1
|
McConaghy K, Smietana M, Pasqualini I, Rullán PJ, Fleming J, Piuzzi NS. Comparing the Rate of Dissolution of Two Commercially Available Synthetic Bone Graft Substitutes. J Knee Surg 2024. [PMID: 39236767 DOI: 10.1055/a-2410-2552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This study characterized the dissolution properties of two commercially available bone substitutes: (1) A calcium sulfate (CaS)/brushite/β-tricalcium phosphate (TCP) graft containing 75% CaS and 25% calcium phosphate; and (2) a CaS/hydroxyapatite (HA) bone graft substitute composed of 60% CaS and 40% HA. Graft material was cast into pellets (4.8 mm outer diameter × 3.2 mm). Each pellet was placed into a fritted thimble and weighed before being placed into 200 mL of deionized water. The pellets were removed from the water on days 1, 2, 3, 4, 6, 8, 14, 18, or until no longer visible. The mass and volume of each pellet were calculated at each timepoint to determine the rate of dissolution. Analysis of variance was performed on all data. Statistical significance was defined as p < 0.05. The CaS/HA pellets were completely dissolved after day 8, while the CaS/brushite/β-TCP pellets remained until day 18. The CaS/brushite/β-TCP pellets had significantly more mass and volume at days 1, 2, 3, 4, 6, and 8 timepoints. The CaS/brushite/β-TCP pellets lost 46% less mass and 53% less volume over the first 4 days as compared to CaS/HA pellets. The CaS/brushite/β-TCP pellets had a rough, porous texture, while the CaS/HA pellets had a smooth outer surface. Overall the CaS/brushite/β-TCP pellets dissolved approximately twice as slowly as the CaS/HA pellets in vitro. As these in vitro findings might have in vivo implications, further clinical data are required to further confirm and establish the optimal synthetic bone substitute strategy or antibiotic delivery carrier.
Collapse
Affiliation(s)
- Kara McConaghy
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | | | - Pedro J Rullán
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
2
|
Türk Ç, Ozdemir N. Traumatic multiple-level continuous and noncontinuous thoracolumbar spinal fractures management in adult patients: A single-center experience. ULUS TRAVMA ACIL CER 2024; 30:745-753. [PMID: 39382362 PMCID: PMC11622705 DOI: 10.14744/tjtes.2024.57658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND This study aimed to describe our clinical experience with surgical approaches and patient management for traumatic multiple-level continuous and noncontinuous thoracolumbar spinal fractures. METHODS We retrospectively evaluated patients with continuous and noncontinuous multiple-level thoracolumbar fractures who were operated on by the same surgical team from 2019 to 2021. These patients were divided into two groups: Group 1 (n=12, continuous fractures) and Group 2 (n=14, noncontinuous fractures). We assessed the patients' age, gender, fracture levels, fracture type, classification according to the AO (Arbeitsgemeinschaft für Osteosynthesefragen) Spine Thoracolumbar Fracture Classification, status of posterior ligament damage, presence of additional traumatic pathology, status of decompression via laminectomy, levels of stabilization and fusion, preoperative and postoperative neurological status, presence of cervical trauma, duration of operation, amount of blood loss, duration of hospitalization, and lordosis and kyphosis angles in terms of fusion status and postoperative follow-up over two years. The study excluded patients over the age of 65, those with single-level fractures, and pathological fractures caused by osteoporosis, infection, or spinal tumors. RESULTS Gender, age, neurological status, application of laminectomy, surgical complications, status of cervical fracture, duration of operation, amount of blood loss, duration of hospitalization, lordosis, and kyphosis angles were uniformly distributed between the groups. All patients underwent fusions, ranging from three to eight, with a median of two (range 2-4) fracture levels, and a median of five instrumented vertebrae, ranging from four to seven. Significant differences between the two groups were observed in terms of operation duration (p=0.001), blood loss (p=0.010), duration of hospitalization (p=0.003), number of fusions (p<0.001), and instrumented vertebral segments (p=0.011). CONCLUSION Thus, a surgical approach involving decompression, vertebral fusion screws, allografts, and bone substitutes can enhance surgical outcomes for patients with continuous and noncontinuous vertebral fractures.
Collapse
Affiliation(s)
- Çağlar Türk
- Department of Neurosurgery, Izmir City Hospital, Izmir-Türkiye
| | - Nail Ozdemir
- Department of Neurosurgery, Faculty of Medicine, 9 Eylul University, Izmir-Türkiye
| |
Collapse
|
3
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Östman M, Försth P, Hedenqvist P, Engqvist H, Marcelino L, Ytrehus B, Hulsart-Billström G, Pujari-Palmer M, Öhman-Mägi C, Höglund O, Forterre F. Novel Calcium Phosphate Promotes Interbody Bony Fusion in a Porcine Anterior Cervical Discectomy and Fusion Model. Spine (Phila Pa 1976) 2024; 49:1179-1186. [PMID: 38213106 PMCID: PMC11319082 DOI: 10.1097/brs.0000000000004916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
STUDY DESIGN Experimental porcine anterior cervical discectomy and fusion (ACDF) model: a proof-of-concept study. OBJECTIVE The effect of monetite synthetic bone graft (SBG) containing calcium pyrophosphate and β-tricalcium phosphate on cervical spinal fusion in a noninstrumented two-level large animal model. SUMMARY OF BACKGROUND DATA ACDF is the gold standard surgical technique for the treatment of degenerative cervical spinal diseases. However, pseudarthrosis associated with increased patient morbidity occurs in ∼2.6% of the surgeries. SBG may enhance bony fusion and subsequently decrease the risk of pseudarthrosis. Recent studies on monetite-based SBGs for use in large cranial defects in humans have shown promising bone healing results, necessitating further investigation of their use in cervical spinal fusion. MATERIALS AND METHODS Four adult female Danish Göttingen minipigs received partial cervical anterior discectomy and intervertebral defects at an upper and lower level. One defect was filled with SBG, and the other was left empty. Bony fusion was evaluated using computed tomography (CT) at three-month intervals for 12 months. Fifteen months postsurgery, the animals were euthanized for further ex vivo qualitative histopathologic and micro-CT evaluations. Fusion rates were compared using the Fisher exact test at each time point. RESULTS Increased interbody bony fusion rates were observed at SBG levels (4/4) compared with control levels (0/4) evaluated by CT at 6 and 9 months postsurgery ( P =0.029). Fusion was observed at all SBG levels 12 months postsurgery and at only one control level. Histopathologic evaluation confirmed high-quality interbody bony fusion at all SBG levels and fusion by spondylosis at one control level. CONCLUSION This proof-of-concept study provides preliminary evidence of a novel, calcium pyrophosphate-containing, and β-tricalcium phosphate-containing monetite SBG that promotes bony fusion compared with a negative control in a clinically relevant porcine model of ACDF.
Collapse
Affiliation(s)
- Maria Östman
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Försth
- Department of Surgical Sciences, Division of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Patricia Hedenqvist
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Leticia Marcelino
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørnar Ytrehus
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Gry Hulsart-Billström
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Pujari-Palmer
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Odd Höglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Franck Forterre
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Reijmer JFH, van Susante JLC, Kruijt MC, van Gorp MJ, de Jong LD. Usability of a novel Hounsfield units measurement procedure to quantify intercorporal bone graft remodeling in patients after posterior lumbar interbody fusion: a case series. J Med Case Rep 2024; 18:337. [PMID: 39044212 PMCID: PMC11267840 DOI: 10.1186/s13256-024-04655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND There is a lack of knowledge about the biological process of intercorporal bone graft remodeling after posterior lumbar interbody fusion surgery and whether this process is associated with changes in back pain and intercorporal fusion status. As an alternative to the commonly used but unreliable fusion criteria, Hounsfield units can be used to quantify biological activity and changes in bone mineral content. However, studies assessing Hounsfield units conducted to date do not provide sufficient details about how the bone grafts were segmented to measure the Hounsfield units to allow for replication, and did not assess individual patient trends in graft changes over time. Using the data of nine patients after posterior lumbar interbody fusion, a novel Hounsfield units measurement procedure was developed and used to explore its usability to quantify the bone graft remodeling process. CASE DETAILS We report a case series of nine patients (six male, three female, mean age 64 years, all Caucasian) who all had computed tomography scans performed at 1 and 2 years after posterior lumbar interbody fusion surgery. Overall, seven out of the nine (78%) cases had a 3-41% increase in their bone grafts' Hounsfield units between 1 and 2 years after surgery. The cases showed large interindividual variability in their Hounsfield units values over time, which coincided with varying levels of back pain and intercorporal fusion status. CONCLUSION The Hounsfield units measurement procedure used for this case series may be useful to quantify intercorporal bone graft remodeling in patients after posterior lumbar interbody fusion, and may be used as an adjunct diagnostic measure to monitor bone graft remodeling over time. Future research is warranted to explore how to interpret bone graft Hounsfield units-values and Hounsfield units trajectories in light of clinical variables or intercorporal fusion status.
