1
|
Ji Z, Wang M, Zhang S, Du Y, Cong J, Yan H, Guo H, Xu B, Zhou Z. GDSL Esterase/Lipase GELP1 Involved in the Defense of Apple Leaves against Colletotrichum gloeosporioides Infection. Int J Mol Sci 2023; 24:10343. [PMID: 37373491 DOI: 10.3390/ijms241210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.
Collapse
Affiliation(s)
- Zhirui Ji
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Meiyu Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinan Du
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jialin Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Haifeng Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Haimeng Guo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| |
Collapse
|
2
|
Ding Y, Xing L, Xu J, Jiang T, Tang X, Wang Y, Huang S, Hao W, Zhou X, Zhang Y, Xie CG. Genome-wide exploration of the GDSL-type esterase/lipase gene family in rapeseed reveals several BnGELP proteins active during early seedling development. FRONTIERS IN PLANT SCIENCE 2023; 14:1139972. [PMID: 37008509 PMCID: PMC10050346 DOI: 10.3389/fpls.2023.1139972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The Gly-Asp-Ser-Leu (GDSL)-type esterase/lipase proteins (GELP) are one of the most important families of lipolytic enzymes and play prominent roles in seed germination and early seedling establishment through mobilizing the lipids stored in seeds. However, there are no comprehensive studies systematically investigating the GELP gene family in Brassica napus (BnGELP), and their biological significance to these physiological processes are far from understood. In the present study, a total of 240 BnGELP genes were identified in B. napus cultivar "Zhongshuang 11" (ZS11), which is nearly 2.3-fold more GELP genes than in Arabidopsis thaliana. The BnGELP genes clustered into 5 clades based on phylogenetic analysis. Ten BnGELPs were identified through zymogram analysis of esterase activity followed by mass spectrometry, among which five clustered into the clade 5. Gene and protein architecture, gene expression, and cis-element analyses of BnGELP genes in clade 5 suggested that they may play different roles in different tissues and in response to different abiotic stresses. BnGELP99 and BnGELP159 were slightly induced by cold, which may be attributed to two low-temperature responsive cis-acting regulatory elements present in their promoters. An increased activity of esterase isozymes by cold was also observed, which may reflect other cold inducible esterases/lipases in addition to the ten identified BnGELPs. This study provides a systemic view of the BnGELP gene family and offers a strategy for researchers to identify candidate esterase/lipase genes responsible for lipid mobilization during seed germination and early seedling establishment.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Liwen Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiamin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Teng Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhua Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yaxuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling, China
| | - Wenfang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling, China
| | - Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Cenci A, Concepción-Hernández M, Guignon V, Angenon G, Rouard M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. Int J Mol Sci 2022; 23:ijms232012114. [PMID: 36292971 PMCID: PMC9602515 DOI: 10.3390/ijms232012114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
GDSL-type esterase/lipase (GELP) enzymes have key functions in plants, such as developmental processes, anther and pollen development, and responses to biotic and abiotic stresses. Genes that encode GELP belong to a complex and large gene family, ranging from tens to more than hundreds of members per plant species. To facilitate functional transfer between them, we conducted a genome-wide classification of GELP in 46 plant species. First, we applied an iterative phylogenetic method using a selected set of representative angiosperm genomes (three monocots and five dicots) and identified 10 main clusters, subdivided into 44 orthogroups (OGs). An expert curation for gene structures, orthogroup composition, and functional annotation was made based on a literature review. Then, using the HMM profiles as seeds, we expanded the classification to 46 plant species. Our results revealed the variable evolutionary dynamics between OGs in which some expanded, mostly through tandem duplications, while others were maintained as single copies. Among these, dicot-specific clusters and specific amplifications in monocots and wheat were characterized. This approach, by combining manual curation and automatic identification, was effective in characterizing a large gene family, allowing the establishment of a classification framework for gene function transfer and a better understanding of the evolutionary history of GELP.
