1
|
Mudgil M, Kurur ND. Excitation of long-lived nuclear spin order using spin-locking: a geometrical formalism. Phys Chem Chem Phys 2024; 26:19908-19920. [PMID: 38990198 DOI: 10.1039/d4cp01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Over the last two decades, numerous pulse sequences have been introduced for the excitation of long-lived spin order (LLS) in high fields. The long continuous wave (CW) or adiabatic pulses used in the SLIC and APSOC sequences should remind one of the spin-locking pulses that are used to induce cross-polarization (CP). Dynamics during these spin-lockings in CP experiments are explained through a geometrical formalism. However, the SLIC and APSOC sequences are described in terms of the energy-level picture or in the language of level anti-crossings. Motivated by this analogy, this work presents here a geometrical formalism for the LLS excitation by spin-locking pulses in weakly coupled systems. The formalism is similar to the one used for CP dynamics and reveals new pulse sequences involving CW or adiabatic locking. A similar formalism for the sustaining period of LLS is also provided, which reveals new features of the dynamics and suggests the usage of modulated spin-lockings for proper LLS sustaining. For strong and intermediate regimes, although a simple geometrical formalism seems infeasible, a new pulse sequence that employs a ramp-down adiabatic pulse for both LLS excitation and reconversion to observables in both these regimes is presented here. Given the similarities between LLS excitation and well-developed CP, it may be anticipated that this work would initiate the search for new LLS excitation methods and applications.
Collapse
Affiliation(s)
- Manjeet Mudgil
- Chemistry Department, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Narayanan D Kurur
- Chemistry Department, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
2
|
Snadin AV, Chuklina NO, Kiryutin AS, Lukzen NN, Yurkovskaya AV. Magnetic field dependence of the para-ortho conversion rate of molecular hydrogen in SABRE experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107630. [PMID: 38364339 DOI: 10.1016/j.jmr.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
The use of parahydrogen - the isomer of molecular hydrogen with zero nuclear spin - is important for promising and actively developing methods for spin hyperpolarization of nuclei called parahydrogen induced polarization (PHIP). However, the dissolved parahydrogen in PHIP experiments quickly loses its spin order, resulting in the formation of orthohydrogen and reduction of the overall nuclear polarization of the substrate. This process is due to the difference of chemical shifts of hydride protons, as well as spin-spin couplings between nuclei, in the intermediate catalytic complexes, and it has not been rigorously explained so far. We proposed a new experimental technique based on magnetic field cycling for measuring the rate of molecular hydrogen para-ortho conversion in solution and applied it for non-hydrogenative PHIP Signal Amplification By Reversible Exchange (SABRE) experiments. The para-ortho conversion rate was measured over a wide range of magnetic field from 0.5 mT to 9.4 T. It was found that the conversion rate strongly depends on the magnetic field in which the reaction occurs, as well as on the concentrations of reactants. The rate decreases with increasing the concentration of pyridine ligand and increases with increasing the concentration of iridium catalyst. The model, which takes into account the reversible exchange of molecular hydrogen with the catalyst, nuclear spin-spin interaction of hydride protons with nuclei of ligands within catalytic complex and nuclear Zeeman interactions, qualitatively describes the experimental data. Two types of complexes with different spin system symmetry contribute to the molecular hydrogen conversion. In asymmetric complexes possessing hydride protons with different chemical shifts due to the presence of chlorine anion ligand the para-ortho conversion rate increases with magnetic field, while for symmetric complexes this mechanism is not operable. In the magnetic field where level anti-crossing occurs the resonant feature for the rate of para-ortho conversion is found. The results of this work can be utilized for finding the optimal conditions for obtaining the maximum hyperpolarization in the experiments employing parahydrogen.
Collapse
Affiliation(s)
- Alexander V Snadin
- Novosibirsk State University, Novosibirsk 630090, Russia; Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Natalia O Chuklina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Nikita N Lukzen
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
4
|
Van Dyke ET, Eills J, Picazo-Frutos R, Sheberstov KF, Hu Y, Budker D, Barskiy DA. Relayed hyperpolarization for zero-field nuclear magnetic resonance. SCIENCE ADVANCES 2022; 8:eabp9242. [PMID: 35857837 PMCID: PMC9299534 DOI: 10.1126/sciadv.abp9242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 05/14/2023]
Abstract
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that provides rich spectroscopic information in the absence of large magnetic fields. However, signal acquisition still requires a mechanism for generating a bulk magnetic moment for detection, and the currently used methods only apply to a limited pool of chemicals or come at prohibitively high cost. We demonstrate that the parahydrogen-based SABRE (signal amplification by reversible exchange)-Relay method can be used as a more general means of generating hyperpolarized analytes for ZULF NMR by observing zero-field J-spectra of [13C]-methanol, [1-13C]-ethanol, and [2-13C]-ethanol in both 13C-isotopically enriched and natural abundance samples. We explore the magnetic field dependence of the SABRE-Relay efficiency and show the existence of a second maximum at 19.0 ± 0.3 mT. Despite presence of water, SABRE-Relay is used to hyperpolarize ethanol extracted from a store-bought sample of vodka (%PH ~ 0.1%).