Collapse
Affiliation(s)
- Joey F H Reijmer
- Department of Orthopaedics, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands.
| | - Job L C van Susante
- Department of Orthopaedics, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - Moyo C Kruijt
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maarten J van Gorp
- Department of Radiology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - Lex D de Jong
- Department of Orthopaedics, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| |
Collapse
|
6
|
Zeitouni D, Pfortmiller D, Coric D, Kim PK, Smith MD, Dyer EH, Adamson TE, McGirt MJ, Rossi VJ. Does type of bone graft matter? A retrospective review of the use of biological bone grafts in patients undergoing elective 1-3 level spinal interbody fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1340-1346. [PMID: 38459270 DOI: 10.1007/s00586-023-08108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 03/10/2024]
Abstract
OBJECTIVE There is a lack of strong evidence for use of expensive bone substitutes. This study compares perioperative data and patient reported quality-of-life outcomes across the varied types of bone graft extenders. The study analyzes the existing Quality and Outcomes Database and evaluates patient reported outcomes for 1-3 level lumbar fusion procedures comparing across different types of biologics bone graft. METHODS We retrospectively analyzed a prospectively collected data registry. Bone graft implant data were collected and grouped into the following categories: (1) Autograft with basic allograft (2) Enhanced, synthetic, or cellular allograft (3) Use of BMP. Preoperative and 1 year patient reported outcomes and perioperative data from the prospective collected registry were analyzed. RESULTS There were 384 patients included in this study. There were 168 (43.8%) patients in group 1, 133 (34.6%) patients in group 2, and 83 (21.6%) in group 3. There were no group differences in baseline or 1 year back pain, leg pain, ODI, or EQ-5D. The GLM Repeated Measures results indicate a significant difference within each of the three groups between the preoperative and postoperative measures for back pain, leg pain, ODI, and EQ-5D. The change over time was not significantly different between the groups. CONCLUSIONS Bone graft extenders are a significant contributor to the cost of lumbar fusion. This study demonstrates no difference in preoperative, and 1 year patient reported outcomes between the three groups. There was no significant difference in rate of reoperations across the three groups.
Collapse
Affiliation(s)
- Daniel Zeitouni
- Atrium Health Neurological Surgery, Charlotte, NC, USA.
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA.
| | - Deborah Pfortmiller
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Domagoj Coric
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Paul K Kim
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Mark D Smith
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - E Hunter Dyer
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Tim E Adamson
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Matthew J McGirt
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| | - Vincent J Rossi
- Atrium Health Neurological Surgery, Charlotte, NC, USA
- Carolina Neurosurgery and Spine Associates, 225 Baldwin Ave, Charlotte, NC, 28203, USA
| |
Collapse
|
7
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
8
|
Kim E, Brennan M, Margabandu P, Oska N, Cielito Robles M, Rademacher A, Telemi E, Mansour T, Chang VW. Bone Grafting Options for Single-Level TLIF: So Many Options, What Is the Evidence? Int J Spine Surg 2023; 17:S53-S60. [PMID: 38124018 PMCID: PMC10753332 DOI: 10.14444/8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND This review seeks to investigate the clinically relevant bone graft materials in single-level transforaminal lumbar interbody fusion (TLIF) procedures as defined by (1) primary outcomes (ie, fusion rates and complication rates) and (2) patient-reported outcomes (ie, visual analog scale [VAS] and Oswestry disability index [ODI]). Because of the advantages in stimulating bone growth, autologous bone grafts such as the iliac crest bone graft (ICBG) have been the gold standard. Numerous alternatives to ICBG have been introduced. Understanding the risks and benefits of bone graft options is vital to optimizing patient care. METHODS A PubMed search was performed for all clinical studies published between January 2008 and March 2023 that referenced the single-level TLIF procedure as well as one of the following grafts: autograft, allograft, bone morphogenetic protein (BMP), demineralized bone matrix, or mesenchymal stem cells (MSCs). Case studies and reports were excluded. RESULTS Twenty-eight studies met the inclusion criteria. Studies from the PubMed search demonstrated similarly high fusion rates across nearly all graft materials, the lone exception being MSCs, which showed lower fusion rates. ICBG grafts experienced higher rates of postoperative graft site pain. The BMP graft material had high rates of radiculitis, heterogeneous ossification, and vertebral osteolysis. Patients saw an overall improvement in VAS and ODI scores with all graft materials. CONCLUSION Local autografts and ICBG have been the most studied. Fusion rates during single-level TLIF were similar across all graft materials except MSCs. Patient-reported pain levels improved after TLIF surgery regardless of the type of grafts used. While BMP implants have shown promising benefits, they have introduced a new array of complications not normally seen in ICBG implants. The study is limited by the lack of evidence of certain graft materials as well as nonuniformity in metrics evaluating the efficacy of graft materials.
Collapse
Affiliation(s)
- Enoch Kim
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Matthew Brennan
- School of Medicine, Wayne State University, Detroit, MI, USA
| | | | - Nicole Oska
- School of Medicine, Wayne State University, Detroit, MI, USA
| | | | | | - Edvin Telemi
- Department of Neurosurgery, Henry Ford Health Systems, Detroit, MI, USA
| | - Tarek Mansour
- Department of Neurosurgery, Henry Ford Health Systems, Detroit, MI, USA
| | - Victor W Chang
- Department of Neurosurgery, Henry Ford Health Systems, Detroit, MI, USA
| |
Collapse
|
9
|
Khan SN, Shahzad H. Osteobiologics and Value-Based Care: Challenges and Opportunities. Int J Spine Surg 2023; 17:S44-S52. [PMID: 38050076 PMCID: PMC10753350 DOI: 10.14444/8560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Autologous bone grafts, sourced from the iliac crest, are the gold standard for bone substitution in spine surgery. However, harvesting autografts increases the risk of postoperative complications. Bone allografts are another popular source of graft material, but their use is rapidly surpassing their availability. There has been considerable interest in manufactured bone graft substitutes, commonly referred to as osteobiologics, which mimic the properties of autologous bone and may be osteoconductive, osteoinductive, osteogenic, or a combination. OBJECTIVE Osteobiologics have been developed to mimic the properties of autologous bone, but their high cost and variable effectiveness raise questions about their value. This article explores the challenges and opportunities associated with the use of osteobiologics used to aid in bone healing in spinal fusion surgery within a value-based care framework. Spinal fusion treatments such as bone morphogenetic proteins, platelet-rich plasma, autologous conditioned serum, demineralized bone matrix, biomaterial scaffolds, stem cells, and cellular bone matrices are compared. SUMMARY Bone morphogenetic proteins are highly effective but often associated with serious risks; platelet-rich plasma shows promising results but lacks standardization in research protocols. Autologous conditioned serum is inconclusive and cost-effective, while demineralized bone matrix has variable effectiveness and limited data to use in anterior spinal fusions. Biomaterial scaffolds have limited application in the anterior spine but demonstrate high efficacy when it comes to spinal fusion. Stem cells demonstrate improved postsurgical outcomes but have low yield from bone marrow and potential risks associated with genetic engineering and cell therapy. Cellular bone matrices show promising results and have high fusion rates, yet there is currently no US Food and Drug Adminstration requirement for preclinical or clinical data before commercial usage. Although osteobiologics have considerable potential, their high price and uncertain efficiency raise questions concerning their usefulness in spinal fusion surgery. To ensure better patient outcomes, extensive research is needed to explore their utilization within a value-based care framework.
Collapse
Affiliation(s)
- Safdar N Khan
- Department of Orthopedics, UC Davis Health, Sacramento, California, USA
| | - Hania Shahzad
- Department of Orthopedics, UC Davis Health, Sacramento, California, USA
| |
Collapse
|
10
|
Lee BJ, Seok MC, Koo HW, Jeong JH, Ko MJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part I: Fusion Biology, Autografts, Allografts, Demineralized Bone Matrix, and Ceramics. Korean J Neurotrauma 2023; 19:446-453. [PMID: 38222832 PMCID: PMC10782097 DOI: 10.13004/kjnt.2023.19.e62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Spinal trauma accounts for a large portion of injuries to the spine area, particularly as societies are entering an era of aging populations. Consequently, spine fractures accompanied by osteoporosis are becoming more prevalent. Achieving successful fusion surgery in patients with spine fractures associated with osteoporosis is even more challenging. Pseudarthrosis in the spine does not yield clinically favorable results; however, considerable effort has been made to achieve successful fusion, and the advancement of bone graft substitutes has been particularly crucial in this regard. Autograft bone is considered the best fusion material but is limited in use due to the quantity that can be harvested during surgery and associated complications. Accordingly, various bone graft substitutes are currently being used, although no specific guidelines are available and this mainly depends on the surgeon's choice. Therefore, the purpose of this review, across part I/II, is to summarize bone graft substitutes commonly used in spine surgery for spine fusion in patients with spine trauma and to update the latest knowledge on the role of recombinant human bone morphogenetic protein-2.
Collapse
Affiliation(s)
- Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
12
|
Griffoni C, Tedesco G, Canella V, Nataloni A, Zerbi A, Tosini G, Gasbarrini A, Barbanti-Brodano G. Ceramic bone graft substitute (Mg-HA) in spinal fusion: A prospective pilot study. Front Bioeng Biotechnol 2022; 10:1050495. [PMID: 36532576 PMCID: PMC9748738 DOI: 10.3389/fbioe.2022.1050495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 04/14/2024] Open
Abstract
Background: Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion due to its known osteoinductive and osteoconductive properties. However, complications related to harvesting procedure and donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. Among all, ceramic-based biomaterials have been widely studied and employed in the last years as bone graft substitutes. Methods: We report here the results of a prospective pilot study aimed to evaluating the grade of ossification obtained by the use of an Mg-doped hydroxyapatite (HA) product to achieve postero-lateral fusion in degenerative spine diseases. Results: Results show a successful degree of fusion of about 62% at the 12-month follow-up and an improvement of quality of life and health status following surgery, as evaluated by clinical scores (ODI, VAS, and EQ-5L). No adverse events related to the material were reported. Conclusion: The present pilot study shows the effectiveness and the safety profile of an Mg-doped HA bone graft substitute used to achieve postero-lateral fusion in the treatment of degenerative spine diseases, laying down the basis for further larger clinical investigations.