Collapse
Affiliation(s)
- Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| | - Mairenys Concepción-Hernández
- Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera a Camajuaní km 5.5, Santa Clara C.P. 54830, Villa Clara, Cuba
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| |
Collapse
|
4
|
Genome-Wide Analysis of the GDSL Genes in Pecan (Carya illinoensis K. Koch): Phylogeny, Structure, Promoter Cis-Elements, Co-Expression Networks, and Response to Salt Stresses. Genes (Basel) 2022; 13:genes13071103. [PMID: 35885886 PMCID: PMC9323844 DOI: 10.3390/genes13071103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
The Gly-Asp-Ser-Leu (GDSL)-lipase family is a large subfamily of lipolytic enzymes that plays an important role in plant growth and defense against environmental stress. However, little is known about their function in pecans (Carya illinoensis K. Koch). In this study, 87 CilGDSLs were identified and divided into 2 groups and 12 subgroups using phylogenetic analysis; members of the same sub-branch had conserved gene structure and motif composition. The majority of the genes had four introns and were composed of an α-helix and a β-strand. Subcellular localization analysis revealed that these genes were localized in the extracellular matrix, chloroplasts, cytoplasm, nucleus, vacuole, and endoplasmic reticulum, and were validated by transient expression in tobacco mesophyll cells. Furthermore, the analysis of the promoter cis-elements for the CilGDSLs revealed the presence of plant anaerobic induction regulatory, abscisic acid response, light response elements, jasmonic acid (JA) response elements, etc. The qRT-PCR analysis results in “Pawnee” with salt treatment showed that the CilGDSL42.93 (leaf) and CilGDSL39.88 (root) were highly expressed in different tissues. After salt stress treatment, isobaric tags for relative and absolute quantitation (iTRAQ) analysis revealed the presence of a total of ten GDSL proteins. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that one set of co-expressed genes (module), primarily CilGDSL41.11, CilGDSL39.49, CilGDSL34.85, and CilGDSL41.01, was significantly associated with salt stress in leaf. In short, some of them were shown to be involved in plant defense against salt stress in this study.
Collapse
|
5
|
Xu Y, Yan F, Zong Y, Li J, Gao H, Liu Y, Wang Y, Zhu Y, Wang Q. Proteomic and lipidomics analyses of high fatty acid AhDGAT3 transgenic soybean reveals the key lipase gene associated with the lipid internal mechanism. Genome 2022; 65:153-164. [PMID: 34995159 DOI: 10.1139/gen-2021-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vegetable oil is one of the most important components of human nutrition. Soybean (Glycine max) is an important oil crop worldwide and contains rich unsaturated fatty acids. Diacylglycerol acyltransferase (DGAT) is a key rate-limiting enzyme in the Kennedy pathway from diacylglycerol (DAG) to triacylglycerol (TAG). In this study, we conducted further research using T3 AhDGAT3 transgenic soybean. A high-performance gas chromatography flame ionization detector showed that oleic acid (18:1) content and total fatty acid content of transgenic soybean were significantly higher than those of the wild type (WT). However, linoleic acid (18:2) was much lower than that in the WT. For further mechanistic studies, 20 differentially expressed proteins (DEPs) and 119 differentially expressed metabolites (DEMs) were identified between WT (JACK) and AhDGAT3 transgenic soybean mature seeds using proteomic and lipidomics analyses. Combined proteomic and lipidomics analyses showed that the upregulation of the key DEP (lipase GDSL domain-containing protein) in lipid transport and metabolic process induced an increase in the total fatty acid and 18:1 composition, but a decrease in the 18:2 composition of fatty acids. Our study provides new insights into the deep study of molecular mechanism underlying the enhancement of fatty acids in transgenic soybeans, especially oleic acid and total fatty acid, which are enhanced by over-expression of AhDGAT3.
Collapse
Affiliation(s)
- Yang Xu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Fan Yan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Yu Zong
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Jingwen Li
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Han Gao
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Yajing Liu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Ying Wang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Youcheng Zhu
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun City, 130062, China
| |
Collapse
|
6
|
Agre PA, Darkwa K, Olasanmi B, Kolade O, Mournet P, Bhattacharjee R, Lopez-Montes A, De Koeyer D, Adebola P, Kumar L, Asiedu R, Asfaw A. Identification of QTLs Controlling Resistance to Anthracnose Disease in Water Yam ( Dioscorea alata). Genes (Basel) 2022; 13:347. [PMID: 35205389 PMCID: PMC8872494 DOI: 10.3390/genes13020347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Anthracnose disease caused by a fungus Colletotrichum gloeosporioides is the primary cause of yield loss in water yam (Dioscorea alata), the widely cultivated species of yam. Resistance to yam anthracnose disease (YAD) is a prime target in breeding initiatives to develop durable-resistant cultivars for sustainable management of the disease in water yam cultivation. This study aimed at tagging quantitative trait loci (QTL) for anthracnose disease resistance in a bi-parental mapping population of D. alata. Parent genotypes and their recombinant progenies were genotyped using the Genotyping by Sequencing (GBS) platform and phenotyped in two crop cycles for two years. A high-density genetic linkage map was built with 3184 polymorphic Single Nucleotide Polymorphism (NSP) markers well distributed across the genome, covering 1460.94 cM total length. On average, 163 SNP markers were mapped per chromosome with 0.58 genetic distances between SNPs. Four QTL regions related to yam anthracnose disease resistance were identified on three chromosomes. The proportion of phenotypic variance explained by these QTLs ranged from 29.54 to 39.40%. The QTL regions identified showed genes that code for known plant defense responses such as GDSL-like Lipase/Acylhydrolase, Protein kinase domain, and F-box protein. The results from the present study provide valuable insight into the genetic architecture of anthracnose resistance in water yam. The candidate markers identified herewith form a relevant resource to apply marker-assisted selection as an alternative to a conventional labor-intensive screening for anthracnose resistance in water yam.
