ruminococcaceae (p < 0.05). Finally, a functional analysis indicated that altered microbes significantly changed the "Metabolism" pathway (p < 0.05). These findings suggested that saZnO could act as a feasible substitute for ZnO to reduce Zn emission and enhance growth performance, antioxidant and immune functions, and to adjust the structure of gut microbiota in piglets.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Kai Guo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Choi Y, Hosseindoust A, Ha SH, Kim J, Min Y, Jeong Y, Mun J, Sa S, Kim J. Effects of dietary supplementation of bacteriophage cocktail on health status of weanling pigs in a non-sanitary environment. J Anim Sci Biotechnol 2023; 14:64. [PMID: 37150809 PMCID: PMC10165815 DOI: 10.1186/s40104-023-00869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The study evaluated the effects of bacteriophage cocktail (BP) and ZnO administered during weaning time for piglets exposed to a non-sanitary environment. The bacteriophages were designed to eliminate Escherichia coli (K88, K99 and F41), Salmonella (typhimurium and enteritidis), and Clostridium perfreingens (types A and C). Forty 21-day-old crossbreed piglets were assigned to four treatments, including the PC (sanitary environment), NC (non-sanitary environment), BP (NC plus 108 pfu/kg BP), and ZO (NC plus 2,500 mg/kg ZnO). Piglets in the NC, BP and ZO were kept in a non-sanitary environment for 14 d, which was contaminated with the feces of infected pigs. RESULTS Pigs in the BP and ZO treatments had a higher final body weight compared with the NC. The NC treatment showed the highest concentration of inflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α in the plasma. The administration of BP and ZO showed lower myeloperoxidase concentrations compared with the NC. The NC treatment showed a lower concentration of superoxide dismutase in serum compared with the PC. Among the treatments in non-sanitary environment, the NC treatment showed a higher concentration of malondialdehyde compared with the ZO. The PC treatment showed a lower concentration of butyric acid in the feces compared with the BP treatment. Among non-sanitary treatments, the villus height in the duodenum was greater in the BP and ZO compared with the NC. The lower abundance of Proteobacteria phylum was observed in the BP and PC treatments compared with the NC. The highest relative abundance of Eubacterium was recorded in the BP treatment. The abundance of Megasphaera and Schwartzia was higher in the NC pigs compared with the BP piglets. The abundance of Desulfovibrio was lower in the supplemented treatments (BP and ZO) compared with non-supplemented (NC and PC). The abundance of Cellulosilyticum genera was higher in the BP and ZO treatments rather than in the NC. The piglets in the NC treatment had the highest abundance of Escherichia-Shigella, followed by the PC and ZO treatments. CONCLUSION In conclusion, these results suggest that the supplementation of bacteriophage cocktail could effectively control Proteobacteria phylum, Clostridium spp. and coliforms population and mitigated the adverse influences of weaning stress in piglets.
Collapse
Affiliation(s)
- YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sang Hun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joeun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - YeJin Min
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - YongDae Jeong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - SooJin Sa
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea.
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Chen S, Zhou B, Zhang J, Liu H, Ma L, Wang T, Wang C. Effects of Dietary Nano-Zinc Oxide Supplementation on Meat Quality, Antioxidant Capacity and Cecal Microbiota of Intrauterine Growth Retardation Finishing Pigs. Foods 2023; 12:foods12091885. [PMID: 37174423 PMCID: PMC10178521 DOI: 10.3390/foods12091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
As nano-zinc oxide (Nano-ZnO), a new type of nanomaterial, has antioxidant and intestinal protection effects, we hypothesized that dietary Nano-ZnO could modulate poor meat quality, oxidative stress and disturbed gut microbiota in the finishing pig model of naturally occurring intrauterine growth retardation (IUGR). A total of 6 normal-born weight (NBW) and 12 IUGR piglets were selected based on birth weight. The pigs in the NBW group received a basal diet, and IUGR pigs were randomly divided into two groups and treated with basal diet and 600 mg/kg Nano-ZnO-supplemented diet. Dietary Nano-ZnO ameliorated IUGR-associated declined meat quality by lowering the drip loss48h, cooking loss, shearing force and MyHc IIx mRNA expression, and raising the redness (a*), peak area ratio of immobilized water (P22), sarcomere length and MyHc Ia mRNA expression. Nano-ZnO activated the nuclear factor erythroid 2-related factor 2-glutamyl cysteine ligase (Nrf2-GCL) signaling pathway by promoting the nuclear translocation of Nrf2, increasing the GCL activities, and mRNA and protein expression of its catalytic/modify subunit (GCLC/GCLM), thereby attenuating the IUGR-associated muscle oxidative injury. Additionally, the composition of IUGR pigs' cecal microbiota was altered by Nano-ZnO, as seen by changes in Shannon and Simpson indexes, the enhanced UCG-005, hoa5-07d05 gut group and Rikenellaceae RC9 gut group abundance. The UCG-005 and hoa5-07d05 gut group abundance were correlated with indicators that reflected the meat quality traits and antioxidant properties. In conclusion, Nano-ZnO improved the IUGR-impaired meat quality by altering water holding capacity, water distribution and the ultrastructure of muscle, activating the Nrf2-GCL signaling pathway to alleviate oxidative status and regulating the cecal microbial composition.