Collapse
Affiliation(s)
- Cristiana Griffoni
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Tedesco
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Alberto Zerbi
- Istituti Clinici Iseni, Fondazione Iseni y Nervi, Lonate Pozzolo, Italy
| | - Giovanni Tosini
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
13
|
Chang KE, Mesregah MK, Fresquez Z, Stanton EW, Buser Z, Wang JC. Use of graft materials and biologics in spine deformity surgery: a state-of-the-art review. Spine Deform 2022; 10:1217-1231. [PMID: 35733056 DOI: 10.1007/s43390-022-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the current review is to summarize the current evidence on graft materials used in fusion procedures for spinal deformity corrections. METHODS PubMed, Embase, and Cochrane Library were searched for relevant published observational studies and clinical trials using osteobiologics and biomaterials in spinal deformity surgery. RESULTS The use of autograft in deformity correction surgeries has been reported in a limited number of studies, with the harvest sites including iliac crest, ribs, and local bone. Various allografts and biologics have been used in the treatment of spinal deformities including idiopathic and degenerative scoliosis, either as stand alone or in combination with autograft. Limited number of studies reported no differences in fusion rates or outcomes. Use of rh-BMP2 in anterior, posterior or front/back approaches showed higher fusion rates than other graft materials in patients with spinal deformities. Due to the limited number of quality studies included in the review, as well as alternative factors, such as costs, availability, and surgeon expertise/preference, no definitive conclusion or recommendations can be made as to the ideal graft choice in spinal deformity surgery. CONCLUSIONS Most commonly used grafts included autograft, allograft and rh-BMP2, with new biologics and biomaterials constantly emerging in the market. Limited number of high-quality comparative studies and heterogeneity in study design prevented direct comparisons that can lead to meaningful recommendations. Further studies are needed to prove superiority of any single graft material and/or biologic that is also cost-effective and safe.
Collapse
Affiliation(s)
- Ki-Eun Chang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Mohamed Kamal Mesregah
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
- Department of Orthopaedic Surgery, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Zoe Fresquez
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Eloise W Stanton
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Zorica Buser
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA.
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| |
Collapse
|
14
|
Veronesi F, Sartori M, Griffoni C, Valacco M, Tedesco G, Davassi PF, Gasbarrini A, Fini M, Barbanti Brodano G. Complications in Spinal Fusion Surgery: A Systematic Review of Clinically Used Cages. J Clin Med 2022; 11:6279. [PMID: 36362508 PMCID: PMC9659217 DOI: 10.3390/jcm11216279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/30/2023] Open
Abstract
Spinal fusion (SF) comprises surgical procedures for several pathologies that affect different spinal levels, and different cages are employed in SF surgery. Few clinical studies highlight the role of cages in complications beyond the outcomes. The aim of this systematic review is to collect the last 10 years' worth of clinical studies that include cages in SF surgery, focusing on complications. Three databases are employed, and 21 clinical studies are included. The most-performed SF procedure was anterior cervical discectomy and fusion (ACDF), followed by lumbar SF. The polyetheretherketone (PEEK) cage was the most-used, and it was usually associated with autograft or calcium phosphate ceramics (hydroxyapatite (HA) and tricalcium phosphate (βTCP)). For lumbar SF procedures, the highest percentages of subsidence and pseudoarthrosis were observed with PEEK filled with bone morphogenetic protein 2 (BMP2) and βTCP. For ACDF procedures, PEEK filled with autograft showed the highest percentages of subsidence and pseudoarthrosis. Most studies highlighted the role of surgical techniques in patient complications. There are many interacting events that contextually affect the rate of clinical success or failure. Therefore, in future clinical studies, attention should focus on cages to improve knowledge of chemical, biological and topographical characteristics to improve bone growth and to counteract complications such as cage loosening or breaking and infections.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristiana Griffoni
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marcelo Valacco
- Department of Orthopedic and Traumatology, Hospital Churruca Visca, Buenos Aires 1437, Argentina
| | - Giuseppe Tedesco
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Paolo Francesco Davassi
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Milena Fini
- Scientific Direction, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Spine Surgery, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
15
|
Prost M, Windolf J, Konieczny MR. Bovine-derived xenograft is a viable bone graft substitute in multilevel, instrumented, spinal fusion. Orthop Rev (Pavia) 2022; 14:37576. [DOI: 10.52965/001c.37576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective To evaluate radiological outcomes following the use of xenogeneic bone graft substitute (BGS) in patients undergoing multisegmental spinal fusion. Summery of Background Data Data exists for single level and short segment fusions, there presently is a paucity of data on fusion rate after bone augmentation with BGS in multisegmental posterior spinal fusion (PSF). The leading concern is pseudarthrosis, which often leads to a loss of correction after PSF. Therefore, the bone graft is an essential aspect of PSF. Methods We retrospectively analysed the radiological data of a consecutive cohort of patients who had been treated for adolescent idiopathic scoliosis (AIS) via multisegmental spinal fusion, in whom a bovine derived BGS had been used and had a complete dataset of 24 months follow-up. The Cobb angle of the main curve was measured pre-operatively and then at 6, 12 and 24 months post-operatively. Loosening of the screws was recorded at the same post-operative time points. Results After applying inclusion and exclusion criteria, 28 patients were included. We found no significant change of the cobb angle from the main curve as well as the cobb angle from the thoracic kyphosis during the 24 months of follow up. No patient showed a lack of bony fusion. There was 1 revision surgery, which was due to trauma. Conclusion In this cohort, all patients showed successful bone fusion during a 24-month follow-up. Additionally, there was no change in the Cobb angle during the 2-year post-operative period. Our data indicates that the use of bovine-derived BGS supports bone fusion after multisegmental posterior instrumented fusion of the spine.
Collapse
Affiliation(s)
- Max Prost
- Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Jochaim Windolf
- Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Markus Rafael Konieczny
- Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
16
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|
17
|
Laznovsky J, Brinek A, Zikmund T, Boudova M, Vojtova L, Dorazilova J, Trunec M, Stastny P, Krticka M, Planka L, Ira D, Faldyna M, Kaiser J. Automatic 3D analysis of the ex-vivo porcine lumbar interbody fusion based on X-ray micro computed tomography data. Comput Biol Med 2022; 145:105438. [PMID: 35364309 DOI: 10.1016/j.compbiomed.2022.105438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
Spinal fusion is a surgical procedure used to join two or more vertebrae to prevent movement between them. This surgical procedure is considered in patients suffering from a wide range of degenerative spinal diseases or vertebral fractures. The success rate of spinal fusion is frequently evaluated subjectively using X-ray computed tomography. The pig was chosen as an animal model for spinal fusion, since its spinal structure is similar to the human spine. Our paper presents an automatic approach for pig's spinal fusion evaluation in 3D. The proposed approach is based on the determination of the vertebral fused area, which reflects the fusion quality. The approach was applied and tested on microCT (μCT) data of fused porcine vertebrae ex-vivo. In our study, three types of implants were used to perform spinal fusion: the iliac crest bone graft used as the gold standard, and two types of novel scaffold implants based on the polymer/ceramic porous foam involving either growth factors or polyphosphates. The evaluation worked automatically for all three types of used implants, and the fusion quality was determined quantitatively. The calculation is based on the detection of the fused area and area of facies intervertebralis, so the percentual representation of the vertebral joint can be determined. Since this approach is versatile and is described in detail as a guide for image processing the data of vertebrae fusion, this methodology has the potential to establish a standard approach for evaluating the fusion quality in ex-vivo samples that can be tested on clinical data.