Collapse
Affiliation(s)
- Paterne Angelot Agre
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Kwabena Darkwa
- Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana;
| | - Bunmi Olasanmi
- Department of Agronomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Olufisayo Kolade
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Pierre Mournet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34398 Montpellier, France;
- Amelioration Génétic et Adoption des Plants Méditerranéennes et Tropical AGAP, Universisté de Montpellier, 34398 Montpellier, France
| | - Ranjana Bhattacharjee
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Antonio Lopez-Montes
- International Trade Centre (ITC), Addison House International Trade Fair Center, FAGE, Accra GA145, Ghana;
| | - David De Koeyer
- Agriculture and Agri-Food Canada, Fredericton, NB 20280, Canada;
| | - Patrick Adebola
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (P.A.A.); (O.K.); (R.B.); (P.A.); (L.K.); (R.A.)
| |
Collapse
|
7
|
Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases. FRONTIERS IN PLANT SCIENCE 2021; 12:748543. [PMID: 34621289 PMCID: PMC8490726 DOI: 10.3389/fpls.2021.748543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
There are more than 100 GDSL lipases in Arabidopsis, but only a few members have been functionally investigated. Moreover, no reports have ever given a comprehensive analysis of GDSLs in stomatal biology. Here, we systematically investigated the expression patterns of 19 putative Guard-cell-enriched GDSL Lipases (GGLs) at various developmental stages and in response to hormone and abiotic stress treatments. Gene expression analyses showed that these GGLs had diverse expression patterns. Fifteen GGLs were highly expressed in guard cells, with seven preferentially in guard cells. Most GGLs were localized in endoplasmic reticulum, and some were also localized in lipid droplets and nucleus. Some closely homologous GGLs exhibited similar expression patterns at various tissues and in response to hormone and abiotic stresses, or similar subcellular localization, suggesting the correlation of expression pattern and biological function, and the functional redundancy of GGLs in plant development and environmental adaptations. Further phenotypic identification of ggl mutants revealed that GGL7, GGL14, GGL22, and GGL26 played unique and redundant roles in stomatal dynamics, stomatal density and morphology, and plant water relation. The present study provides unique resources for functional insights into these GGLs to control stomatal dynamics and development, plant growth, and adaptation to the environment.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Jo E, Kim J, Lee A, Moon K, Cha J. Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus. J Microbiol Biotechnol 2021; 31:483-491. [PMID: 33622993 PMCID: PMC9706006 DOI: 10.4014/jmb.2012.12036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDSPAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50°C and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and in silico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.
Collapse
Affiliation(s)
- Eunhye Jo
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jihye Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Areum Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Keumok Moon
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
9
|
Akhatar J, Singh MP, Sharma A, Kaur H, Kaur N, Sharma S, Bharti B, Sardana VK, Banga SS. Association Mapping of Seed Quality Traits Under Varying Conditions of Nitrogen Application in Brassica juncea L. Czern & Coss. Front Genet 2020; 11:744. [PMID: 33088279 PMCID: PMC7490339 DOI: 10.3389/fgene.2020.00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 12/02/2022] Open
Abstract
Indian mustard (Brassica juncea) is a major source of vegetable oil in the Indian subcontinent. The seed cake left after the oil extraction is used as livestock feed. We examined the genetic architecture of oil, protein, and glucosinolates by conducting a genome-wide association study (GWAS), using an association panel comprising 92 diverse genotypes. We conducted trait phenotyping over 2 years at two levels of nitrogen (N) application. Genotyping by sequencing was used to identify 66,835 loci, covering 18 chromosomes. Genetic diversity and phenotypic variations were high for the studied traits. Trait performances were stable when averaged over years and N levels. However, individual performances differed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits. Population structure, principal components (PCs) analysis, and discriminant analysis of principal components (DAPCs) were included as covariates to overcome the bias due to the population stratification. We identified 16, 23, and 27 loci associated with oil, protein, and glucosinolates, respectively. We also established LD patterns and haplotype structures for the candidate genes. The average block sizes were larger on A-genome chromosomes as compared to the B- genome chromosomes. Genetic associations differed over N levels. However, meta-analysis of GWAS datasets not only improved the power to recognize associations but also helped to identify common SNPs for oil and protein contents. Annotation of the genomic region around the identified SNPs led to the prediction of 21 orthologs of the functional candidate genes related to the biosynthesis of oil, protein, and glucosinolates. Notable among these are: LACS5 (A09), FAD6 (B05), ASN1 (A06), GTR2 (A06), CYP81G1 (B06), and MYB44 (B06). The identified loci will be very useful for marker-aided breeding for seed quality modifications in B. juncea.
