1
|
Zhao Y, Lee S, Long T, Park HL, Lee TW. Natural biomaterials for sustainable flexible neuromorphic devices. Biomaterials 2025; 314:122861. [PMID: 39405825 DOI: 10.1016/j.biomaterials.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 11/10/2024]
Abstract
Neuromorphic electronics use neural models in hardware to emulate brain-like behavior, and provide power-efficient, extremely compact, and massively-parallel processing, so they are ideal candidates for next-generation information-processing units. However, traditional rigid neuromorphic devices are limited by their unavoidable mechanical and geometrical mismatch with human tissues or organs. At the same time, the rapid development of these electronic devices has generated a large amount of electronic waste, thereby causing severe ecological problems. Natural biomaterials have mechanical properties compatible with biological tissues, and are environmentally benign, ultra-thin, and lightweight, so use of these materials can address these limitations and be used to create next-generation sustainable flexible neuromorphic electronics. Here, we explore the advantages of natural biomaterials in simulating synaptic behavior of sustainable neuromorphic devices. We present the flexibility, biocompatibility, and biodegradability of these neuromorphic devices, and consider the potential applicability of these properties in wearable and implantable bioelectronics. Finally, we consider the challenges of device fabrication and neuromorphic system integration by natural biomaterials, then suggest future research directions.
Collapse
Affiliation(s)
- Yanfei Zhao
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungbeom Lee
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Tingyu Long
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, SN Display Co. Ltd., Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Hasan MM, Ahmad A, Akter MZ, Choi YJ, Yi HG. Bioinks for bioprinting using plant-derived biomaterials. Biofabrication 2024; 16:042004. [PMID: 39079554 DOI: 10.1088/1758-5090/ad6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Three-dimensional (3D) bioprinting has revolutionized tissue engineering by enabling the fabrication of complex and functional human tissues and organs. An essential component of successful 3D bioprinting is the selection of an appropriate bioink capable of supporting cell proliferation and viability. Plant-derived biomaterials, because of their abundance, biocompatibility, and tunable properties, hold promise as bioink sources, thus offering advantages over animal-derived biomaterials, which carry immunogenic concerns. This comprehensive review explores and analyzes the potential of plant-derived biomaterials as bioinks for 3D bioprinting of human tissues. Modification and optimization of these materials to enhance printability and biological functionality are discussed. Furthermore, cancer research and drug testing applications of the use of plant-based biomaterials in bioprinting various human tissues such as bone, cartilage, skin, and vascular tissues are described. Challenges and limitations, including mechanical integrity, cell viability, resolution, and regulatory concerns, along with potential strategies to overcome them, are discussed. Additionally, this review provides insights into the potential use of plant-based decellularized ECM (dECM) as bioinks, future prospects, and emerging trends in the use of plant-derived biomaterials for 3D bioprinting applications. The potential of plant-derived biomaterials as bioinks for 3D bioprinting of human tissues is highlighted herein. However, further research is necessary to optimize their processing, standardize their properties, and evaluate their long-termin vivoperformance. Continued advancements in plant-derived biomaterials have the potential to revolutionize tissue engineering and facilitate the development of functional and regenerative therapies for diverse clinical applications.
Collapse
Affiliation(s)
- Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Sharma A, Devi I. Animal waste as a valuable biosorbent in the removal of heavy metals from aquatic ecosystem-an eco-friendly approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:606. [PMID: 38856948 DOI: 10.1007/s10661-024-12740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.
Collapse
Affiliation(s)
- Arti Sharma
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Isha Devi
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India.