Collapse
Affiliation(s)
- Erik T. Van Dyke
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - James Eills
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Román Picazo-Frutos
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Kirill F. Sheberstov
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- École normale supérieure, Paris Sciences et Lettres University, 75005 Paris, France
| | - Yinan Hu
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- University of California at Berkeley, Berkeley, CA 94720-7300, USA
| | - Danila A. Barskiy
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
5
|
Li X, Lindale JR, Eriksson SL, Warren WS. SABRE enhancement with oscillating pulse sequences. Phys Chem Chem Phys 2022; 24:16462-16470. [PMID: 35552575 DOI: 10.1039/d2cp00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, combined with simulations and experiment, shows substantial magnetization improvements relative to traditional X-SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time symmetry in the toggling frame make magnetization generation more robust to experimental imperfections.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Physics, Duke University Durham, NC 27708, USA.
| | - Jacob R Lindale
- Department of Chemistry, Duke University Durham, NC 27708, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University Durham, NC 27708, USA
- School of Medicine, Duke University Durham, NC 27708, USA
| | - Warren S Warren
- Department of Physics, Duke University Durham, NC 27708, USA.
- Department of Chemistry, Duke University Durham, NC 27708, USA
- Department of Biomedical Engineering, and Radiology, Duke University, Durham, NC (27708), USA.
| |
Collapse
|
6
|
Dagys L, Bengs C. Hyperpolarization read-out through rapidly rotating fields in the zero- and low-field regime. Phys Chem Chem Phys 2022; 24:8321-8328. [PMID: 35319549 PMCID: PMC8985660 DOI: 10.1039/d1cp04653e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022]
Abstract
An integral part of para-hydrogen induced polarization (PHIP) methods is the conversion of nuclear singlet order into observable magnetization. In this study polarization transfer to a heteronucleus is achieved through a selective rotation of the proton singlet-triplet states driven by a combination of a rotating magnetic field and a weak bias field. Surprisingly we find that efficient polarization transfer driven by a STORM (Singlet-Triplet Oscillations through Rotating Magnetic fields) pulse in the presence of sub-μT bias fields requires rotation frequencies on the order of several kHz. The rotation frequencies therefore greatly exceed any of the internal frequencies of typical zero- to ultralow field experiments. We further show that the rotational direction of the rotating field is not arbitrary and greatly influences the final transfer efficiency. Some of these aspects are demonstrated experimentally by considering hyperpolarized (1-13C)fumarate. In contrast to most of the existing methods, the STORM procedure therefore represents a promising candidate for quadrupolar decoupled polarization transfer in PHIP experiments.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of Chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Christian Bengs
- School of Chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| |
Collapse
|
7
|
Eriksson SL, Lindale JR, Li X, Warren WS. Improving SABRE hyperpolarization with highly nonintuitive pulse sequences: Moving beyond avoided crossings to describe dynamics. SCIENCE ADVANCES 2022; 8:eabl3708. [PMID: 35294248 PMCID: PMC8926330 DOI: 10.1126/sciadv.abl3708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 05/26/2023]
Abstract
Signal amplification by reversible exchange (SABRE) creates "hyperpolarization" (large spin magnetization) using a transition metal catalyst and parahydrogen, addressing the sensitivity limitations of magnetic resonance. SABRE and its heteronuclear variant X-SABRE are simple, fast, and general, but to date have not produced polarization levels as large as more established methods. We show here that the commonly used theoretical framework for these applications, which focuses on avoided crossings (also called level anticrossings or LACs), steer current SABRE and X-SABRE experiments away from optimal solutions. Accurate simulations show astonishingly rich and unexpected dynamics in SABRE/X-SABRE, which we explain with a combination of perturbation theory and average Hamiltonian approaches. This theoretical picture predicts simple pulse sequences with field values far from LACs (both instantaneously and on average) using different terms in the effective Hamiltonian to strategically control evolution and improve polarization transfer. Substantial signal enhancements under such highly nonintuitive conditions are verified experimentally.
Collapse
Affiliation(s)
- Shannon L. Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- School of Medicine, Duke University, Durham, NC 27708, USA
| | | | - Xiaoqing Li
- Department of Physics, Duke University, Durham, NC 27708, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC 27704, USA
| |
Collapse
|