Collapse
Affiliation(s)
- Javed Akhatar
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mohini Prabha Singh
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Anju Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harjeevan Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sanjula Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Baudh Bharti
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - V K Sardana
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S Banga
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
10
|
Su HG, Zhang XH, Wang TT, Wei WL, Wang YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:726. [PMID: 32670311 PMCID: PMC7332888 DOI: 10.3389/fpls.2020.00726] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 05/03/2023]
Abstract
GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Dong-Hong Min,
| |
Collapse
|
11
|
Li H, Han X, Qiu W, Xu D, Wang Y, Yu M, Hu X, Zhuo R. Identification and expression analysis of the GDSL esterase/lipase family genes, and the characterization of SaGLIP8 in Sedum alfredii Hance under cadmium stress. PeerJ 2019; 7:e6741. [PMID: 31024765 PMCID: PMC6474334 DOI: 10.7717/peerj.6741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
Background The herb Sedum alfredii (S. alfredii) Hance is a hyperaccumulator of heavy metals (cadmium (Cd), zinc (Zn) and lead (Pb)); therefore, it could be a candidate plant for efficient phytoremediation. The GDSL esterase/lipase protein (GELP) family plays important roles in plant defense and growth. Although the GELP family members in a variety of plants have been cloned and analyzed, there are limited studies on the family's responses to heavy metal-stress conditions. Methods Multiple sequence alignments and phylogenetic analyses were performed according to the criteria described. A WGCNA was used to construct co-expression regulatory networks. The roots of S. alfredii seedlings were treated with 100 µM CdCl2 for qRT-PCR to analyze expression levels in different tissues. SaGLIP8 was transformed into the Cd sensitive mutant strain yeast Δycf1 to investigate its role in resistance and accumulation to Cd. Results We analyzed GELP family members from genomic data of S. alfredii. A phylogenetic tree divided the 80 identified family members into three clades. The promoters of the 80 genes contained certain elements related to abiotic stress, such as TC-rich repeats (defense and stress responsiveness), heat shock elements (heat stress) and MYB-binding sites (drought-inducibility). In addition, 66 members had tissue-specific expression patterns and significant responses to Cd stress. In total, 13 hub genes were obtained, based on an existing S. alfredii transcriptome database, that control 459 edge genes, which were classified into five classes of functions in a co-expression subnetwork: cell wall and defense function, lipid and esterase, stress and tolerance, transport and transcription factor activity. Among the hub genes, Sa13F.102 (SaGLIP8), with a high expression level in all tissues, could increase Cd tolerance and accumulation in yeast when overexpressed. Conclusion Based on genomic data of S. alfredii, we conducted phylogenetic analyses, as well as conserved domain, motif and expression profiling of the GELP family under Cd-stress conditions. SaGLIP8 could increase Cd tolerance and accumulation in yeast. These results indicated the roles of GELPs in plant responses to heavy metal exposure and provides a theoretical basis for further studies of the SaGELP family's functions.
Collapse
Affiliation(s)
- He Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China.,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Ying Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xianqi Hu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ma R, Yuan H, An J, Hao X, Li H. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis. PLoS One 2018; 13:e0195556. [PMID: 29621331 PMCID: PMC5886685 DOI: 10.1371/journal.pone.0195556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/23/2018] [Indexed: 01/20/2023] Open
Abstract
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5-15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development.
Collapse
Affiliation(s)
- Rendi Ma
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Hali Yuan
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Jing An
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoyun Hao
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Barrios A, Caminero C, García P, Krezdorn N, Hoffmeier K, Winter P, Pérez de la Vega M. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC PLANT BIOLOGY 2017; 17:111. [PMID: 28666411 PMCID: PMC5493078 DOI: 10.1186/s12870-017-1057-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/14/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. RESULTS To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. CONCLUSIONS This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in future.
Collapse
Affiliation(s)
- Abel Barrios
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Junta de Castilla y León, Finca Zamadueñas, Ctra. Burgos km, 119, 47071 Valladolid, Spain
- Present Address: Escuela Universitaria de Ingeniería Agrícola I.N.E.A, Con. Viejo de Simancas, Km. 4.5, 47008 Valladolid, Spain
| | - Constantino Caminero
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Junta de Castilla y León, Finca Zamadueñas, Ctra. Burgos km, 119, 47071 Valladolid, Spain
| | - Pedro García
- Area de Genética, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | | | - Klaus Hoffmeier
- GenXPro, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
14
|
Barbaglia AM, Tamot B, Greve V, Hoffmann-Benning S. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:563. [PMID: 27200036 PMCID: PMC4849433 DOI: 10.3389/fpls.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 05/13/2023]
Abstract
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. It also points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.