| |
Collapse
|
4
|
Luo P, Liu W, Ye Z, Zhang Y, Zhang Z, Yi J, Zeng R, Yang S, Tu M. 26SCS-Loaded SilMA/Col Composite Sponge with Well-Arranged Layers Promotes Angiogenesis-Based Diabetic Wound Repair by Mediating Macrophage Inflammatory Response. Molecules 2024; 29:1832. [PMID: 38675654 PMCID: PMC11053466 DOI: 10.3390/molecules29081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic wound healing is a significant clinical challenge because abnormal immune cells in the wound cause chronic inflammation and impair tissue regeneration. Therefore, regulating the behavior and function of macrophages may be conducive to improving treatment outcomes in diabetic wounds. Herein, sulfated chitosan (26SCS)-containing composite sponges (26SCS-SilMA/Col-330) with well-arranged layers and high porosity were constructed based on collagen and silk fibroin, aiming to induce an appropriate inflammatory response and promote angiogenesis. The results indicated that the ordered topological structure of composite sponges could trigger the pro-inflammatory response of Mφs in the early stage, and rapid release of 26SCS in the early and middle stages (within the concentration range of 1-3 mg/mL) induced a positive inflammatory response; initiated the pro-inflammatory reaction of Mφs within 3 days; shifted M1 Mφs to the M2 phenotype within 3-7 days; and significantly up-regulated the expression of two typical angiogenic growth factors, namely VEGF and PDGF-BB, on day 7, leading to rapid HUVEC migration and angiogenesis. In vivo data also demonstrated that on the 14th day after surgery, the 26SCS-SilMA/Col-330-implanted areas exhibited less inflammation, faster re-epithelialization, more abundant collagen deposition and a greater number of blood vessels in the skin tissue. The composite sponges with higher 26SCS contents (the (5.0) 26SCS-SilMA/Col-330 and the (7.5) 26SCS-SilMA/Col-330) could better orchestrate the phenotype and function of Mφs and facilitate wound healing. These findings highlight that the 26SCS-SilMA/Col-330 sponges developed in this work might have great potential as a novel dressing for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Pin Luo
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Wei Liu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zhangyao Ye
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yuyu Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Shenyu Yang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Durán-Lara EF, Rafael D, Andrade F, G OL, Vijayakumar S. Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems. Curr Med Chem 2024; 31:5884-5897. [PMID: 37828676 DOI: 10.2174/0109298673268775231003111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.
Collapse
Affiliation(s)
- Esteban F Durán-Lara
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Lobos G
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | | |
Collapse
|
6
|
Mérgola-Greef J, Milne BF. First-principles study of electronic and optical properties in 1-dimensional oligomeric derivatives of telomestatin. Phys Chem Chem Phys 2023; 25:12744-12753. [PMID: 37114806 DOI: 10.1039/d3cp01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Real-space self-interaction corrected (time-dependent) density functional theory has been used to investigate the ground-state electronic structure and optical absorption profiles of a series of linear oligomers inspired by the natural product telomestatin. Length-dependent development of plasmonic excitations in the UV region is seen in the neutral species which is augmented by polaron-type absorption with tunable wavelengths in the IR when the chains are doped with an additional electron/hole. Combined with a lack of absorption in the visible region this suggests these oligomers as good candidates for applications such as transparent antennae in dye-sensitised solar energy collection materials. Due to strong longitudinal polarisation in their absorption spectra, these compounds are also indicated for use in nano-structured devices displaying orientation-sensitive optical responses.
Collapse
Affiliation(s)
- Joëlle Mérgola-Greef
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
| | - Bruce F Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
7
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
8
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Holyavka MG, Goncharova SS, Sorokin AV, Lavlinskaya MS, Redko YA, Faizullin DA, Baidamshina DR, Zuev YF, Kondratyev MS, Kayumov AR, Artyukhov VG. Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features. Polymers (Basel) 2022; 14:5110. [PMID: 36501516 PMCID: PMC9739615 DOI: 10.3390/polym14235110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation.
Collapse
Affiliation(s)
- Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Andrey V. Sorokin
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Maria S. Lavlinskaya
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Yulia A. Redko
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Dzhigangir A. Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Maxim S. Kondratyev
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Structure and Dynamics of Biomolecular Systems, Institute of Cell Biophysics of the RAS, 3 Institutskaya Street, 142290 Pushchino, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| |
Collapse
|
10
|
Raza A, Mumtaz M, Hayat U, Hussain N, Ghauri MA, Bilal M, Iqbal HM. Recent advancements in extrudable gel-based bioinks for biomedical settings. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
12
|
López Barreiro D, Martín-Moldes Z, Blanco Fernández A, Fitzpatrick V, Kaplan DL, Buehler MJ. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites. NANOSCALE 2022; 14:10929-10939. [PMID: 35852800 PMCID: PMC9351605 DOI: 10.1039/d2nr01989b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/10/2022] [Indexed: 06/02/2023]
Abstract
Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
| | - Zaira Martín-Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Adrián Blanco Fernández
- Instituto de Cerámica de Galicia (ICG), Universidade de Santiago de Compostela, Avda. do Mestre Mateo, 25, 15706, Santiago de Compostela, A Coruña, Spain
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Hneda D, Gomes JR. Evaluation of the inflammatory process, collagen production, and MMP-2 and MMP-9 expressions produced by Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Acta Histochem 2022; 124:151882. [PMID: 35339777 DOI: 10.1016/j.acthis.2022.151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
The subcutaneous rat implanted model is a preclinical approach used in studies to characterize the histocompatibility of materials that could be used as biomaterials. Biomaterials are obtained synthetically or from the environment, and they can be used to treat or replace any tissues or organs that the body has lost. To execute their roles, the biomaterials must present any level of histocompatibility and a lower level of inflammatory reaction. This work aimed to evaluate some aspects of histocompatibility, such as the inflammatory process, collagen production, and MMP-2 and 9 expression as responses to the Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Luffa fragments were implanted into the dorsal subcutaneous region of twelve male Wistar rats, and the number of eosinophils, mast cells, the production of collagen to form the fibrous capsule, and the expression of MMP-2 and MMP-9 were evaluated on the 15th, 45th, and 90th days. Results showed statistical differences (p < 0.05) in the number of eosinophils and mast cells present inside and outside the fibrous capsule among the days evaluated. The permanent presence of macrophages and giant foreign body cells circumjacent to all implants was also observed. A progressive increase in the production of collagen was also detected, along with a significant reduction on day 90 (p < 0.05). The expression of MMP-9 was detected as being specifically expressed in the giant foreign body cells on all days evaluated, while the expression of MMP-2 was detected in fat cells present around the implants, mainly on day 90. Taken together, these results indicate a general reduction level for the inflammatory process during the days evaluated, which allows us to conclude that Luffa, being a natural product that is simple to obtain, could be a potential candidate to become a biomaterial to be tested in further approaches.
