1
|
Kumar D, Binwal M, Bawankule DU, Yadav NP, Rout PK. Modification of novel gymnemic acid enrich extract to Ag-nanoparticles and lipid soluble derivative for the amelioration of insulin impairment in L6 myoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Omale S, Amagon KI, Johnson TO, Bremner SK, Gould GW. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. PeerJ 2023; 11:e14639. [PMID: 36627919 PMCID: PMC9826616 DOI: 10.7717/peerj.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Diabetes is one of the fastest-growing health emergencies of the 21st century, placing a severe economic burden on many countries. Current management approaches have improved diabetic care, but several limitations still exist, such as decreased efficacy, adverse effects, and the high cost of treatment, particularly for developing nations. There is, therefore, a need for more cost-effective therapies for diabetes management. The evidence-based application of phytochemicals from plants in the management of diseases is gaining traction. Methodology Various plants and plant parts have been investigated as antidiabetic agents. This review sought to collate and discuss published data on the cellular and molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to better understand the current trend in using plant products in the management of diabetes. Furthermore, we explored available information on medicinal plants that consistently produced hypoglycemic effects from isolated cells to animal studies and clinical trials. Results There is substantial literature describing the effects of a range of plant extracts on insulin action and insulin signaling, revealing a depth in knowledge of molecular detail. Our exploration also reveals effective antidiabetic actions in animal studies, and clear translational potential evidenced by clinical trials. Conclusion We suggest that this area of research should be further exploited in the search for novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Simeon Omale
- African Centre for Excellence in Phytomedicine, University of Jos, Jos, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Kennedy I. Amagon
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O. Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Shaun Kennedy Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
3
|
Alam O, Naaz S, Sharma V, Manaithiya A, Khan J, Alam A. Recent developments made in the assessment of the antidiabetic potential of gymnema species - From 2016 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114908. [PMID: 34906636 DOI: 10.1016/j.jep.2021.114908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In traditional herbal medicine, the Gymnema species has been well known for various therapeutic activities such as anti-diabetic, anti-inflammatory, anti-bacterial, anti-arthritic, anti-hyperlipidemic, cytotoxic, and immunostimulatory activities. This review is an effort to analyse all the recent studies done to explore the anti-diabetic potential of traditional Gymnema species. Gymnema sylvestre (Retz.) R.Br. ex Sm. is an important member of the Apocynaceae family that has been used to treat a variety of diseases, the most studied of which is diabetes. This action is mostly due to the pharmacologically active phytoconstituents present in its extract, which include gymnemic acids, triterpenoid saponin glycosides, and so on. Numerous other Gymnema species have also demonstrated a similar pharmacological action. INTRODUCTION The goal of this study is to give a critical overview of the available data on Gymnema species that are used to treat diabetes. The major goal of this study is to give up-to-date knowledge on ethnopharmacology, botany, pharmacology, and structure-activity relationships of Gymnemaspecies from 2016 to 2020, as well as potential future research. The potential of using medicinal plants for alleviating symptoms of diabetes is recently being recognized. This review aims to summarize the available data and highlight both the potential and shortcomings of using Gymnema therapeutically. This knowledge can further be used to develop more therapeutically effective drugs derived from Gymnema. MATERIALS AND METHODS Data for Gymnema species was obtained using a mix of several search terms from online databases such as PubMed, SCOPUS, and Europe PMC. Other literature surveys relevant to traditional knowledge, phytochemistry, pharmacology, or structure-activity relationship activity were also used as reference. Several methods by which Gymnema species extracts exert their effects have been investigated, and a summary of the newly discovered chemicals isolated from the plant in the previous five years has been provided. RESULTS SAR based evaluation has been carried out for a total of 27 pharmacologically active compounds belonging to three species of Gymnema genus (Gymnema sylvestre, Gymnema latifolium, and Gymnema inodorum).These compounds demonstrated the critical significance of plant medicines for diabetes management. Numerous heterocyclic compounds have anti-diabetic action and may serve as a starting point for the design and identification of new diabetes inhibitors. CONCLUSIONS This study aims to provide researchers with a better understanding of the antidiabetic potential Gymnema species, as well as an outline of prospective future developments. It was concluded after studying the evaluation done in the last 5 years that although extracts of Gymnema have shown good antidiabetic potential, further modifications in the structures could result in the development of more potent and safer compounds.
