1
|
Lei S, Li G, Jiang D, Yuan F, Zheng Y, Cao B, Zhang H. Definition and regulatory analysis of the SUMOylation system in Caixin (Brassica rapa var. Parachinensis) during pectobacterium carotovorum infection. BMC PLANT BIOLOGY 2024; 24:1192. [PMID: 39701969 DOI: 10.1186/s12870-024-05807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The modification of protein substrates by small ubiquitin-related modifier (SUMO) plays a vital role in plants subjected to biotic and abiotic stresses. However, its role in the stress responses of Brassica plants remains poorly understood. RESULTS A genome-wide analysis revealed the presence of 30 SUMOylation genes in the Caixin genome. These results demonstrated that the Caixin genome contains all the necessary components for SUMOylation. Analysis of the cis-acting elements revealed that the promoters of SUMOylation genes presented diverse combinations of developmental and stress-related cis-regulatory elements. The RNA-seq data indicated that 23 SUMOylation genes presented relatively high expression levels under normal conditions and exhibited a notable decrease in expression following Pectobacterium carotovorum subsp. carotovorum (Pcc) infection. Additionally, dynamic alterations in SUMO conjugates were observed in response to Pcc infection. CONCLUSIONS The Caixin genome contains genes involved in SUMOylation. The majority of these genes presented multiple copies, and analyses of their transcription and protein profiles indicate that they may play a role in the response to Pcc infection.
Collapse
Affiliation(s)
- Shikang Lei
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guangguang Li
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Ding Jiang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
| | - Fanchong Yuan
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China
| | - Yansong Zheng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
2
|
Yu HX, Cao YJ, Yang YB, Shan JX, Ye WW, Dong NQ, Kan Y, Zhao HY, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. MOLECULAR PLANT 2024; 17:1899-1918. [PMID: 39552084 DOI: 10.1016/j.molp.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Heat stress poses a significant threat to grain yield. As an α2 subunit of the 26S proteasome, TT1 has been shown to act as a critical regulator of rice heat tolerance. However, the heat tolerance mechanisms mediated by TT1 remain elusive. In this study, we unveiled that small ubiquitin-like modifier (SUMO)-conjugating enzyme 1 (SCE1), which interacts with TT1 and acts as a downstream component of TT1, is engaged in TT1-mediated 26S proteasome degradation. We showed that SCE1 functions as a negative regulator of heat tolerance in rice, which is associated with its ubiquitination modification. Furthermore, we observed that small heat-shock proteins (sHSPs) such as Hsp24.1 and Hsp40 can undergo SUMOylation mediated by SCE1, leading to increased accumulation of sHSPs in the absence of SCE1. Reducing protein levels of SCE1 significantly enhanced grain yield under high-temperature stress by improving seed-setting rate and rice grain filling capacity. Taken together, these results uncover the critical role of SCE1 in the TT1-mediated heat tolerance pathway by regulating the abundance of sHSPs and SUMOylation, and ultimately modulating rice heat tolerance. These findings underscore the great potential of the TT1-SCE1 module in improving the heat tolerance of crops.
Collapse
Affiliation(s)
- Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
Shimada H, Tanaka K. Rice SUMOs and unification of their names. Genes Genet Syst 2023. [PMID: 37150617 DOI: 10.1266/ggs.22-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Posttranslational modifications (PTMs) to proteins are regulatory mechanisms that play a critical role in regulating growth and development. The SUMO system is a rapid and dynamic PTM system employed by eukaryotic cells. Plant SUMOs are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. In Arabidopsis thaliana and rice (Oryza sativa), eight and seven SUMO genes, respectively, were predicted by sequence analysis. Phylogenetic tree analysis of these SUMOs shows that they are divided into two groups. One consists of SUMOs that contain no SUMO acceptor site and are involved in monoSUMOylation of their target proteins. Rice OsSUMO1 and OsSUMO2 are in this group, and are structurally similar to each other and to Arabidopsis AtSUMO1. The other group is composed of SUMOs in which an acceptor site (ΨKXE/D) occurs inside the SUMO molecule, suggesting their involvement in polySUMOylation. Several studies on the rice SUMOs have been performed independently and reported. Individual names of rice SUMOs are confusing, because a unified nomenclature has not been proposed. This review clarifies the attribution of seven rice SUMOs and unifies the individual SUMO names.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| | - Katsunori Tanaka
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| |
Collapse
|
4
|