Collapse
|
14
|
Qiu L, Zhu Z, Peng F, Zhang C, Xie J, Zhou R, Zhang Y, Li M. Li-Doped Ti Surface for the Improvement of Osteointegration. ACS OMEGA 2022; 7:12030-12038. [PMID: 35449902 PMCID: PMC9016885 DOI: 10.1021/acsomega.2c00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Aseptic loosening is the main factor that leads to the failure of orthopedic implants. Enhancing the early osteointegration of a bone implant can lower the risk of aseptic loosening. Here, a Li-doped surface was constructed on a Ti surface via plasma electrolytic oxidation (PEO) to improve osteointegration. The prepared Li-doped PEO coating showed a porous morphology and the sustained release of Li ions. In vitro results of rat bone marrow mesenchymal stem cell (rBMSC) culture studies suggested that the Li-doped Ti surface significantly favored cell adhesion. Moreover, it was found that the Li-doped surface enhanced alkaline phosphatase activity and extracellular matrix mineralization of rBMSCs. In addition, the surface improved the expression of osteogenesis-related genes. Furthermore, a bone implantation model indicated that the Li-doped Ti surface showed improved osteointegration. The incorporation of Li into a Ti surface is a promising method for orthopedic applications.
Collapse
Affiliation(s)
- Longhai Qiu
- The
Second School of Clinical Medicine, Southern
Medical University, Guangzhou 510515, China
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
- Department
of Traumatology and Orthopaedic Surgery, Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516001, China
| | - Zhanbei Zhu
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Feng Peng
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Chi Zhang
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Juning Xie
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Ruixiang Zhou
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Yu Zhang
- The
Second School of Clinical Medicine, Southern
Medical University, Guangzhou 510515, China
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| | - Mei Li
- Medical
Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
15
|
Kumar TSS, Madhumathi K, Jayasree R. Eggshell Waste: A Gold Mine for Sustainable Bioceramics. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, Ardeshirylajimi A, Gholizadeh-Ghaleh Aziz S, Sadigh S, Rasmi Y. Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Rev Rep 2022; 18:1892-1911. [PMID: 35080745 DOI: 10.1007/s12015-021-10309-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid, Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Sadigh
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Oliveira TM, Berti FCB, Gasoto SC, Schneider B, Stimamiglio MA, Berti LF. Calcium Phosphate-Based Bioceramics in the Treatment of Osteosarcoma: Drug Delivery Composites and Magnetic Hyperthermia Agents. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:700266. [PMID: 35047940 PMCID: PMC8757807 DOI: 10.3389/fmedt.2021.700266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The use of biomaterials in medicine is not recent, and in the last few decades, the research and development of biocompatible materials had emerged. Hydroxyapatite (HAp), a calcium phosphate that constitutes a large part of the inorganic composition of human bones and teeth, has been used as an interesting bioceramic material. Among its applications, HAp has been used to carry antitumor drugs, such as doxorubicin, cisplatin, and gemcitabine. Such HAp-based composites have an essential role in anticancer drug delivery systems, including the treatment of osteosarcoma. In addition, the association of this bioceramic with magnetic nanoparticles (MNPs) has also been used as an effective agent of local magnetic hyperthermia. Further, the combined approach of the aforementioned techniques (HAp scaffolds combined with anti-tumor drugs and MNPs) is also an attractive therapeutical alternative. Considering the promising role of the use of bioceramics in modern medicine, we proposed this review, presenting an updated perspective on the use of HAp in the treatment of cancer, especially osteosarcoma. Finally, after giving the current progress in this field, we highlight the urgent need for efforts to provide a better understanding of their potential applications.