Collapse
Affiliation(s)
- Jakub Laznovsky
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Adam Brinek
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| | - Marketa Boudova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Lucy Vojtova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jana Dorazilova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Martin Trunec
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Premysl Stastny
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Milan Krticka
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and the University Hospital Brno, 625 00, Brno, Czech Republic
| | - Ladislav Planka
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and the University Hospital Brno, 625 00, Brno, Czech Republic
| | - Daniel Ira
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and the University Hospital Brno, 625 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| |
Collapse
|
18
|
Wu MH, Lee MH, Wu C, Tsai PI, Hsu WB, Huang SI, Lin TH, Yang KY, Chen CY, Chen SH, Lee CY, Huang TJ, Tsau FH, Li YY. In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages. MATERIALS 2022; 15:ma15103670. [PMID: 35629694 PMCID: PMC9147460 DOI: 10.3390/ma15103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Autogenous bone grafts are the gold standard for interbody fusion implant materials; however, they have several disadvantages. Tantalum (Ta) and titanium (Ti) are ideal materials for interbody cages because of their biocompatibility, particularly when they are incorporated into a three-dimensional (3D) porous structure. We conducted an in vitro investigation of the cell attachment and osteogenic markers of self-fabricated uniform porous Ti (20%, 40%, 60%, and 80%), nonporous Ti, and porous Ta cages (n = 6) in each group. Cell attachment, osteogenic markers, and alkaline phosphatase (ALP) were measured. An in vivo study was performed using a pig-posterior-instrumented anterior interbody fusion model to compare the porous Ti (60%), nonporous Ti, and porous Ta interbody cages in 12 pigs. Implant migration and subsidence, determined using plain radiographs, were recorded before surgery, immediately after surgery, and at 1, 3, and 6 months after surgery. Harvested implants were assessed for bone ingrowth and attachment. Relative to the 20% and 40% porous Ti cages, the 60% and 80% cages achieved superior cellular migration into cage pores. Among the cages, osteogenic marker and ALP activity levels were the highest in the 60% porous Ti cage, osteocalcin expression was the highest in the nonporous Ti cage, and the 60% porous Ti cage exhibited the lowest subsidence. In conclusion, the designed porous Ti cage is biocompatible and suitable for lumbar interbody fusion surgery and exhibits faster fusion with less subsidence compared with porous Ta and nonporous Ti cages.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Ming-Hsueh Lee
- Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Christopher Wu
- College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan;
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Chih-Yu Chen
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
- Department of Orthopedics, Shuang-Ho Hospital, Taipei Medical University, Taipei 235041, Taiwan
| | - Shih-Hao Chen
- Department of Orthopedic Surgery, Buddhist Tzu-Chi General Hospital, Taichung Branch, Taichung 427213, Taiwan;
- Department of Orthopedic Surgery, Tzu-Chi University, Hualien 970374, Taiwan
| | - Ching-Yu Lee
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Fang-Hei Tsau
- Laser and Additive Manufacturing Technology Center, Southern Region Campus, Industrial Technology Research Institute, Tainan 734045, Taiwan;
| | - Yen-Yao Li
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Correspondence: ; Tel.: +88653621000 (ext. 2855)
| |
Collapse
|
19
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
20
|
Qin H, Wei Y, Han J, Jiang X, Yang X, Wu Y, Gou Z, Chen L. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. J Tissue Eng Regen Med 2022; 16:409-421. [PMID: 35156316 DOI: 10.1002/term.3287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Hongling Qin
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yingming Wei
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiayin Han
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiaojian Jiang
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xianyan Yang
- Bio‐nanomaterials and Regenerative Medicine Research Division Zhejiang‐California International Nanosystem Institute Zhejiang University Hangzhou China
| | - Yanmin Wu
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongru Gou
- Bio‐nanomaterials and Regenerative Medicine Research Division Zhejiang‐California International Nanosystem Institute Zhejiang University Hangzhou China
| | - Lili Chen
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
21
|
DEMİREL C, TÜRKÖZ D, YİLMAZ T. Experimental Comparison of Autograft and DBM Flex (Grafton) for Spinal Lumbar Fusion in Rabbits. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2021. [DOI: 10.25000/acem.963125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112466. [PMID: 34702541 PMCID: PMC8555702 DOI: 10.1016/j.msec.2021.112466] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/26/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
To induce bone regeneration there is a complex cascade of growth factors. Growth factors such as recombinant BMP-2, BMP-7, and PDGF are FDA-approved therapies in bone regeneration. Although, BMP shows promising results as being an alternative to autograft, it also has its own downfalls. BMP-2 has many adverse effects such as inflammatory complications such as massive soft-tissue swelling that can compromise a patient's airway, ectopic bone formation, and tumor formation. BMP-2 may also be advantageous for patients not willing to give up smoking as it shows bone regeneration success with smokers. BMP-7 is no longer an option for bone regeneration as it has withdrawn off the market. PDGF-BB grafts in studies have shown PDGF had similar fusion rates to autologous grafts and fewer adverse effects. There is also an FDA-approved bioactive molecule for bone regeneration, a peptide P-15. P-15 was found to be effective, safe, and have similar outcomes to autograft at 2 years post-op for cervical radiculopathy due to cervical degenerative disc disease. Growth factors and bioactive molecules show some promising results in bone regeneration, although more research is needed to avoid their adverse effects and learn about the long-term effects of these therapies. There is a need of a bone regeneration method of similar quality of an autograft that is osteoconductive, osteoinductive, and osteogenic. This review covers all FDA-approved bone regeneration therapies such as the "gold standard" autografts, allografts, synthetic bone grafts, and the newer growth factors/bioactive molecules. It also covers international bone grafts not yet approved in the United States and upcoming technologies in bone grafts.
Collapse
Affiliation(s)
- Cassidy E Gillman
- The Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
23
|
Integration of Umbilical Cord Mesenchymal Stem Cell Application in Hydroxyapatite-Based Scaffolds in the Treatment of Vertebral Bone Defect due to Spondylitis Tuberculosis: A Translational Study. Stem Cells Int 2021; 2021:9928379. [PMID: 34475959 PMCID: PMC8407992 DOI: 10.1155/2021/9928379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Vertebral bone defect represents one of the most commonly found skeletal problems in the spine. Progressive increase of vertebral involvement of skeletal tuberculosis (TB) is reported as the main cause, especially in developed countries. Conventional spinal fusion using bone graft has been associated with donor-site morbidity and complications. We reported the utilization of umbilical cord mesenchymal stem cells (UC-MSCs) combined with hydroxyapatite (HA) based scaffolds in treating vertebral bone defect due to spondylitis tuberculosis. Materials and Methods Three patients with tuberculous spondylitis in the thoracic, thoracolumbar, or lumbar region with vertebral body collapse of more than 50 percent were included. The patient underwent a 2-stage surgical procedure, consisting of debridement, decompression, and posterior stabilization in the first stage followed by anterior fusion using the lumbotomy approach at the second stage. Twenty million UC-MSCs combined with HA granules in 2 cc of saline were transplanted to fill the vertebral bone defect. Postoperative alkaline phosphatase level, quality of life, and radiological healing were evaluated at one-month, three-month, and six-month follow-up. Results The initial mean ALP level at one-month follow-up was 48.33 ± 8.50 U/L. This value increased at the three-month follow-up but decreased at the six-month follow-up time, 97 ± 8.19 U/L and 90.33 ± 4.16 U/L, respectively. Bone formation of 50-75% of the defect site with minimal fracture line was found. Increased bone formation comprising 75-100% of the total bone area was reported six months postoperation. A total score of the SF-36 questionnaire showed better progression in all 8 domains during the follow-up with the mean total score at six months of 2912.5 ± 116.67 from all patients. Conclusion Umbilical cord mesenchymal stem cells combined with hydroxyapatite-based scaffold utilization represent a prospective alternative therapy for bone formation and regeneration of vertebral bone defect due to spondylitis tuberculosis. Further clinical investigations are needed to evaluate this new alternative.
Collapse
|
24
|
Zhu J, Wu J, Luo K, Wang Z, Jin H, Jin Y, Wang Y, Liu M, Liu P. Intraarticular bone grafting in atlantoaxial facet joints via a posterior approach: nonstructural or structural-a minimum 24-month follow-up. J Orthop Surg Res 2021; 16:524. [PMID: 34425867 PMCID: PMC8381565 DOI: 10.1186/s13018-021-02630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/24/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To investigate the necessity of nonstructural or structural intraarticular bone grafting in atlantoaxial facet joints via a posterior approach and the influence by the presence of basilar invagination (BI). Methods From November 2016 to October 2018, patients who underwent posterior atlantoaxial or occipitocervical arthrodesis surgery at one institute were retrospectively reviewed. Operation records, preoperative and postoperative clinical status, and radiological films were analyzed. Results Thirty-three patients (19 without BI, 14 with BI) underwent posterior facet joint release followed by intraarticular bone grafting were enrolled finally. Twenty-four nonstructural (15 without BI, 9 with BI) and 9 structural (4 without BI, 5 with BI) grafting were performed. The average follow-up was 32.15±6.73 months (24–47 months). Among them, 1 (3.03%) implant failure occurred, and 32 (96.97%) achieved satisfactory neurological outcomes, including 28 (84.85%) complete and 4 (12.12%) acceptable reductions with complete fusion within 6 months. For patients without BI, structural and nonstructural grafting showed no significant difference in terms of reduction maintenance (100% vs 73.33%, p = 0.530), while for those with BI, structural grafting significantly increased the postoperative height of the joint space (5.67±1.22 mm vs 3.43±1.78 mm, p = 0.002) and maintained it much better than nonstructural grafting (88.89% vs 20.00%, p = 0.023), contributing notably to BI correction. Conclusion Intraarticular structural bone grafting in atlantoaxial facet joints has the advantage of maintaining anterior column height in the case of lateral mass collapse or when BI correction is needed; otherwise, nonstructural bone grafting is enough. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02630-z.