Collapse
Affiliation(s)
| | | | | | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
15
|
Filia G, Leishangthem GD, Mahajan V, Singh A. Detection of Mycobacterium tuberculosis and Mycobacterium bovis in Sahiwal cattle from an organized farm using ante-mortem techniques. Vet World 2016; 9:383-7. [PMID: 27182134 PMCID: PMC4864480 DOI: 10.14202/vetworld.2016.383-387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/10/2016] [Indexed: 11/23/2022] Open
Abstract
Aim: The aim of this study was to investigate the prevalence of bovine tuberculosis (TB) and detection of Mycobacterium bovis in cattle from an organized dairy farm. Materials and Methods: A total of 121 animals (93 females and 28 males) of 1 year and above were studied for the prevalence of bovine TB using single intradermal comparative cervical tuberculin (SICCT) test, bovine gamma-interferon (γ-IFN) enzyme immunoassay, and polymerase chain reactions (PCRs). Results: Out of total 121 animals, 17 (14.04%) animals were positive reactors to SICCT test while only one (0.82%) animal for γ-IFN assay. By PCR, Mycobacterium TB complex was detected in 19 (15.70%) animals out of which 4 (3.30%) animal were also positive for M. bovis. Conclusions: Diagnosis of bovine TB can be done in early stage in live animals with multiple approaches like skin test followed by a molecular technique like PCR which showed promising results.
Collapse
Affiliation(s)
- Gursimran Filia
- Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University Ludhiana, Punjab, India
| | - Geeta Devi Leishangthem
- Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University Ludhiana, Punjab, India
| | - Vishal Mahajan
- Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University Ludhiana, Punjab, India
| | - Amarjit Singh
- Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University Ludhiana, Punjab, India
| |
Collapse
|
16
|
Vujaklija I, Bielen A, Paradžik T, Biđin S, Goldstein P, Vujaklija D. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom. BMC Bioinformatics 2016; 17:91. [PMID: 26892257 PMCID: PMC4757993 DOI: 10.1186/s12859-016-0919-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/29/2016] [Indexed: 01/29/2023] Open
Abstract
Background The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Results Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through the graphical user interface (http://compbio.math.hr/). Conclusions Our results show that scanning with a carefully parameterized motif-HMM is an effective approach for annotation of protein families with low sequence similarity and conserved motifs. The results of this study expand current knowledge and provide new insights into the evolution of the large GDSL-lipase family in land plants. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0919-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Vujaklija
- Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, 10000, Croatia.
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotijeva 6, Zagreb, 10000, Croatia. .,Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, 10000, Croatia.
| | - Tina Paradžik
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, 10000, Croatia.
| | - Siniša Biđin
- Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, 10000, Croatia.
| | - Pavle Goldstein
- Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, Zagreb, 10000, Croatia.
| | - Dušica Vujaklija
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, 10000, Croatia.
| |
Collapse
|
17
|
Huang LM, Lai CP, Chen LFO, Chan MT, Shaw JF. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. BOTANICAL STUDIES 2015; 56:33. [PMID: 28510842 PMCID: PMC5432905 DOI: 10.1186/s40529-015-0114-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND SFARs (seed fatty acid reducers) belonging to the GDSL lipases/esterases family have been reported to reduce fatty acid storage and composition in mature Arabidopsis seeds. GDSL lipases/esterases are hydrolytic enzymes that possess multifunctional properties, such as broad substrate specificity, regiospecificity, and stereoselectivity. Studies on the physiological functions and biochemical characteristics of GDSL lipases/esterases in plants are limited, so it is important to elucidate the molecular functions of GDSL-type genes. RESULTS We found that SFAR4 (At3g48460), a fatty acid reducer belonging to the Arabidopsis GDSL lipases/esterases family, was intensely expressed in embryo protrusion, early seedlings, and pollen. The characterization of recombinant SFAR4 protein indicated that it has short-length p-nitrophenyl esterase activity. In addition, SFAR4 enhanced the expression of genes involved in fatty acid metabolism during seed germination and seedling development. SFAR4 elevated the expression of COMATOSE, which transports fatty acids into peroxisomes, and of LACS6 and LACS7, which deliver long-chain acetyl-CoA for β-oxidation. Furthermore, SFAR4 increased the transcription of PED1 and PNC1, which function in importing peroxisomal ATP required for fatty acid degradation. SFAR4 has another function on tolerance to high glucose concentrations but had no significant effects on the expression of the glucose sensor HXK1. CONCLUSIONS The results demonstrated that SFAR4 is a GDSL-type esterase involved in fatty acid metabolism during post-germination and seedling development in Arabidopsis. We suggested that SFAR4 plays an important role in fatty acid degradation, thus reducing the fatty acid content.