Collapse
Affiliation(s)
- Tiê Menezes Oliveira
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Sidney Carlos Gasoto
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | - Bertoldo Schneider
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| |
Collapse
|
18
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
19
|
Multifunctional Gelatin/Chitosan Electrospun Wound Dressing Dopped with Undaria pinnatifida Phlorotannin-Enriched Extract for Skin Regeneration. Pharmaceutics 2021; 13:pharmaceutics13122152. [PMID: 34959432 PMCID: PMC8704818 DOI: 10.3390/pharmaceutics13122152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
The similarities of electrospun fibers with the skin extracellular matrix (ECM) make them promising structures for advanced wound dressings. Moreover, infection and resistance in wounds are a major health concern that may be reduced with antibacterial wound dressings. In this work, a multifunctional wound dressing was developed based on gelatin/chitosan hybrid fibers dopped with phlorotannin-enrich extract from the seaweed Undaria pinnatifida. The intrinsic electrospun structure properties combined with the antimicrobial and anti-inflammatory properties of phlorotannin-enrich extract will enhance the wound healing process. Electrospun meshes were produced by incorporating 1 or 2 wt% of extract, and the structure without extract was used as a control. Physico-chemical, mechanical, and biological properties were evaluated for all conditions. Results demonstrated that all developed samples presented a homogenous fiber deposition with the average diameters closer to the native ECM fibrils, and high porosities (~90%) that will be crucial to control the wound moist environment. According to the tensile test assays, the incorporation of phlorotannin-enriched extract enhances the elastic performance of the samples. Additionally, the extract incorporation made the structure stable over time since its in vitro degradation rates decreased under enzymatic medium. Extract release profile demonstrated a longstanding delivery (up to 160 days), reaching a maximum value of ~98% over time. Moreover, the preliminary antimicrobial results confirm the mesh's antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In terms of biological characterization, no condition presented cytotoxicity effects on hDNF cells, allowing their adhesion and proliferation over 14 days, except the condition of 2 wt% after 7 days. Overall, the electrospun structure comprising phlorotannins-enriched extract is a promising bioactive structure with potential to be used as a drug delivery system for skin regeneration by reducing the bacterial infection in the wound bed.
Collapse
|
20
|
Sustaining Biomaterials in Bioeconomy: Roles of Education and Learning in Mekong River Basin. FORESTS 2021. [DOI: 10.3390/f12121670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The demands to improve the livelihood of small farmers require a systemic shift from fossil fuel-based and destructive approaches to sustainable renewable raw materials and non-destructive approaches. This should be accompanied by a fundamental reorganization of education and learning policies to create new bio-oriented value chains for biomaterials, food, wood, and energy, as well as in large parts of the health, manufacturing, and service industries. In the long run, the successful implementation of bio-oriented production depends on the systemic linking of both first- and second-hand learning in communities in rural as well as urban settings. The purpose of this paper is to present a concept for the co-design of a new curriculum to better equip new graduates with the ability to support the effort of the sustainable production of biomaterials that are non-destructive to the environment. To sustain biomaterials and enhance non-destructive ways of thinking, learning needs a community of practice in both online and onsite platforms—allowing students to better understand and support cascade use. Therefore, the use of by-products and recycling products after use will increase in importance. A community of practice, and institutions, must create education and learning platforms for improved actions regarding biomaterials across generations and experiences, which will subsequently be integrated into the circular value chains of the bioeconomy. The first- and second-hand learning to sustain these value chains depends on higher education and learning institutions with both legal mandates and systems approaches.
Collapse
|
21
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
22
|
Abstract
Silk is a functional protein biomaterial produced by a variety of insects like flies, silkworms, scorpions, spiders, and mites. Silk synthesized by silkworms is extensively studied for its applications in tissue engineering and wound healing. Silk is undoubtedly a natural biocompatible material with humans and has its role in medical treatments from ancient times. The silk worm protein comprises two types of proteins namely fibroin and sericin. Silk fibroin makes up approximately 70% of cocoon weight and has wide applications in textiles and in all biomedical applications owing to its biocompatible, nontoxic, biodegradable, less immunogenic, and noncarcinogenic nature. It possesses outstanding toughness and mechanical strength, while silk sericin possesses high defensive ability against ultraviolet light and oxidation. Silk fibroin has been known to induce wound healing by increasing cell proliferation and growth and migrating various types of cells which are involved in different stages of wound healing process. With several silk varieties like silk worm fibroin, silk sericin, recombinant silk materials, and native spider silk have been investigated for its wound healing applications over the last several decades. With an objective of harnessing the silk regenerative properties, plentiful strategies have been studied and applied to develop bioartificial skin grafts and bioactive wound dressings in recent times. This review gives a detailed insight into the structure, general properties, fibroin structure-properties relationship, and biomedical applications of silk fibroin.