Collapse
Affiliation(s)
- Jun Zhu
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Jian Wu
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Keyu Luo
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Zhong Wang
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Huaijian Jin
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yufei Jin
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yingbo Wang
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Mingyong Liu
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China.
| | - Peng Liu
- Division of Spine Surgery, Department of Orthopedics, Daping Hospital of Army Medical University, Chongqing, 400042, China. .,State Key Laboratory of Trauma: Burns & Combined Wound, Institute for Traffic Medicine of Army Medical University, No. 10, Changjiangzhilu, Daping Street, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
25
|
Gupta A, Maffulli N, Rodriguez HC, Mistovich RJ, Delfino K, Cady C, Fauser AM, Cundiff ED, Martinez MA, Potty AG. Cell-free stem cell-derived extract formulation for treatment of knee osteoarthritis: study protocol for a preliminary non-randomized, open-label, multi-center feasibility and safety study. J Orthop Surg Res 2021; 16:514. [PMID: 34416898 PMCID: PMC8377854 DOI: 10.1186/s13018-021-02672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Musculoskeletal conditions are highly prevalent, and knee OA is most common. Current treatment modalities have limitations and either fail to solve the underlying pathophysiology or are highly invasive. To address these limitations, attention has focused on the use of biologics. The efficacy of these devices is attributed to presence of growth factors (GFs), cytokines (CKs), and extracellular vesicles (EVs). With this in mind, we formulated a novel cell-free stem cell-derived extract (CCM) from human progenitor endothelial stem cells (hPESCs). A preliminary study demonstrated the presence of essential components of regenerative medicine, namely GFs, CKs, and EVs, including exosomes, in CCM. The proposed study aims to evaluate the safety and efficacy of intraarticular injection of the novel cell-free stem cell-derived extract (CCM) for the treatment of knee OA. Methods and analysis This is a non-randomized, open-label, multi-center, prospective study in which the safety and efficacy of intraarticular CCM in patients suffering from grade II/III knee OA will be evaluated. Up to 20 patients with grade II/III OA who meet the inclusion and exclusion criteria will be consented and screened to recruit 12 patients to receive treatment. The study will be conducted at up to 2 sites within the USA, and the 12 participants will be followed for 24 months. The study participants will be monitored for adverse reactions and assessed using Numeric Pain Rating Scale (NPRS), Patient-Reported Outcomes Measurement Information System (PROMIS) Score, Knee Injury and Osteoarthritis Outcome Score Jr. (KOOS Jr.), 36-ietm short form survey (SF-36), Single Assessment Numeric Evaluation (SANE), physical exams, plain radiography, and magnetic resonance imaging (MRI) with Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score for improvements in pain, function, satisfaction, and cartilage regeneration. Discussion This prospective study will provide valuable information into the safety and efficacy of intraarticular administration of cell-free stem cell-derived extract (CCM) in patients suffering with grade II/III knee OA. The outcomes from this initial study of novel CCM will lay the foundation for a larger randomized, placebo-controlled, multi-center clinical trial of intraarticular CCM for symptomatic knee OA. Trial registration Registered on July 21, 2021. ClinicalTrials.gov NCT04971798
Collapse
Affiliation(s)
- Ashim Gupta
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH, 44118, USA. .,Future Biologics, Lawrenceville, GA, USA. .,South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX, USA. .,Veterans in Pain (V.I.P.), Los Angeles, CA, USA.
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy.,San Giovanni di Dio e Ruggi D'Aragona Hospital "Clinica Orthopedica" Department, Hospital of Salerno, Salerno, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK
| | - Hugo C Rodriguez
- Future Biologics, Lawrenceville, GA, USA.,South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX, USA.,School of Osteopathic Medicine, University of The Incarnate Word, San Antonio, TX, USA.,Future Physicians of South Texas, San Antonio, TX, USA
| | - R Justin Mistovich
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH, 44118, USA.,Department of Orthopaedics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin Delfino
- Southern Illinois University, School of Medicine, Springfield, IL, USA
| | - Craig Cady
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH, 44118, USA.,Bohlander Stem Cell Research Laboratory, Department of Biology, Bradley University, Peoria, IL, USA
| | - Anne-Marie Fauser
- Bohlander Stem Cell Research Laboratory, Department of Biology, Bradley University, Peoria, IL, USA
| | - Echo D Cundiff
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH, 44118, USA
| | | | - Anish G Potty
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH, 44118, USA.,South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX, USA.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK.,Laredo Sports Medicine Clinic, Laredo, TX, USA
| |
Collapse
|
26
|
Golubovsky JL, Ejikeme T, Winkelman R, Steinmetz MP. Osteobiologics. Oper Neurosurg (Hagerstown) 2021; 21:S2-S9. [PMID: 34128067 DOI: 10.1093/ons/opaa383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteobiologics are engineered materials that facilitate bone healing and have been increasingly used in spine surgery. Autologous iliac crest bone grafts have been used historically, but morbidity associated with graft harvesting has led surgeons to seek alternative solutions. Allograft bone, biomaterial scaffolds, growth factors, and stem cells have been explored as bone graft substitutes and supplements. OBJECTIVE To review current and emerging osteobiologic technologies. METHODS A literature review of English-language studies was performed in PubMed. Search terms included combinations of "spine," "fusion," "osteobiologics," "autologous," "allogen(e)ic," "graft," "scaffold," "bone morphogenic protein," and "stem cells." RESULTS Evidence supports allograft bone as an autologous bone supplement or replacement in scenarios where minimal autologous bone is available. There are promising data on ceramics and P-15; however, comparative human trials remain scarce. Growth factors, including recombinant human bone morphogenic proteins (rhBMPs) 2 and 7, have been explored in humans after successful animal trials. Evidence continues to support the use of rhBMP-2 in lumbar fusion in patient populations with poor bone quality or revision surgery, while there is limited evidence for rhBMP-7. Stem cells have been incredibly promising in promoting fusion in animal models, but human trials to this point have only involved products with questionable stem cell content, thereby limiting possible conclusions. CONCLUSION Engineered stem cells that overexpress osteoinductive factors are likely the future of spine fusion, but issues with applying viral vector-transduced stem cells in humans have limited progress.
Collapse
Affiliation(s)
- Joshua L Golubovsky
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Education Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tiffany Ejikeme
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert Winkelman
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Center for Spine Health, Department of Neurosurgery, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Fiani B, Kondilis A, Runnels J, Rippe P, Davati C. Pulsed Electromagnetic Field Stimulators Efficacy for Noninvasive Bone Growth in Spine Surgery. J Korean Neurosurg Soc 2021; 64:486-494. [PMID: 34107606 PMCID: PMC8273786 DOI: 10.3340/jkns.2020.0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Athanasios Kondilis
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Juliana Runnels
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Preston Rippe
- University of Pikeville-Kentucky College of Osteopathic Medicine, Pikeville, KY, USA
| | - Cyrus Davati
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
28
|
Safety and efficacy of umbilical cord-derived Wharton's jelly compared to hyaluronic acid and saline for knee osteoarthritis: study protocol for a randomized, controlled, single-blind, multi-center trial. J Orthop Surg Res 2021; 16:352. [PMID: 34059080 PMCID: PMC8165766 DOI: 10.1186/s13018-021-02475-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common joint disorder in the United States of America (USA) with a fast-rising prevalence. Current treatment modalities are limited, and total knee replacement surgeries have shown disadvantages, especially for grade II/III OA. The interest in the use of biologics, including umbilical cord (UC)-derived Wharton’s jelly (WJ), has grown in recent years. The results from a preliminary study demonstrated the presence of essential components of regenerative medicine, namely growth factors, cytokines, hyaluronic acid (HA), and extracellular vesicles, including exosomes, in WJ. The proposed study aims to evaluate the safety and efficacy of intra-articular injection of UC-derived WJ for the treatment of knee OA symptoms. Methods A randomized, controlled, single-blind, multi-center, prospective study will be conducted in which the safety and efficacy of intra-articular administration of UC-derived WJ are compared to HA (control) and saline (placebo control) in patients suffering from grade II/III knee OA. A total of 168 participants with grade II or III knee OA on the KL scale will be recruited across 53 sites in the USA with 56 participants in each arm and followed for 1 year post-injection. Patient satisfaction, Numeric Pain Rating Scale, Knee Injury and Osteoarthritis Outcome Score, 36-Item Short Form Survey (SF-36), and 7-point Likert Scale will be used to assess the participants. Physical exams, X-rays, and MRI with Magnetic Resonance Observation of Cartilage Repair Tissue score will be used to assess improvement in associated anatomy. Discussion The study results will provide valuable information into the safety and efficacy of intra-articular administration of Wharton’s jelly for grade II/III knee osteoarthritis. The results of this study will also add to the treatment options available for grade II/III OA as well as help facilitate the development of a more focused treatment strategy for patients. Trial registration ClinicalTrials.gov, NCT04711304. Registered on January 15, 2021
Collapse
|
29
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
30
|
Kim Y, Lee EJ, Davydov AV, Frukhbeyen S, Seppala JE, Takagi S, Chow L, Alimperti S. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration. Biomed Mater 2020; 16. [PMID: 33254152 DOI: 10.1088/1748-605x/abcf03] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Biofabrication has been adapted in engineering patient-specific biosynthetic grafts for bone regeneration. Herein, we developed a 3D high-resolution, room-temperature printing approach to fabricate osteoconductive scaffolds using calcium phosphate cement (CPC). The non-aqueous CPC bioinks were composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and Polyvinyl butyral (PVB) dissolved in either ethanol (EtOH) or Tetrahydrofuran (THF). They were printed in an aqueous sodium phosphate bath, which performs as a hardening accelerator for hydroxyapatite (HA) formation and as a retainer for 3D microstructure. The PVB solvents, EtOH or THF, affected differently the slurry rheological properties, scaffold microstructure, mechanical properties, and osteoconductivity. Our proposed approach overcomes limitations of conventional fabrication methods, which require high-temperature (> 50 oC), low-resolution (> 400 μm) printing with an inadequate amount of large ceramic particles (> 35 μm). This proof-of-concept study opens venues in engineering high-resolution, implantable, and osteoconductive scaffolds with predetermined properties for bone regeneration.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Eun-Jin Lee