Collapse
Affiliation(s)
- Li-Min Huang
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., SinShih Dist., Tainan, 74145 Taiwan
| | - Chia-Ping Lai
- Department of Food and Beverage Management, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City, 74448 Taiwan
| | - Long-Fang O. Chen
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115 Taiwan
| | - Ming-Tsair Chan
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115 Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., SinShih Dist., Tainan, 74145 Taiwan
| | - Jei-Fu Shaw
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Department of Biological Science and Technology, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001 Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung, Taichung, 402 Taiwan
| |
Collapse
|
18
|
Cloning, expression and characterization of a novel cold-adapted GDSL family esterase from Photobacterium sp. strain J15. Extremophiles 2015; 20:44-55. [DOI: 10.1007/s00792-015-0796-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
19
|
Dong X, Yi H, Han CT, Nou IS, Hur Y. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis. Mol Genet Genomics 2015; 291:531-42. [DOI: 10.1007/s00438-015-1123-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
|
20
|
Deng CL, Wang NN, Li SF, Dong TY, Zhao XP, Wang SJ, Gao WJ, Lu LD. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization. JOURNAL OF PLANT RESEARCH 2015; 128:829-38. [PMID: 26038270 DOI: 10.1007/s10265-015-0735-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.
Collapse
Affiliation(s)
- Chuan-liang Deng
- College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang YX, Yu D, Tian XL, Liu CY, Gai SP, Zheng GS. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:114-22. [PMID: 25091021 DOI: 10.1111/plb.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 05/06/2023]
Abstract
Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony.
Collapse
Affiliation(s)
- Y X Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | |
Collapse
|
22
|
Lang S, Liu X, Ma G, Lan Q, Wang X. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:316-26. [PMID: 25221920 DOI: 10.1016/j.plaphy.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/03/2014] [Indexed: 05/16/2023]
Abstract
To investigate regulatory processes and protective mechanisms leading to desiccation tolerance (DT) in seeds, cDNA amplified fragment length polymorphism (cDNA-AFLP) in conjunction with 128 primer combinations was used to detect differential gene expression in rape seeds in response to DT during seed development and germination. We obtained approximately 8000 transcript-derived fragments (TDFs), of which 394 TDFs with differential expression patterns ("sustained expression", "up-regulated", "couple with seed DT", and "down-regulated") were excised from gels and re-amplified by polymerase chain reaction (PCR). After sequencing and comparison with the National Center for Biotechnology Information database, 176 TDFs presented significant similarity with known genes that could be classified into the following categories: metabolism and energy, stress resistance and defense, storage, signal transduction, and other functional categories. Using semiquantitative reverse-transcription PCR and real-time PCR approaches, the significance of the differences was further confirmed in fresh seeds and dehydrated seeds. The genes that encode superoxide dismutase, peroxiredoxin, caleosin, oleosin S3, steroleosin, late embryogenesis abundant protein, glutathione reductase, β-glucosidase, S23 transcriptional repressor, and some heat-shock proteins could be associated with DT. The results of this study will aid in the identification of candidate genes for future experiments that seek to understand seed DT.
Collapse
Affiliation(s)
- Sirui Lang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China.
| | - Xiaoxia Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China.
| | - Gang Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China.
| | - QinYing Lan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Germplasm Bank, Mengla, 666303 Yunnan, PR China.
| | - Xiaofeng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
23
|
An insight into plant lipase research – challenges encountered. Protein Expr Purif 2014; 95:13-21. [DOI: 10.1016/j.pep.2013.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022]
|
24
|
Tan X, Yan S, Tan R, Zhang Z, Wang Z, Chen J. Characterization and expression of a GDSL-like lipase gene from Brassica napus in Nicotiana benthamiana. Protein J 2014; 33:18-23. [PMID: 24363150 DOI: 10.1007/s10930-013-9532-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The GDSL esterase and lipase families play important roles in abiotic stress, pathogen defense, seed development and lipid metabolism. Identifying the lipase activity of the putative GDSL lipase is the prerequisite for dissecting its function. According to the sequence similarity and the conserved domains, we cloned the Brassica napus BnGLIP gene, which encodes a GDSL-like protein. We failed to identify the BnGLIP lipase activity in the bacterium and yeast expression systems. In this paper, we expressed the BnGLIP gene by fusing a 6× His tag in Nicotiana benthamiana and purified the recombinant protein. The extraction buffer contained 1 % (v/v) n-caprylic acid and was able to remove most of the protein impurities. About 50 μg of recombinant BnGLIP was obtained from 1 g of N. benthamiana leaves. The lipase activity was tested with the purified BnGLIP and the maximum enzyme activity reached 17.7 mM/mg. In conclusion, this study found that the recombinant protein BnGLIP expressed in tobacco system was effectively purified and was detected as a GDSL lipase.