Collapse
|
23
|
Razavi S, Jahromi M, Vatankhah E, Seyedebrahimi R. Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration. BMC Neurosci 2021; 22:50. [PMID: 34384370 PMCID: PMC8359623 DOI: 10.1186/s12868-021-00655-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background Fibrin as an extracellular matrix feature like biocompatibility, creates a favorable environment for proliferation and migration of cells and it can act as a reservoir for storage and release of growth factors in tissue engineering. Methods In this study, the inner surface of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibrous conduit was biofunctionalized with laminin containing brain derived neurotrophic factor (BDNF) and gold nanoparticles in chitosan nanoparticle. The rats were randomly divided into five groups, including autograft group as the positive control, PLGA conduit coated by laminin and filled with DMEM/F12, PLGA conduit coated by laminin and filled with rat-adipose derived stem cells (r-ADSCs), PLGA conduit coated by laminin containing gold-chitosan nanoparticles (AuNPs-CNPs), BDNF-chitosan nanoparticles (BDNF-CNPs) and filled with r-ADSCs or filled with r-ADSCs suspended in fibrin matrix, and they were implanted into a 10 mm rat sciatic nerve gap. Eventually, axonal regeneration and functional recovery were assessed after 12 weeks. Results After 3 months post-surgery period, the results showed that in the PLGA conduit filled with r-ADSCs without fibrin matrix group, positive effects were obtained as compared to other implanted groups by increasing the sciatic functional index significantly (p < 0.05). In addition, the diameter nerve fibers had a significant difference mean in the PLGA conduit coated by laminin and conduit filled with r-ADSCs in fibrin matrix groups relative to the autograft group (p < 0.001). However, G-ratio and amplitude (AMP) results showed that fibrin matrix might have beneficial effects on nerve regeneration but, immunohistochemistry and real-time RT-PCR outcomes indicated that the implanted conduit which filled with r-ADSCs, with or without BDNF-CNPs and AuNPs-CNPs had significantly higher expression of S100 and MBP markers than other conduit implanted groups (p < 0.05). Conclusions It seems, in this study differential effects of fibrin matrix, could be interfered it with other factors thereby and further studies are required to determine the distinctive effects of fibrin matrix combination with other exogenous factors in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maliheh Jahromi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Biological Systems, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Ahmad S, Palvasha BA, Abbasi BBK, Nazir MS, Akhtar MN, Tahir Z, Abdullah MA. Preparation and Applications of Polysaccharide‐Based Composites. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Adetunji CO, Akram M, Michael OS, Shahzad K, Ayeni AE, Hasan S, Adetunji JB, Hasan SM, Inamuddin, Olaniyan M, Muhibi MA. Polysaccharides Derived From Natural Sources: A Panacea to Health and Nutritional Challenges. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Qianqian O, Songzhi K, Yongmei H, Xianghong J, Sidong L, Puwang L, Hui L. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int J Biol Macromol 2021; 181:369-377. [PMID: 33737190 DOI: 10.1016/j.ijbiomac.2021.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
There is an urgent need for wound dressings to treat partial-thickness burns. Hydrogels are a promising material that can maintain hydration to promote necrotic tissue removal. Tilapia peptides (TP) and hydroxyapatite (HA) were incorporated into chitosan system to prepare new types of hydrogels. The hydrogels were cross-linking by tannin (TA), which were developed to promote rapid wound healing in a New Zealand rabbit partial-thickness burn model. Nanohydroxyapatite (NHA) was synthesized by coprecipitation method, which made hydrogels have a highly porous structure comprised of interconnected pores, excellent water absorption and low hemolysis. Besides, the hydrogels showed excellent antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as the cytocompatibility on endothelial cells. Moreover, the hydrogels promoted epithelial and dermal regeneration, reduce the expression of TNF-α and IL-6 and promote the skin regeneration by enhancing expression of collagen, STAT3, and VEGF.