Collapse
Affiliation(s)
- Ozair Alam
- Medicinal Chemistry & Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Sameena Naaz
- Department of Computer Science & Engineering, School of Engineering Science and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry & Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry & Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Jalaluddin Khan
- Microbial & Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afshar Alam
- Department of Computer Science & Engineering, School of Engineering Science and Technology, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Liu M, Zhou T, Zhang J, Liao G, Lu R, Yang X. Identification of C 21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities. Molecules 2021; 26:6549. [PMID: 34770958 PMCID: PMC8588469 DOI: 10.3390/molecules26216549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Gymnema sylvestre (Retz.) Schult is a multi-purpose traditional medicine that has long been used for the treatment of various diseases. To discover the potential bioactive composition of G. sylvestre, a chemical investigation was thus performed. In this research, four new C21 steroidal glycosides sylvepregosides A-D (1-4) were isolated along with four known compounds, gymnepregoside H (5), deacetylkidjoladinin (6), gymnepregoside G (7) and gymnepregoside I (8), from the ethyl acetate fraction of G. sylvestre. The structures of the new compounds were established by extensive 1D and 2D nuclear magnetic resonance (NMR) spectra with mass spectroscopy data. Compounds 1-6 promoted glucose uptake by the range of 1.10- to 2.37-fold, respectively. Compound 1 showed the most potent glucose uptake, with 1.37-fold enhancement. Further study showed that compounds 1 and 5 could promote GLUT-4 fusion with the plasma membrane in L6 cells. The result attained in this study indicated that the separation and characterization of these compounds play an important role in the research and development of new anti-diabetic drugs and pharmaceutical industry.
Collapse
Affiliation(s)
- Meiyu Liu
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China; (M.L.); (J.Z.); (G.L.)
| | - Tongxi Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Jinyan Zhang
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China; (M.L.); (J.Z.); (G.L.)
| | - Guangfeng Liao
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China; (M.L.); (J.Z.); (G.L.)
| | - Rumei Lu
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China; (M.L.); (J.Z.); (G.L.)
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
5
|
Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via anti-oxidation and anti-inflammation. Int J Biol Macromol 2020; 150:1061-1071. [DOI: 10.1016/j.ijbiomac.2019.10.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
|
6
|
Khan F, Sarker MMR, Ming LC, Mohamed IN, Zhao C, Sheikh BY, Tsong HF, Rashid MA. Comprehensive Review on Phytochemicals, Pharmacological and Clinical Potentials of Gymnema sylvestre. Front Pharmacol 2019; 10:1223. [PMID: 31736747 PMCID: PMC6830388 DOI: 10.3389/fphar.2019.01223] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022] Open
Abstract
Gymnema sylvestre is a plant included in Apocynaceae family and is located in many regions of Asia, Africa and Australia. This plant is widely used as a traditional therapy for different purposes. Even now it is being used as a dietary supplement due to its numerous therapeutic uses. It is known to have blood glucose lowering potential and, thus, is widely used in traditional and Ayurvedic systems of medicine. It renders glucose lowering activity due to the presence of phytochemicals, such as gurmarin, gymnemic acid as well as gymnemasaponins. Gymnema sylvestre is also known to have anti-oxidant, antibiotic, anti-inflammatory, antiviral, gastro and hepatoprotective, anticancer and lipid-lowering activities. This review discusses in details on different pharmacological and clinical potentials of Gymnema sylvestre and its chemical constituents associated with its therapeutic potentials.
Collapse
Affiliation(s)
- Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Ltd., Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Ltd., Dhaka, Bangladesh
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
- Division of Pharmacy, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bassem Y. Sheikh
- Faculty of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | | | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
7
|
Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int J Biol Macromol 2019; 125:278-289. [DOI: 10.1016/j.ijbiomac.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/18/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022]
|
8
|
In Vitro Antidiabetic Effects of Isolated Triterpene Glycoside Fraction from Gymnema sylvestre. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7154702. [PMID: 30158997 PMCID: PMC6106959 DOI: 10.1155/2018/7154702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/29/2022]
Abstract
A triterpene glycoside (TG) fraction isolated and purified from ethanolic extract of Gymnema sylvestre (EEGS) was investigated for blood glucose control benefit using in vitro methods. The HPLC purified active fraction TG was characterized using FTIR, LC-MS, and NMR. The purified fraction (TG) exhibited effective inhibition of yeast α-glucosidase, sucrase, maltase, and pancreatic α-amylase with IC50 values 3.16 ± 0.05 μg/mL, 74.07 ± 0.51, 5.69 ± 0.02, and 1.17 ± 0.24 μg/mL, respectively, compared to control. TG was characterized to be a mixture of triterpene glycosides: gymnemic acids I, IV, and VII and gymnemagenin. In vitro studies were performed using mouse pancreatic β-cell lines (MIN6). TG did not exhibit any toxic effects on β-cell viability and showed protection against H2O2 induced ROS generation. There was up to 1.34-fold increase in glucose stimulated insulin secretion (p<0.05) in a dose-dependent manner relative to standard antidiabetic drug glibenclamide. Also, there was further one-fold enhancement in the expression of GLUT2 compared to commercial standard DAG (deacylgymnemic acid). Thus, the present study highlights the effective isolation and therapeutic potential of TG, making it a functional food ingredient and a safe nutraceutical candidate for management of diabetes.