Collapse
Affiliation(s)
- Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
25
|
Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, Renzone G, Martinelli R, Scaloni A, Pennacchio F, Rao R, Corrado G. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics 2013; 14:515. [PMID: 23895395 PMCID: PMC3733717 DOI: 10.1186/1471-2164-14-515] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aphids are among the most destructive pests in temperate climates, causing significant damage on several crops including tomato. We carried out a transcriptomic and proteomic study to get insights into the molecular mechanisms and dynamics of the tomato response to the Macrosyphum euphorbiae aphid. RESULTS The time course analysis of aphid infestation indicated a complex, dynamic pattern of gene expression. Several biological functions were affected and genes related to the stress and defence response were the most represented. The Gene Ontology categories of the differentially expressed genes (899) and identified proteins (57) indicated that the tomato response is characterized by an increased oxidative stress accompanied by the production of proteins involved in the detoxification of oxygen radicals. Aphids elicit a defense reaction based on the cross-communication of different hormone-related signaling pathways such as those related to the salicylic acid (SA), jasmonic acid (JA), ethylene and brassinosteroids. Among them, the SA-signaling pathway and stress-responsive SA-dependent genes play a dominant role. Furthermore, tomato response is characterized by a reduced accumulation of photosynthetic proteins and a modification of the expression of various cell wall related genes. CONCLUSIONS Our work allowed a more comprehensive understanding of the signaling events and the defense dynamics of the tomato response to aphids in a compatible interaction and, based on experimental data, a model of the tomato-aphid molecular interaction was proposed. Considering the rapid advancement of tomato genomics, this information will be important for the development of new protection strategies.
Collapse
Affiliation(s)
- Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vijayakumar KR, Gowda LR. Temporal expression profiling of lipase during germination and rice caryopsis development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:245-253. [PMID: 22763092 DOI: 10.1016/j.plaphy.2012.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
Lipolytic enzymes play an important role in plant growth and development. In order to identify their functional roles, the temporal expression profiling of lipase was carried out during rice seed germination, growth and development of caryopsis. Changes in specific activities during germination revealed that the lipolytic activity increased significantly until the end of germination. As the lipase activity increased, two different lipase species were observed, which were designated as Lipase-I and Lipase-II based on their relative mobility. Lipase-II was active during germination. Lipase-I was responsible for lipid mobilization, a requirement for the growth of root and shoot. In comparison with the endosperm, the lipolytic activity in roots was three fold higher. During rice caryopsis development, the lipolytic activity increased gradually from initial panicle development and reached maximum as the grain dried to harvest maturity. Quantitative real-time PCR analysis revealed that the Lipase-II was a stage specific expressing gene during reproductive growth. The transcript level of Lipase-II reached maximum with completion of germination, then decreased and remained stable during post-germinative growth. During caryopsis development, Lipase-II is predominantly expressed in the developing seeds. The transcript abundance increased gradually during initial stages of development and reached a maximum until seed maturation. The results implicate that the dynamic changes in the enzyme activity of the two isoforms of lipase and gene expression patterns are associated with the energy reserve mobilization during seed germination and reproductive growth.
Collapse
Affiliation(s)
- K R Vijayakumar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| | | |
Collapse
|
27
|
Teutschbein J, Gross W, Nimtz M, Milkowski C, Hause B, Strack D. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum). J Biol Chem 2010; 285:38374-81. [PMID: 20880851 PMCID: PMC2992270 DOI: 10.1074/jbc.m110.171637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/24/2010] [Indexed: 11/06/2022] Open
Abstract
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.
Collapse
Affiliation(s)
- Jenny Teutschbein
- From the Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale)
| | - Wiltrud Gross
- the Botanical Institute, University of Cologne, D50674 Köln, and
| | - Manfred Nimtz
- the Centre for Infection Research, D38124 Braunschweig, Germany
| | - Carsten Milkowski
- From the Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale)
| | - Bettina Hause
- From the Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale)
| | - Dieter Strack
- From the Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale)
| |
Collapse
|
28
|
Park JJ, Jin P, Yoon J, Yang JI, Jeong HJ, Ranathunge K, Schreiber L, Franke R, Lee IJ, An G. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. PLANT MOLECULAR BIOLOGY 2010; 74:91-103. [PMID: 20593223 DOI: 10.1007/s11103-010-9656-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/09/2010] [Indexed: 05/18/2023]
Abstract
Epidermal cell layers play important roles in plant defenses against various environmental stresses. Here we report the identification of a cuticle membrane mutant, wilted dwarf and lethal 1 (wdl1), from a rice T-DNA insertional population. The mutant is dwarf and die at seedling stage due to increased rates of water loss. Stomatal cells and pavement cells are smaller in the mutant, suggesting that WDL1 affects epidermal cell differentiation. T-DNA was inserted into a gene that encodes a protein belonging to the SGNH subfamily, within the GDSL lipase superfamily. The WDL1-sGFP signal coincided with the RFP signal driven by AtBIP-mRFP, indicating that WDL1 is an ER protein. SEM analyses showed that their leaves have a disorganized crystal wax layer. Cross-sectioning reveals loose packing of the cuticle and irregular thickness of cell wall. Detailed analyses of the epicuticular wax showed no significant changes either in the total amount and amounts of each monomer or in the levels of lipid polymers, including cutin and other covalently bound lipids, attached to the cell wall. We propose that WDL1 is involved in cutin organization, affecting depolymerizable components.