Collapse
Affiliation(s)
- Ouyang Qianqian
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kong Songzhi
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huang Yongmei
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Ju Xianghong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Sidong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Puwang
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Luo Hui
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
27
|
Affiliation(s)
- Danni Zhong
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Zhen Du
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Min Zhou
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
- State Key Laboratory of Modern Optical Instrumentations Zhejiang University Hangzhou China
| |
Collapse
|
28
|
Muthulakshmi L, Pavithra U, Sivaranjani V, Balasubramanian N, Sakthivel KM, Pruncu CI. A novel Ag/carrageenan-gelatin hybrid hydrogel nanocomposite and its biological applications: Preparation and characterization. J Mech Behav Biomed Mater 2020; 115:104257. [PMID: 33333481 DOI: 10.1016/j.jmbbm.2020.104257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 01/27/2023]
Abstract
A novel biohybrid hydrogel nanocomposite made of natural polymer carrageenan and gelatin protein were developed. The silver nanoparticles were prepared using the carrageenan polymer as reduction and capping agent. Here, the Ag/Carrageenan was combined with gelatin hydrogel using glutaraldehyde having a cross-link role in order to create the biohybrid hydrogel nanocomposite. The manufactured composite performances were anaylised by UV-visible spectroscopy, Fourier Transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX) spectroscopy and Transmission Electron Microscopy (TEM) methods. The swelling behaviour of the Ag/Carrageenan-gelatin hybrid hydrogel nanocomposite was also analyzed. The antibacterial activity was tested against human pathogens viz. S.agalactiae 1661, S. pyogenes 1210 and E. coli. The bacterial cell wall damage of S.agalactiae 1661 was analyzed by scanning electron microscopy. The cytotoxic assay was performed against the A549 lung cancer cells.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India.
| | - U Pavithra
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India
| | - V Sivaranjani
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India
| | - N Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biotechnology, Regional Cancer Centre, Thiruvananthapuram, 695011, Kerala, India; Department of Biochemistry, PSG College of Arts and Science, Coimbatore 641014, Tamilnadu, India
| | - Catalin Iulian Pruncu
- Department of Mechanical Engineering, Imperial College London, Exhibition Rd., London, SW7 2AZ, UK; Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK.
| |
Collapse
|
29
|
Di Santo MC, Alaimo A, Domínguez Rubio AP, De Matteo R, Pérez OE. Biocompatibility analysis of high molecular weight chitosan obtained from Pleoticus muelleri shrimps. Evaluation in prokaryotic and eukaryotic cells. Biochem Biophys Rep 2020; 24:100842. [PMID: 33241127 PMCID: PMC7672293 DOI: 10.1016/j.bbrep.2020.100842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
The search for the exploitation and recycling of biomaterials is increasing for reducing the use of non-renewable resources and minimizing environmental pollution caused by synthetic materials. In this context, Chitosan (CS) being a naturally occurring biopolymer becomes relevant. The aim of the present work was to explore the effects of High Molecular Weight CS (H-CS) from Argentinean shrimp's wastes in prokaryotic and eukaryotic in vitro cell cultures. Ultrastructure of H-CS was analysed by SEM and TEM. In vitro studies were performed in prokaryotic (Lactobacillus casei BL23) and eukaryotic (Caco-2, ARPE-19, EA.hy926 and 3T3-L1) culture cells. High performance microscopic techniques were applied to examine culture cells. No changes in morphology were found in any of the cell types. In addition, fluorescent-dyed H-CS revealed that eukaryotic cells could internalize it optimally. Viability was maintained and proliferation rate even increased for Caco-2, ARPE-19 and 3T3-L1 cells under H-CS treatment. Besides, viability was neither altered in L. casei nor in EA.hy926 cells after H-CS exposure. In conclusion, H-CS could be a suitable biopolymer to be exploited for biomedical or food industry applications.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Regina De Matteo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
30
|
Sivaraj D, Vijayalakshmi K, Ganeshkumar A, Rajaram R. Tailoring Cu substituted hydroxyapatite/functionalized multiwalled carbon nanotube composite coating on 316L SS implant for enhanced corrosion resistance, antibacterial and bioactive properties. Int J Pharm 2020; 590:119946. [PMID: 33027634 DOI: 10.1016/j.ijpharm.2020.119946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023]
Abstract
The aim of the present work is to study the potential change in the antibacterial properties of Cu-hydroxyapatite/functionalized multiwall carbon nanotube (HA/f-MWCNT) composite coated heterogeneous implant surfaces against Gram positive and Gram-negative microorganism and to reveal the possible contribution of surface corrosion effects arising in stimulated body fluid. Novel spray pyrolysis instrument designed with double nozzle was used for the fabrication of Cu-hydroxyapatite/f-MWCNT film on 316L stainless steel (SS). The Cu-hydroxyapatite/MWCNT coated bioimplant was characterized by a series of techniques to identify the crystallinity, chemical bonds, surface morphology and elemental composition. The results disclose that the coated implants exhibit highly crystalline nature with the space group of P63mc and spherical shaped morphology. The corrosion current density revealed a remarkable decrease from 6.8 to 3.8 μA suggesting that the Cu substituted hydroxyapatite/f-MWCNT composite coating provided higher barrier properties which is beneficial to achieve higher corrosion protection of 316L SS implant. The hybrid Cu-hydroxyapatite-MWCNT composite revealed better antibacterial ability than HA/MWCNT for both gram positive and gram-negative bacteria with a maximum inhibition zone of 13-17 mm, compared with hydroxyapatite/f-MWCNT. The antibacterial ability of the Cu-hydroxyapatite/f-MWCNT nanocomposites was effective against Escherichia coli compared with other microorganisms. The Cu-hydroxyapatite/f-MWCNT nanocomposite exhibited that the coated material is nontoxic, biocompatible and suitable for biomedical application.