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Albert V Davydov
- Metallurgy Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stanislav Frukhbeyen
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Jonathan E Seppala
- Materials Science and Engineering Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, UNITED STATES
| | - Shozo Takagi
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Laurence Chow
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stella Alimperti
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| |
Collapse
|
31
|
Scott-Young M, McEntee L, Rathbone E, Hing W, Nielsen D. Clinical Outcomes of Cervical Hybrid Reconstructions: A Prospective Study. Int J Spine Surg 2020; 14:S57-S66. [PMID: 32994307 DOI: 10.14444/7092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The study design was a prospective clinical cohort study. The aim of this study was to assess the patient-reported outcome measures (PROMs), patient satisfaction, as well as complication and reoperation rate of cervical hybrid procedures for symptomatic cervical multilevel degenerative disc disease (MLDDD). Cervical total disc replacement (CTDR) has been shown to be safe and effective for the treatment of degenerative pathologies. However, there is minimal PROMs data on the outcomes of combined CTDR and anterior cervical decompression and fusion procedures, commonly referred to as cervical hybrid surgery. METHODS Prospectively collected PROMs were analyzed from patients receiving cervical hybrid surgery for symptomatic cervical MLDDD. Between 2004 and 2016, data were collected preoperatively and postoperatively at 3, 6, and 12 months, then yearly thereafter. Patient reported outcome measures included patient satisfaction, visual analog score for neck and arm, and Neck Disability Index. Complication and reoperation rates were also assessed. RESULTS A total of 151 patients (80 males, 71 females) who had a minimum of 12 months follow up were included. The mean age was 53 years (range = 24-81), and median follow up was 2 years (range = 1-10). The median number of levels treated was 3, with 29.8%, 49.0%, and 21.2% of patients having 2, 3, and 4 levels treated, respectively. The most common indication for surgery was multilevel cervical spondylotic radiculopathy (52.8%), followed by combined cervical spondylotic radiculomyelopathy (16.7%), axial neck pain (16%), and cervical spondylotic myelopathy (13.9%). Improvement in pain and disability scores were both clinically and statistically significant (P < .001), and these improvements were sustained throughout the course of follow up. There was a 16% incidence of minor adverse events, and 3 (1.9%) reoperations. CONCLUSIONS Cervical hybrid surgery for cervical MLDDD demonstrates favorable and sustained clinical outcomes at short-term to midterm follow up. LEVEL OF EVIDENCE 4. CLINICAL RELEVANCE Statistically and substantial clinical benefits can be achieved by cervical hybrid surgery, in the treatment of cervical pathologies including radiculopathy and myelopathy. The key principles is to follow strict indications, and to match technology with the pathology.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Gold Coast Spine, Gold Coast, Queensland, Australia.,Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Laurence McEntee
- Gold Coast Spine, Gold Coast, Queensland, Australia.,Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Evelyne Rathbone
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Wayne Hing
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | | |
Collapse
|
32
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
33
|
Wang Z, Lee S, Li Z, Liu S, Xu Q, Zhang J, Meng D. Anterior cervical discectomy and fusion with recombinant human bone morphogenetic protein-2-adsorbed β-tricalcium phosphate granules: a preliminary report. J Orthop Surg Res 2020; 15:262. [PMID: 32665018 PMCID: PMC7359267 DOI: 10.1186/s13018-020-01760-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background Anterior cervical discectomy and fusion (ACDF) is an alternative to conservative therapy in the treatment of cervical spondylopathy. This study evaluated the clinical outcome of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules. Methods Thirty-two patients with cervical spondylopathy received treatment of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules. The clinical outcomes were evaluated with the Japanese Orthopedic Association (JOA) scores and Neck Disability Index (NDI). Meanwhile, the cervical curvature and intervertebral heights were obtained through lateral cervical X-ray films pre- and postoperatively at each interval, and the precision of cervical fusion was assessed by three-dimensional computed tomography scan. Results The follow-up averaged 15.2 months (range 13–18). Average JOA scores significantly increased from a preoperative point (7.4 ± 1.2) to each interval after surgery (P < 0.05). NDI decreased from preoperative point (43.1 ± 9.0) to each interval after surgery (P < 0.05). The angles of cervical curvature and intervertebral heights were improved postoperatively and kept throughout the follow-up period. CT scan demonstrated a fusion rate of 82.9% at 6 months postoperatively and was improved to 100% at 12 months postoperatively. In all cases, no complications appeared and reported due to any lapse in surgical procedure skills throughout the follow-up period. Conclusions Our preliminary findings suggest that BMP-2-adsorbed β-tricalcium phosphate granules will be an effective alternative to autogenous bone grafting for cervical fusion in treating cervical spondylopathy. Our surgical procedure usingβ-tricalcium phosphate granules could improve neurological function, recover intervertebral height and cervical curvature, and could be potentially exploitable in the clinical setting.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Soomin Lee
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuhao Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qintong Xu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Dehua Meng
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Abstract
The biologic steps involved in creating a bony fusion between adjacent segments of the spine are a complex and highly coordinated series of events. There have been significant advancements in bone grafts and bone graft substitutes in order to augment spinal fusion. While autologous bone grafting remains the gold standard, allograft bone grafting, synthetic bone graft substitutes, and bone graft enhancers are appropriate in certain clinical situations. This article provides an overview of the basic biology of spinal fusion and strategies for enhancing fusion through innovations in bone graft material.
Collapse
|
35
|
Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected Nanomaterials' Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1216. [PMID: 32580409 PMCID: PMC7353104 DOI: 10.3390/nano10061216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023]
Abstract
Regenerative properties are different in every human tissue. Nowadays, with the increasing popularity of dental implants, bone regenerative procedures called augmentations are sometimes crucial in order to perform a successful dental procedure. Tissue engineering allows for controlled growth of alveolar and periodontal tissues, with use of scaffolds, cells, and signalling molecules. By modulating the patient's tissues, it can positively influence poor integration and healing, resulting in repeated implant surgeries. Application of nanomaterials and stem cells in tissue regeneration is a newly developing field, with great potential for maxillofacial bony defects. Nanostructured scaffolds provide a closer structural support with natural bone, while stem cells allow bony tissue regeneration in places when a certain volume of bone is crucial to perform a successful implantation. Several types of selected nanomaterials and stem cells were discussed in this study. Their use has a high impact on the efficacy of the current and future procedures, which are still challenging for medicine. There are many factors that can influence the regenerative process, while its general complexity makes the whole process even harder to control. The aim of this study was to evaluate the effectiveness and advantage of both stem cells and nanomaterials in order to better understand their function in regeneration of bone tissue in oral cavity.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
36
|
Oliveira RLMS, Barbosa L, Hurtado CR, Ramos LDP, Montanheiro TLA, Oliveira LD, Tada DB, Trichês EDS. Bioglass‐based scaffolds coated with silver nanoparticles: Synthesis, processing and antimicrobial activity. J Biomed Mater Res A 2020; 108:2447-2459. [DOI: 10.1002/jbm.a.36996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022]
Affiliation(s)
| | - Lucas Barbosa
- Bioceramics Laboratory, Science and Technology Institute UNIFESP São José dos Campos SP Brazil
| | - Carolina R. Hurtado
- Nanomaterials and Nanotoxicology Laboratory, Science and Technology Institute UNIFESP São José dos Campos SP Brazil
- IFSP São José dos Campos SP Brazil
| | - Lucas de P. Ramos
- Science and Technology Institute UNESP São José dos Campos SP Brazil
| | | | | | - Dayane B. Tada
- Nanomaterials and Nanotoxicology Laboratory, Science and Technology Institute UNIFESP São José dos Campos SP Brazil
| | | |
Collapse
|
37
|
Salamanna F, Tschon M, Borsari V, Pagani S, Martini L, Fini M. Spinal fusion procedures in the adult and young population: a systematic review on allogenic bone and synthetic grafts when compared to autologous bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:51. [PMID: 32451687 DOI: 10.1007/s10856-020-06389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
This systematic review aims to compare clinical evidences related to autologous iliac crest bone graft (ICBG) and non-ICBG (local bone) with allografts and synthetic grafts for spinal fusion procedures in adult and young patients. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials) to identify clinical studies in the last 10 years. The initial search retrieved 1085 studies, of which 24 were recognized eligible for the review. Twelve studies (4 RCTs, 5 prospective, 3 retrospective) were focused on lumbar spine, 9 (2 RCTs, 2 prospective, 4 retrospective, 1 case-series) on cervical spine and 3 (1 RCT, 2 retrospective) on spinal fusion procedures in young patients. Calcium phosphate ceramics, allografts, bioglasses, composites and polymers have been clinically investigated as substitutes of autologous bone in spinal fusion procedures. Of the 24 studies included in this review, only 1 RCT on cervical spine was classified with high level of evidence (Class I) and showed low risk of bias. This RCT demonstrated the safety and efficacy of the proposed treatment, a composite bone substitute, that results in similar and on some metrics superior outcomes compared with local autograft bone. Almost all other studies showed moderately or, more often, high incidence of bias (Class III), thus preventing ultimate conclusion on the hypothesized beneficial effects of allografts and synthetic grafts. This review suggests that users of allografts and synthetic grafting should carefully consider the scientific evidence concerning efficacy and safety of these bone substitutes, in order to select the best option for patient undergoing spinal fusion procedures.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Borsari