Zhang Y, Lyu S, Hu Z, Yang X, Zhu H, Deng S. Identification and functional characterization of the SUMO system in sweet potato under salt and drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111645. [PMID: 36828141 DOI: 10.1016/j.plantsci.2023.111645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sumoylation is a crucial post-translation modification (PTM) that is the covalent attachment of SUMO molecules to the substrate catalyzed by enzyme cascade. Sumoylation is essential in almost every physiological process of plants, particularly in response to abiotic stress. However, little is known about sumoylation in sweet potato (Ipomoea batatas), the world's seventh most important food crop. In this study, 17 sweet potato SUMO system genes have been cloned and functionally characterized. Multiple sequence alignment and phylogenetic analysis showed sweet potato SUMO system proteins had conserved domains and activity sites. IbSUMOs, IbSAE1, and IbSCE1 were localized in the cytoplasm and nucleus. E3 SUMO ligases showed nuclear or punctate localization. In vitro sumoylation assay confirmed the catalytic activity of sweet potato SUMO system components. Heterologous expression of IbSIZ1 genes in Arabidopsis atsiz1 mutant rescued the defective germination and growth phenotype. IbSCE1a/b and IbSIZ1a/b/c were salt and drought responsive genes. Heterologous expression of IbSCE1a/b/c improved the drought tolerance of Arabidopsis thaliana, while IbSIZ1a/b/c significantly enhanced the salt and drought tolerance. Our findings define that the SUMO system in sweet potato shared with conserved function but also possessed specific characterization. The resources presented here would facilitate uncovering the significance of sumoylation in sweet potato.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shanwu Lyu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhifang Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xuangang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shulin Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea,Corresponding author. Tel: +82-53-950-6352; Fax: +82-53-955-5522; E-mail:
| |
Collapse
|
6
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707 DOI: 10.5483/bmbrep.2022.55.11.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2023] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Ibrahim EI, Attia KA, Ghazy AI, Itoh K, Almajhdi FN, Al-Doss AA. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. BIOLOGY 2021; 11:biology11010053. [PMID: 35053052 PMCID: PMC8772976 DOI: 10.3390/biology11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The small ubiquitin-related modifier genes regulate the function of the cellular proteins, which are associated with cell stress-tolerance. Identification and understanding the functional localization of these genes are very important to mitigate the stresses. In this study, we identified a novel small ubiquitin-related modifier gene and studied its functional localization in the cell. This new finding will be very valuable in increasing our understanding of the mechanism of stress-tolerance. Abstract Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.
Collapse
Affiliation(s)
- Eid I. Ibrahim
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
- Correspondence: (E.I.I.); (K.A.A.)
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia
- Rice Biotechnology Lab., Rice Research Department, Field Crops Research Institute, ARC, Sakha, Kafr, EL-Sheikh 33717, Egypt
- Correspondence: (E.I.I.); (K.A.A.)
| | - Abdelhalim I. Ghazy
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| | - Kimiko Itoh
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abdullah A. Al-Doss
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| |
Collapse
|
8
|
Lü J, Liu ZQ, Guo W, Guo MJ, Chen SM, Yang CX, Zhang YJ, Pan HP. Oral delivery of dsHvlwr is a feasible method for managing the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECT SCIENCE 2021; 28:509-520. [PMID: 32240577 DOI: 10.1111/1744-7917.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed double-stranded H. vigintioctopunctata lesswright (lwr) gene (dsHvlwr) to manage of H. vigintioctopunctata was investigated. Our results showed that the gene Hvlwr had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 d, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhuo-Qi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mu-Juan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shi-Min Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chun-Xiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Peng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Pei W, Jain A, Zhao G, Feng B, Xu D, Wang X. Knockdown of OsSAE1a affects the growth and development and phosphate homeostasis in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153275. [PMID: 33161338 DOI: 10.1016/j.jplph.2020.153275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
SUMOylation is a post-translational modification process that comprises a tandem enzymatic cascade, i.e., maturation, activation, conjugation, and ligation of a small ubiquitin-like modifier, which triggers the modulated activities and transport of the cellular proteins to other areas of the cell. In Oryza sativa (rice), OsSIZ1/2 encoding E3 SUMO ligase exerts regulatory influences on Pi homeostasis and developmental responses. However, the role of OsSAE1a, SUMO E1 activating enzyme, in regulating phosphate (Pi) utilization and/or growth and development is not known in rice and was thus investigated in this study. The qRT-PCR assay revealed a constitutive and variable spatiotemporal expression pattern of OsSAE1a in the vegetative and reproductive tissues and was comparable in the root and shoot grown under different Pi regimes. RNAi-mediated suppression of OsSAE1a exerted variable effects on the concentrations of Pi and total P in different tissues, uptake and distribution of 32Pi, and relative expression levels of several genes that play pivotal roles in the maintenance of Pi homeostasis. The effects of the mutation in OsSAE1a were also evident in the vegetative and reproductive traits of rice during growth in a hydroponic system and pot soil, respectively. Overall, these results suggest a broad-spectrum role of OsSAE1a in the maintenance of Pi homeostasis and regulating growth and development.