Collapse
Affiliation(s)
- Durairaj Sivaraj
- Research Department of Physics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India; SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai, Tamilnadu 603 110, India.
| | | | - Arumugam Ganeshkumar
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
31
|
Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020; 23:101745. [PMID: 33235984 PMCID: PMC7670191 DOI: 10.1016/j.isci.2020.101745] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.
Collapse
Affiliation(s)
- James Quinn
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan McFadden
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Chi-Wai Chan
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
32
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
33
|
Modak P, Hammond W, Jaffe M, Nadig M, Russo R. Dynamic, 3DSchiff base networks for medical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Raina N, Rani R, Pahwa R, Gupta M. Biopolymers and treatment strategies for wound healing: an insight view. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1838518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Delhi, India
| | - Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Delhi, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Delhi, India
| |
Collapse
|
35
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
37
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
38
|
Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020; 25:E3620. [PMID: 32784890 PMCID: PMC7463484 DOI: 10.3390/molecules25163620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a global health challenge. There are drawbacks to conventional chemotherapy such as poor bioavailability, development of drug resistance and severe side effects. Novel drug delivery system may be an alternative to optimize therapeutic effects. When such systems consist of natural materials, they offer important advantages: they are usually highly biocompatible, biodegradable, nontoxic and nonimmunogenic. Furthermore, natural materials can be easily modified for conjugation with a wide range of therapeutic agents and targeting ligands, according to the therapeutic purpose. This article reviews different natural ingredients and their applications in drug delivery systems for cancer therapy. Firstly, an overview of the polysaccharides and protein-based polymers that have been extensively investigated for drug delivery are described. Secondly, recent advances in using various natural ingredient-based polymeric nanoparticles for cancer therapy are reviewed. The characteristics of these delivery systems are summarized, followed by a discussion of future development and clinical potential. This review aims to summarize current knowledge and provide a basis for developing effective tailor-made formulations for cancer therapy in the future.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
39
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
40
|
Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine 2020; 15:4205-4224. [PMID: 32606673 PMCID: PMC7314574 DOI: 10.2147/ijn.s245936] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and renewability but have some significant drawbacks such as rapid degradation, insufficient electrical conductivity, immunological reaction, and poor mechanical properties for cardiac tissue engineering. Synthetic biodegradable polymers have some advantages such as strong mechanical properties, controlled structure, great processing flexibility, and usually no immunological concerns; however, they have some drawbacks such as a lack of cell attachment and possible low biocompatibility. Some applications have combined the best of both and exciting new natural/synthetic composites have been utilized. Recently, the use of nanostructured polymers and polymer nanocomposites has revolutionized the field of cardiac tissue engineering due to their enhanced mechanical, electrical, and surface properties promoting tissue growth. In this review, recent research on the use of biodegradable natural/synthetic nanocomposite polymers in cardiac tissue engineering is presented with forward looking thoughts provided for what is needed for the field to mature.