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - S Pagani
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Martini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
38
|
Murata K, Fujibayashi S, Otsuki B, Shimizu T, Matsuda S. Repair of Iliac Crest Defects with a Hydroxyapatite/Collagen Composite. Asian Spine J 2020; 14:808-813. [PMID: 32429017 PMCID: PMC7788373 DOI: 10.31616/asj.2019.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
Abstract
Study Design Retrospective study. Purpose This study aimed to assess the effect of refilling with hydroxyapatite/collagen (HAp/Col) composite on an iliac crest defect after spinal fusion. Overview of Literature The use of iliac crest bone graft has been the gold standard in spinal fusion for a long time because of its biological and non-immunologic properties. Few reports have addressed how bone defects recover after iliac crest bone harvest following spinal fusion. Methods Cancellous bone was collected from the anterior iliac crest during lateral interbody fusion (LIF), and the bone void of the ilium was refilled with a porous HAp/Col composite. We assessed bone recovery using computed tomography (CT). From the 74 patients who underwent LIF between January 2015 and December 2016, we included 49 patients whose iliac crest could be evaluated using CT at 3 months and 1 year after the surgery. Results Bone defects decreased in a time-dependent manner after the surgery. Cortical closure was observed in 28.5% of the cases 3 months after the surgery; at 1 year postoperatively, 95.9% of the patients had cortical closure. Complete repair of the cancellous bone was achieved in 57.1% of the patients at 3 months after the surgery and in 95.9% at 1 year after the surgery. There were no significant hematomas, infections, iliac crest fractures, or soft tissue herniation. Conclusions Radiographic recovery of cortical and cancellous bone defects was achieved with high probability via refilling with HAp/Col composite over the 1-year period.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Cottrill E, Pennington Z, Lankipalle N, Ehresman J, Valencia C, Schilling A, Feghali J, Perdomo-Pantoja A, Theodore N, Sciubba DM, Witham T. The effect of bioactive glasses on spinal fusion: A cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J Clin Neurosci 2020; 78:34-46. [PMID: 32331941 DOI: 10.1016/j.jocn.2020.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/05/2020] [Indexed: 01/23/2023]
Abstract
Pseudarthrosis following spinal fusion is correlated with poorer patient outcomes and consequently is an area of continued interest within spinal research. Recently, bioactive glasses have been proposed as a means of augmenting fusion rates. Here, we present the first systematic review and meta-analysis of the existing preclinical and clinical literature on the effect of bioactive glasses on spinal fusion. Using the MEDLINE, Embase, and Web of Science databases, we queried all publications in the English-language literature examining the effect of bioactive glasses on spinal fusion. The primary endpoint was fusion rate at last follow-up and the secondary endpoint for clinical studies was the rate of deep wound infection. Random-effects meta-analyses were performed independently for the preclinical and clinical data. Twelve preclinical studies (267 animals) and 12 clinical studies (396 patients) evaluating a total of twelve unique bioactive glass formulations were included. Across clinical studies, fusion was seen in 84% treated with bioactive glass. On sub-analysis, fusion rates were similar for standalone autograft (91.6%) and bioactive glass-local autograft mixtures (89.6%). Standalone bioactive glass substrates produced inferior fusion rates relative to autograft alone (33.6% vs. 98.8%; OR 0.01, p < 0.02). Rates of deep wound infection did not differ between the bioactive glass and autograft groups (3.1%). The preclinical data similarly showed comparable rates of fusion between autograft and bioactive glass-treated animals. The available data suggest that bioactive glass-autograft mixtures confer similar rates of spinal fusion relative to standalone autograft without altering the risk of deep wound infection.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zach Pennington
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nithin Lankipalle
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Ehresman
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cara Valencia
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Schilling
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Nicholas Theodore
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Smith KA, Russo GS, Vaccaro AR, Arnold PM. Scientific, Clinical, Regulatory, and Economic Aspects of Choosing Bone Graft/Biological Options in Spine Surgery. Neurosurgery 2020; 84:827-835. [PMID: 30032187 DOI: 10.1093/neuros/nyy322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/17/2018] [Indexed: 01/07/2023] Open
Abstract
Spinal arthrodesis is a major element of the spinal surgeon's practice. To attain successful fusion rates, attention must be paid to spinal segment immobilization and proper selection of bone graft. Autogenous bone graft (ie, ICBG), the "gold standard," with or without graft extenders and enhancers provides the foundation for most spinal fusions. ABG is the only graft option containing all 3 factors of new bone growth: osteoconductivity, osteoinductivity, and osteogenicity. While many bone graft alternatives function well as bone graft extenders, only growth factors proteins (ie, rhBMP-2 or OP-2) function as bone graft enhancers and substitutes. The search for optimal hybrid interbody cages, bone graft substitutes, autogenous or allogenic stem cells, and nanostructure scaffolds for release of growth factors continues.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Glenn S Russo
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul M Arnold
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
41
|
Yoo JS, Ahn J, Patel DS, Hrynewycz NM, Brundage TS, Singh K. An evaluation of biomaterials and osteobiologics for arthrodesis achievement in spine surgery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S168. [PMID: 31624734 PMCID: PMC6778273 DOI: 10.21037/atm.2019.06.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
An increasing variety of orthobiologic materials, including autologous and allogeneic bone graft, bone marrow aspirate, demineralized bone matrix, ceramics, and growth factors are available to the spine surgeon. Although autologous bone graft remains the gold standard material, concerns for failure in achieving fusion have prompted evaluation of current and new biologic materials. As such, this review attempts to summarize the available biologic materials with their pertinent characteristics, advantages, disadvantages, and primary uses.
Collapse
Affiliation(s)
- Joon S Yoo
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Junyoung Ahn
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Dillon S Patel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Nadia M Hrynewycz
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Brundage
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Kern Singh
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Offner D, de Grado GF, Meisels I, Pijnenburg L, Fioretti F, Benkirane-Jessel N, Musset AM. Bone Grafts, Bone Substitutes and Regenerative Medicine Acceptance for the Management of Bone Defects Among French Population: Issues about Ethics, Religion or Fear? CELL MEDICINE 2019; 11:2155179019857661. [PMID: 32634194 PMCID: PMC6587382 DOI: 10.1177/2155179019857661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
Several techniques exist to manage bone defects in patients: bone grafts (autograft, allograft, xenograft), use of synthetic bone substitutes, or use of the products of bone regenerative medicine. Studies generally focus on their efficacy, but few focus on their acceptance. Our objectives were to assess their theoretical acceptance among the French general population, and to identify issues justifying refusals, by mean of an open e-questionnaire. The questionnaire was submitted to a general French population, and explained these techniques in an understandable way. Participants were asked to say whether they would accept or refuse these techniques, specifying why in case of refusal (fear of the technique, ethical reasons, religious reasons). In total, 562 persons participated. Autograft and use of the products of bone regenerative medicine were the most accepted techniques (93.4% and 94.1%, respectively). Xenograft was the least accepted technique (58.2%). Most refusals were due to fear such as failure, pain, infection (autograft 8%, allograft 14.9%, xenograft 25.3%, synthetic bone substitutes 14.6%, and products of bone regenerative medicine 6.8%). Ethical reasons were mostly mentioned for allograft (6.4%) and xenograft (18.3%). Religious reasons were scarcely mentioned, only for xenograft (1.2%). Thus, acceptance of techniques does not seem to be greatly linked to sociodemographic characteristics in France. However, other countries with their own cultural, religious, and population patterns may show different levels of acceptance. This study shows that bone regenerative medicine is a promising research direction, reaching biological and also humanist quality standards, expected to improve the health of patients. Information is still the cornerstone to defuse issues about fear.
Collapse
Affiliation(s)
- Damien Offner
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Hôpitaux Universitaires de Strasbourg, Strasbourg
- Both the authors contributed equally to this article
| | - Gabriel Fernandez de Grado
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Hôpitaux Universitaires de Strasbourg, Strasbourg
- Both the authors contributed equally to this article
| | - Inès Meisels
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Hôpitaux Universitaires de Strasbourg, Strasbourg
| | - Luc Pijnenburg
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Hôpitaux Universitaires de Strasbourg, Strasbourg
- Faculté de Médecine, Université de Strasbourg, Strasbourg
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Hôpitaux Universitaires de Strasbourg, Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Faculté de Médecine, Université de Strasbourg, Strasbourg
| | - Anne-Marie Musset
- INSERM (French National Institute of Health and Medical Research), UMR1260, Regenerative Nanomedicine (RNM), FMTS
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg
- Hôpitaux Universitaires de Strasbourg, Strasbourg
| |
Collapse
|
43
|
Kyle A, Rowland A, Stirton J, Elgafy H. Fracture of allograft interbody spacer resulting in post-operative radiculopathy: A case report. World J Orthop 2019; 10:206-211. [PMID: 31041162 PMCID: PMC6475813 DOI: 10.5312/wjo.v10.i4.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Allograft interbody spacers are utilized during transforaminal lumbar interbody fusion (TLIF) to reestablish anterior column support and disc height. While the TLIF technique offers many improvements over previous surgical methods, instrumentation and bone graft-related complications such as spacer misplacement or migration, screw fracture or misplacement, or rod breakage continue to be reported. The objective of this manuscript is to report on a fractured allograft interbody spacer that displaced into the neural foramen and resulted in impingement on the exiting nerve root that required revision.