Collapse
Affiliation(s)
- Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Papadomichelakis G, Palamidi I, Paraskeuas VV, Giamouri E, Mountzouris KC. Evaluation of a Natural Phytogenic Formulation as an Alternative to Pharmaceutical Zinc Oxide in the Diet of Weaned Piglets. Animals (Basel) 2023; 13:431. [PMID: 36766320 PMCID: PMC9913353 DOI: 10.3390/ani13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
A natural phytogenic formulation (NPF) was tested as an alternative to pharmaceutical zinc oxide (ZnO) in weaned piglets with respect to growth performance, apparent total tract digestibility and faecal microbiota composition and metabolic activity. Two dietary NPF levels (NPF: 1000 and 2000 mg/kg diet) were compared to a positive control (ZnO: 3000 mg ZnO/kg diet) and a negative control (CON: no added ZnO or NPF) using 84 weaned piglets from 29 d to 78 d (days of age). Feed conversion ratio was improved (p < 0.05) in ZnO and NPF piglets were compared to CON at 50 d. Dry matter, organic matter and crude protein (p < 0.05) digestibility was improved in NPF piglets compared to CON at 57 d. Compared to CON, NPF inclusion reduced E. coli (p < 0.05) and increased C. leptum subgroup (p < 0.01) at 57 d and 78 d, and reduced C. perfringens subgroup (p < 0.05; at 78 d). The ZnO reduced (p < 0.001) E. coli and C. perfringens subgroup (p < 0.01) compared to CON at 78 d. Moreover, ZnO and NPF reduced molar ratios of branched chain volatile fatty acids (p < 0.05) compared to CON, while NPF also increased butyric acid (p < 0.05) at 78 d. In conclusion, the NPF appeared to be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
| | | | | | | | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
8
|
Yu L, Liu J, Mao J, Peng Z, Zhong Z, Wang H, Dong L. Dietary Palygorskite Clay-Adsorbed Nano-ZnO Supplementation Improves the Intestinal Barrier Function of Weanling Pigs. Front Nutr 2022; 9:857898. [PMID: 35634385 PMCID: PMC9133891 DOI: 10.3389/fnut.2022.857898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of PNZ on intestinal mucosal barrier function in weaning piglets. A total of 210, 21-day-old piglets with similar body weights (6.30 ± 0.51 kg) were randomly allocated into seven groups: control group (CON), antibiotic group (ANT), ZnO group (ZO), nano-ZnO group (NZO) and low, middle, and high PNZ groups (LPNZ, MPNZ, and HPNZ). The seven groups were, respectively, fed control diets or control diets supplemented with antibiotics; 3,000 mg/kg ZnO; 800 mg/kg nano-ZnO; 700, 1,000, or 1,300 mg/kg PNZ. More integrated intestinal villi were observed in the LPNZ group. In the jejunum of LPNZ group, the crypt depth significantly decreased (P < 0.05), and the ratio of villus height to crypt depth (V/C) significantly increased (P < 0.05). In addition, the villus width and surface area of the ileum were significantly increased in the LPNZ group (P < 0.05). Dietary supplementation with PNZ can significantly increase the number of goblet cells in the mucosa of the jejunum and ileum (P < 0.05), decrease the contents of TNF-α and IL-1β (P < 0.05), and increase the contents of sIgA and IL-4 in the jejunal and ileal mucosa (P < 0.05). Meanwhile, the mRNA expression of MCU2 and ZO1 in PNZ group were significantly increased (P < 0.05), the mRNA expression of TLR4 and MyD88 was downregulated (P < 0.05). With increasing levels of PNZ, decreased proinflammatory cytokines and increased intestinal mucosal barrier function in weaned pigs was observed. In conclusion, supplementation with PNZ could effectively improve the intestinal barrier function of weanling piglets and potentially could replace the use of high doses of ZnO and antibiotics. The appropriate dose of PNZ for supplementation was 700 mg/kg.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|