Collapse
Affiliation(s)
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sakineh Hajebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoumehossadat Hosseini
- Department of Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
- Soroush Mana Pharmed, Pharmaceutical Holding, Golrang Industrial Group, Tehran, Iran
| | | | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, United States
| |
Collapse
|
41
|
Veiga A, Castro F, Rocha F, Oliveira AL. Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:3441-3455. [DOI: 10.1021/acsabm.0c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anabela Veiga
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE − Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of Porto, University of Porto, Porto, Portugal
| | - Ana L. Oliveira
- CBQF - Centro de Biotecnologia e Quı́mica Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
42
|
Baek S, Park H, Chen K, Park H, Lee D. Development of an implantable PCL/alginate bilayer scaffold to prevent secondary infections. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Yaşayan G, Karaca G, Akgüner ZP, Bal Öztürk A. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Gizem Karaca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Zeynep Püren Akgüner
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Ayça Bal Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Turkey
| |
Collapse
|
44
|
Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1626. [DOI: 10.1002/wnan.1626] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antonios Keirouz
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Michael Chung
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Jaehoon Kwon
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes The University of Edinburgh Edinburgh UK
| |
Collapse
|
45
|
Arukalam IO, Ishidi EY, Obasi HC, Madu IO, Ezeani OE, Owen MM. Exploitation of natural gum exudates as green fillers in self-healing corrosion-resistant epoxy coatings. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02055-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed Mater 2019; 103:103544. [PMID: 32090944 DOI: 10.1016/j.jmbbm.2019.103544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their "simple" tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.
Collapse
|
47
|
Sousa EA, Silva MJ, Sanches AO, Soares VO, Job AE, Malmonge JA. Mechanical, thermal, and morphological properties of natural rubber/45S5 Bioglass® fibrous mat with ribbon-like morphology produced by solution blow spinning. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Chappard D, Kün-Darbois JD, Pascaretti-Grizon F, Camprasse G, Camprasse S. Giant cells and osteoclasts present in bone grafted with nacre differ by nuclear cytometry evaluated by texture analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:100. [PMID: 31468139 DOI: 10.1007/s10856-019-6293-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Nacre (mother of pearl) is a natural biomaterial used to prepare orthopedic devices. We have implanted screws and plates made with nacre in five sheeps. Bone were harvested after two months and embedded in poly(methyl methacrylate). Blocks were saws and the thick slabs were grinded, polished and surface stained. Sections were photographed at an ×1000 magnification. Giant cells were found in contact with nacre in eroded areas and true osteoclasts were found at distance in the neighboring bone in Howship lacunae. A texture analysis of the nuclei of giant cells and osteoclasts was done using the run-length method of the MaZda freeware. The size of the nuclei was reduced in osteoclast and their mean gray level appeared reduced. Texture analysis revealed that chromatin had a completely different pattern in giant cells when compared to osteoclasts. Giant cells had a fine repartition of the chromatin with large clear areas around prominent nucleoli. On the contrary, osteoclast nuclei had chromatin blocks evenly dispersed in the nuclei. This reflects the different origin of these cells expressing different functions.
Collapse
Affiliation(s)
- Daniel Chappard
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, 49933, Angers, France.
| | - Jean-Daniel Kün-Darbois
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, 49933, Angers, France
| | - Florence Pascaretti-Grizon
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, EA-4658, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, 49933, Angers, France
| | | | | |
Collapse
|
49
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
50
|
Lee E, Kim HJ, Shaker MR, Ryu JR, Ham MS, Seo SH, Kim DH, Lee K, Jung N, Choe Y, Son GH, Rhyu IJ, Kim H, Sun W. High-Performance Acellular Tissue Scaffold Combined with Hydrogel Polymers for Regenerative Medicine. ACS Biomater Sci Eng 2019; 5:3462-3474. [PMID: 33405730 DOI: 10.1021/acsbiomaterials.9b00219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Decellularization of tissues provides extracellular matrix (ECM) scaffolds for regeneration therapy and an experimental model to understand ECM and cellular interactions. However, decellularization often causes microstructure disintegration and reduction of physical strength, which greatly limits the use of this technique in soft organs or in applications that require maintenance of physical strength. Here, we present a new tissue decellularization procedure, namely CASPER (Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine), which includes infusion and hydrogel polymerization steps prior to robust chemical decellularization treatments. Polymerized hydrogels serve to prevent excessive damage to the ECM while maintaining the sophisticated structures and biological activities of ECM components in various organs, including soft tissues such as brains and embryos. CASPERized tissues were successfully recellularized to stimulate a tissue-regeneration-like process after implantation without signs of pathological inflammation or fibrosis in vivo, suggesting that CASPERized tissues can be used for monitoring cell-ECM interactions and for surrogate organ transplantation.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae Ryun Ryu
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Seok Ham
- Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Hong Seo
- Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dai Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kiwon Lee
- Logos Biosystems, Inc., Anyang-si, Gyunggi-do 431-755, Republic of Korea
| | - Neoncheol Jung
- Logos Biosystems, Inc., Anyang-si, Gyunggi-do 431-755, Republic of Korea
| | - Youngshik Choe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 701-300, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences and Department of Legal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|