CASE SUMMARY A 50-year-old male had two-level TLIF with immediate post-operative right L5 radiculopathy. Computed tomography scan demonstrated a fractured allograft interbody spacer that displaced into the right neural foramen and impinged on the exiting L5 nerve root. Revision surgery was performed to remove the broken allograft fragments from the right L5 foramen and the intact portion of the spacer was left in place. The right leg L5 radicular pain resolved. At the last follow up 12 mo after the index procedure, computed tomography scan confirmed sound interbody and posterolateral fusion.
CONCLUSION Displacement of broken allograft interbody spacer following TLIF procedures can result in neurological sequelae that require revision. To avoid such an occurrence, the authors recommend allowing sufficient time for the reconstitution of the graft in saline prior to use to decrease brittleness, to use an impactor size that is as close as possible to the spacer size and meticulous inspection of the cortical allograft spacer for any visible imperfection prior to insertion.
Collapse
Affiliation(s)
- Andrews Kyle
- Department of Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614-5807, United States
| | - Andrea Rowland
- Department of Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614-5807, United States
| | - Jacob Stirton
- Department of Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614-5807, United States
| | - Hossein Elgafy
- Department of Orthopaedic Surgery, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614-5807, United States
| |
Collapse
|
44
|
Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ. Bioactive hydrogels for bone regeneration. Bioact Mater 2018; 3:401-417. [PMID: 30003179 PMCID: PMC6038268 DOI: 10.1016/j.bioactmat.2018.05.006] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Bone self-healing is limited and generally requires external intervention to augment bone repair and regeneration. While traditional methods for repairing bone defects such as autografts, allografts, and xenografts have been widely used, they all have corresponding disadvantages, thus limiting their clinical use. Despite the development of a variety of biomaterials, including metal implants, calcium phosphate cements (CPC), hydroxyapatite, etc., the desired therapeutic effect is not fully achieved. Currently, polymeric scaffolds, particularly hydrogels, are of interest and their unique configurations and tunable physicochemical properties have been extensively studied. This review will focus on the applications of various cutting-edge bioactive hydrogels systems in bone regeneration, as well as their advantages and limitations. We will examine the composition and defects of the bone, discuss the current biomaterials for bone regeneration, and classify recently developed polymeric materials for hydrogel synthesis. We will also elaborate on the properties of desirable hydrogels as well as the fabrication techniques and different delivery strategies. Finally, the existing challenges, considerations, and the future prospective of hydrogels in bone regeneration will be outlined.
Collapse
Affiliation(s)
- Xin Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Sahla Syed
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jerry Zhuang
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
45
|
Bakir M, Meyer JL, Sutrisno A, Economy J, Jasiuk I. Aromatic thermosetting copolyester bionanocomposites as reconfigurable bone substitute materials: Interfacial interactions between reinforcement particles and polymer network. Sci Rep 2018; 8:14869. [PMID: 30291259 PMCID: PMC6173751 DOI: 10.1038/s41598-018-33131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023] Open
Abstract
Development of porous materials consisting of polymer host matrix enriched with bioactive ceramic particles that can initiate the reproduction of cellular organisms while maintaining in vivo mechanical reliability is a long-standing challenge for synthetic bone substitutes. We present hydroxyapatite (HA) reinforced aromatic thermosetting copolyester (ATSP) matrix bionanocomposite as a potential reconfigurable bone replacement material. The nanocomposite is fabricated by solid-state mixing a matching set of precursor oligomers with biocompatible pristine HA particles. During endothermic condensation polymerization reaction, the constituent oligomers form a mechanochemically robust crosslinked aromatic backbone while incorporating the HAs into a self-generated cellular structure. The morphological analysis demonstrates near-homogenous distributions of the pristine HAs within the matrix. The HAs behave as a crack-arrester which promotes a more deformation-tolerant formation with relatively enhanced material toughness. Chain relaxation dynamics of the nanocomposite matrix during glass transition is modified via HA-induced segmental immobilization. Chemical characterization of the polymer backbone composition reveals the presence of a hydrogen-advanced covalent interfacial coupling mechanism between the HAs and ATSP matrix. This report lays the groundwork for further studies on aromatic thermosetting copolyester matrix bionanocomposites which may find applications in various artificial bone needs.
Collapse
Affiliation(s)
- Mete Bakir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacob L Meyer
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Andre Sutrisno
- NMR/EPR Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James Economy
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,ATSP Innovations, Champaign, IL, 61820, USA
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
46
|
Abstract
UNLABELLED : In this historical study we present an overview of lumbar interbody fusion surgery, which is one of the most commonly performed instrumented spinal fusion surgeries. The present article focuses on the history of lumbar interbody fusion surgery, starting from the foundation which was laid in the 19th and 20th century until today. The development of material and techniques evolved from simple wiring to the combination of transforaminal interbody fusion with polyether ether ketone cages and pedicle screw fixation with poly axial screws. The possibilities of instrumented spinal fusion grew during the past 100 years, and a considerable increase in instrumented spinal surgery was seen over the past decades. Today, gain lies in perfection of techniques and deliberate indication and development of guidelines. Therefore, more standardized studies on instrumented spinal surgery are needed to be done and techniques should be personalized on the patients' specific needs. LEVEL OF EVIDENCE N/A.
Collapse
|
47
|
Tissue Engineered Bone Differentiated From Human Adipose Derived Stem Cells Inhibit Posterolateral Fusion in an Athymic Rat Model. Spine (Phila Pa 1976) 2018; 43:533-541. [PMID: 28816826 PMCID: PMC5812848 DOI: 10.1097/brs.0000000000002384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biological augmentation spinal arthrodesis trial in athymic rats. OBJECTIVE To assess the efficacy of tissue-engineered bone to promote L4-L5 intertransverse process fusion in an athymic rat model. SUMMARY OF BACKGROUND DATA Each year in the United States, over 400,000 spinal fusion surgeries are performed requiring bone graft. The current gold standard for posterolateral lumbar fusion is autogenous iliac crest bone graft (ICBG), but the harvesting of ICBG is associated with increased operative time and significant complications. This being the case, an alternative cost-effective bone graft source is needed. METHODS Bovine bone cores were sterilized and decellularized for scaffold production. Human adipose derived mesenchymal stem cells (ADSC) were obtained and verified by tridifferentiation testing and seeded onto dried scaffolds. The seeded cores were cultured for 5 weeks in culture medium designed to mimic endochondral ossification and produce hypertrophic chondrocytes. Single-level intertransverse process fusions were performed at the L4-L5 level of 31 athymic rats. Fifteen rats were implanted with the hypertrophic chondrocyte seeded scaffold and 16 had scaffold alone. Half of the study rats were sacrificed at 3 weeks and the other half at 6 weeks. Spinal fusion was assessed using 2D and 3D micro computed tomography (μCT) analysis and tissue histology. RESULTS At 3 weeks, none of the tissue engineered rats had partial or complete fusion, whereas 62.5% of the decellularized rats fused and another 12.5% had partial fusions (P = 0.013). At 6 weeks, none of the tissue engineered rats fused and 50% had partial fusions, whereas 87.5% of the decellularized rats fused (P = 0.002). CONCLUSION Tissue engineered bone composed of hypertrophic chondrocytes inhibits posterolateral fusion in an athymic rat model and therefore does not represent a promising cost-effective bone graft substitute. LEVEL OF EVIDENCE N/A.
Collapse
|
48
|
3D Printing Applications in Minimally Invasive Spine Surgery. Minim Invasive Surg 2018; 2018:4760769. [PMID: 29805806 PMCID: PMC5899854 DOI: 10.1155/2018/4760769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
3D printing (3DP) technology continues to gain popularity among medical specialties as a useful tool to improve patient care. The field of spine surgery is one discipline that has utilized this; however, information regarding the use of 3DP in minimally invasive spine surgery (MISS) is limited. 3D printing is currently being utilized in spine surgery to create biomodels, hardware templates and guides, and implants. Minimally invasive spine surgeons have begun to adopt 3DP technology, specifically with the use of biomodeling to optimize preoperative planning. Factors limiting widespread adoption of 3DP include increased time, cost, and the limited range of diagnoses in which 3DP has thus far been utilized. 3DP technology has become a valuable tool utilized by spine surgeons, and there are limitless directions in which this technology can be applied to minimally invasive spine surgery.
Collapse
|
49
|
Morris MT, Tarpada SP, Cho W. Bone graft materials for posterolateral fusion made simple: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1856-1867. [DOI: 10.1007/s00586-018-5511-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 12/30/2022]
|
50
|
Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9:2041731418776819. [PMID: 29899969 PMCID: PMC5990883 DOI: 10.1177/2041731418776819] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research.
Collapse
Affiliation(s)
- Gabriel Fernandez de Grado
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Anne-Marie Musset
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Damien Offner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| |
Collapse
|