Collapse
Affiliation(s)
- Jong-Jin Park
- Department of Life Science, Pohang University of Science and Technology, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Matos AR, Pham-Thi AT. Lipid deacylating enzymes in plants: old activities, new genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:491-503. [PMID: 19324564 DOI: 10.1016/j.plaphy.2009.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 05/01/2023]
Abstract
Because lipids are major components of cellular membranes, their degradation under stress conditions compromises compartmentalization. However, in addition to having structural roles, membrane lipids are also implicated in signalling processes involving the activity of lipolytic enzymes. Phospholipases D and C, acting on the polar heads of phospholipids, have been relatively well characterized in plants. In contrast, knowledge of lipid deacylating enzymes remains limited. Lipid acyl hydrolases (LAH) are able to hydrolyse both fatty acid moieties of polar lipids. They differ from phospholipases A(1) or A(2) (PLA) acting on sn-1 or sn-2 positions of phospholipids, respectively, as well as from lipases which de-esterify triacylglycerols. The free polyunsaturated fatty acids generated by deacylating enzymes can be used in the biosynthesis of oxylipins and the lysophospholipids, provided by PLAs, are also bioactive molecules. In the four decades that have passed since the first description of LAH activities in plants some enzymes have been purified. In recent years, the widespread use of molecular approaches together with the attention paid to lipid signalling has contributed to a renewed interest in LAH and has led to the identification of different gene families and the characterization of new enzymes. Additionally, several proteins with putative lipase/esterase signatures have been identified. In the present paper we review currently available data on LAHs, PLAs, triacylglycerol lipases and other putative deacylating enzymes. The roles of lipid deacylating enzymes in plant growth, development and stress responses are discussed in the context of their involvement in membrane deterioration, lipid turnover and cellular signalling.
Collapse
Affiliation(s)
- Ana Rita Matos
- Centro de Engenharia Biológica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.
| | | |
Collapse
|
30
|
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 2009; 379:1038-42. [DOI: 10.1016/j.bbrc.2009.01.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
|
31
|
Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH. GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 2008; 374:693-8. [PMID: 18680725 DOI: 10.1016/j.bbrc.2008.07.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/20/2008] [Indexed: 11/28/2022]
Abstract
A full length cDNA clone encoding Capsicum annuum GDSL-lipase 1 (CaGL1) was isolated by microarray analysis. The expression of CaGL1 was triggered by methyl jasmonic acid (MeJA), an important signal in abiotic/biotic stress response. However, the expression of this gene was not increased by the application of salicylic acid (SA) or ethylene treatment. And, local/systemic wounding stimuli resulted in rapid accumulation of CaGL1 mRNA. However, CaGL1 was not specifically induced during the hypersensitive response upon Tobacco mosaic virus (TMV) inoculation. By using a virus-induced gene silencing (VIGS)-based reverse genetic approach, it was observed that the suppression of CaGL1 attenuates the expression of Capsicum annuumpathogenesis-related protein 4 (CaPR-4) during wound stress. However, the CaPR-4 transcript level induced by TMV was not regulated by CaGL1 expression. These results indicate that CaGL1 may be involved in signaling pathway of MeJA and/or the wound responses through CaPR-4 expression modulation.
Collapse
Affiliation(s)
- Ki-Jeong Kim
- School of Life Sciences and Biotechnology/Plant Signaling Network Research Center, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
To analyze sequence characters of GDSL lipase gene family in Arabidopsis thaliana, 108 members of GDSL lipases were analyzed using data mining. The gene structures display remarkable diversity, consisting of zero to 13 introns. And the genes are asymmetrically distributed in chromosome 1-5, some of which are arranged in tandem. Phylogenetically, they were classified into three groups. Lipase-GDSL domain (PF00478) is housed at or close to N-terminus, or in the middle of amino acid sequences, additionally in which other domains and replicates were also found. Most GDSL lipases contain a signal peptide for conducting the secretary pathway. They are predicted to be extracellularly secreted, or target to mitochondria, chloroplast or any other parts of the cells. Functionally, these lipases are potentially involved in multiple physiological roles including seed germination, flowering and defense reactions. This study will help further understand the sequences and functions of Arabidopsis GDSL lipases.
Collapse
Affiliation(s)
- Hua Ling
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|