Collapse
|
9
|
Telapolu S, Kalachavedu M, Punnoose AM, Bilikere D. MD-1, a poly herbal formulation indicated in diabetes mellitus ameliorates glucose uptake and inhibits adipogenesis - an in vitro study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:113. [PMID: 29606113 PMCID: PMC5879540 DOI: 10.1186/s12906-018-2177-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2023]
Abstract
Background Type 2 Diabetes (T2D) is a polygenic disease requiring a multipronged therapeutic approach. In the current scenario, the use of polyherbals is increasing among the diabetics. MD-1, a poly herbal formulation is constituted as a mixture of six popular anti diabetic herbs, used in the management of Diabetes mellitus (DM). The physicochemical, biochemical and in vitro efficacy studies have been carried out to ascertain the possible mechanisms underlying the anti-diabetic action of MD-1. Methods MD-1 was evaluated for residual toxins as per Ayurvedic Pharmacoepia of India (API) procedures. The hydro alcoholic extract of the formulation (HAEF) was evaluated for anti oxidant activity against 2, 2-diphenyl-1-picrylhydrazil (DPPH) and nitric oxide radicals in vitro. The effect of HAEF on carbohydrate digestive enzymes α-glucosidase and α-amylase was studied using biochemical assays. HAEF was studied for its glucose lowering potential in L6 myotubes and 3T3L1 preadipocytes, using 2-deoxy-D-[1-3H] glucose (2-DG) uptake assay. Effect of MD-1 on adipogenesis was evaluated in 3T3L1 adipocytes using oil O red staining. The effect of HAEF on mRNA expression of peroxisome proliferator activated receptor gamma (PPARγ) and glucose transporter 4 (GLUT4) in 3T3L1 adiocytes was investigated by reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was performed by student t-test, ANOVA. Results Residual toxins present within the API limits and HAEF demonstrated strong antioxidant potential and significantly inhibited the α-glucosidase (IC50 63.6 ± 0.46 μg/mL) and α-amylase (IC50 242.81 ± 1.26 μg/mL) activity. HAEF significantly (p < 0.05) enhanced the insulin stimulated glucose uptake in both the cell lines studied. Unlike standard pioglitazone (PGZ), HAEF modulated the mRNA expression of PPARγ and GLUT4 (p < 0.0001) in 3T3L1 adipocytes, without inducing adipogenesis. Conclusion Physicochemical parameters established in the study may serve as reference standards in regular quality control. Absence of residual toxins underpins the safety. The enhanced glucose uptake and favorable modulation of insulin sensitivity through a plausible weak PPARγ agonism is similar to the distinct PPARγ activation pattern of several reported natural compound agonists. The differential binding modes of such dynamic combinatorial ligands within the formulation unlike synthetic ligands like thiozolidinediones (TZD) can be linked to the safe mitigation of diabetic complications by MD-1.
Collapse
|
10
|
Xiang L, Li J, Wang Q, Tang R, Qi J. Leptin Gene Transfer Improves Symptoms of Type 2 Diabetic Mice by Regulating Leptin Signaling Pathway and Insulin Resistance of Peripheral Tissues. Hum Gene Ther 2017. [PMID: 28622065 DOI: 10.1089/hum.2016.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The leptin gene was transferred into the liver of streptozocin- and high fat diet-induced type 2 diabetic (T2D) mice by hydrodynamic-based gene delivery. The food intake, water consumption, glucose concentration, and triglyceride and total cholesterol levels of T2D mice were significantly decreased. Meanwhile, plasma leptin was remarkably increased after gene transfer for 2, 3, 5, and 7 days, while plasma adiponectin was also significantly increased at day 2. To understand the mechanism of action of leptin on T2D mice, gene expressions related to glycometabolism and energy metabolism in the liver, epididymal adipose tissue, hypothalamus, and muscle were measured. The mRNA expression levels of adiponectin receptor 1 (ADR1), glucose transporter 4 (GLUT4), glucose-6-phosphase, and peroxisome proliferator-activated receptor γ in the liver, leptin, adiponectin, and hormone-sensitive lipase in adipose tissue, leptin, leptin-receptor, ADR1 in the hypothalamus, and ADR1, GLUT4, and insulin 1 in the gastrocnemius significantly increased. Moreover, the hepatic glycogen of the leptin-gene-treated group was significantly increased in comparison to the control group. Meanwhile, the significant decrease of forkhead box O1, adiponectin receptor 2, and peroxisome proliferator-activated receptor α in the liver, and agouti-related protein and proopiomelanocortin genes in the hypothalamus were also observed. In fat tissue and hypothalamus, leptin and adiponectin protein levels were also significantly increased, whereas the neuropeptide Y protein level was significantly decreased. These results indicated that the leptin gene transfer could improve the symptoms of T2D mice by regulating the leptin-hypothalamus signaling pathway and improving the insulin resistance of the peripheral tissues of T2D mice.
Collapse
Affiliation(s)
- Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Jing Li
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Qian Wang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Ruiqi Tang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, China
| |
Collapse
|