Collapse
Affiliation(s)
- Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Gengmao Zhao
- Jiangsu Provincial Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Xu
- Agricultural Bureau of Lanshan District, Linyi, 276000, China
| | - Xiaowen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
11
|
Guo J, Wang S, Wang G, Lu R, Wang Y, Guo Y, Ji W. Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots. Mol Biol Rep 2020; 47:3475-3484. [PMID: 32279210 DOI: 10.1007/s11033-020-05433-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Small ubiquitin-like modifier (SUMO) participates in post-translational modification of various target proteins. SUMOylation is an important molecular regulatory mechanism for plants to respond to abiotic stress. In the present study, GmSUMO2 gene was isolated from soybean seedlings for further study because of the highest expression level among these six SUMO genes in soybean. qRT-PCR results showed that GmSUMO2 gene were detected in root, leaf, cotyledon, seed root, flower, pod and seed, with the highest transcription level in cotyledon. Moreover, GmSUMO2 gene was transcriptionally regulated by 200 mM NaCl, 42 °C, 25 μM abscisic acid (ABA) and 20% PEG6000 during the 24 h period of treatment. Besides, western blot analysis using AtSUMO1 antibody indicated that the free SUMO levels and SUMOylation dynamics were regulated by ABA stimulus. Functional analysis indicated that overexpression of GmSUMO2 gene in soybean hairy roots accentuated the sensitivity to exogenous ABA. Furthermore, the expression levels of ABI3, ABI5, SnRK1.1 and SnRK1.2 were differentially regulated by GmSUMO2 in transgenic soybean hairy roots. Overall, these results provided a preliminary understanding of molecular characterization, expression and function of GmSUMO2 in soybean.
Collapse
Affiliation(s)
- Jingsong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Sibo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guixin Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Runfeng Lu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxin Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, 550083, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Chen C, Norton GJ, Price AH. Genome-Wide Association Mapping for Salt Tolerance of Rice Seedlings Grown in Hydroponic and Soil Systems Using the Bengal and Assam Aus Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576479. [PMID: 33193518 PMCID: PMC7644878 DOI: 10.3389/fpls.2020.576479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Salinity is a major abiotic stress which inhibits rice production in coastal, arid and semi-aid areas in many countries, such as India and Bangladesh. Identification of salt tolerant cultivars, quantitative trait loci (QTLs) and genes is essential for breeding salt tolerant rice. The aus subpopulation of rice is considered to have originated predominantly from Bangladesh and India and have rich genetic diversity with wide variation in abiotic stress resistance. The objective of this study was to identify QTLs, and subsequently candidate genes using cultivars from the aus subpopulation and compare the results of two different seedling stage screening methods. Salt tolerance at the rice seedling stage was evaluated on 204 rice accessions from the Bengal and Assam Aus Panel (BAAP) grown in both hydroponics and soil under control and salt stress conditions. Ten salt related traits of stress symptoms, plant growth and the content of sodium and potassium were measured. Three cultivars, BRRI dhan 47, Goria, and T 1 showed more salt tolerance than the tolerant check Pokkali in both systems. Genome-wide association mapping was conducted on salt indices traits with 2 million SNPs using an efficient mixed model (EMMA) controlling population structure and kinship, and a significance threshold of P < 0.0001 was used to determine significant SNPs. A total of 97 and 74 QTLs associated with traits in hydroponic and soil systems were identified, respectively, including 11 QTLs identified in both systems. A total of 65 candidate genes were found including a well-known major gene OsHKT1;5. The most significant QTL was detected at around 40 Mb on chromosome 1 coinciding with two post-translational modifications SUMOylation genes (OsSUMO1 and OsSUMO2), this QTL was investigated. The salt tolerance rice cultivars and QTLs/genes identified here will provide useful information for future studies on genetics and breeding salt tolerant rice.
Collapse
|
13
|
Liu Y, Zhu J, Sun S, Cui F, Han Y, Peng Z, Zhang X, Wan S, Li G. Defining the function of SUMO system in pod development and abiotic stresses in Peanut. BMC PLANT BIOLOGY 2019; 19:593. [PMID: 31884953 PMCID: PMC7194008 DOI: 10.1186/s12870-019-2136-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/13/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Posttranslational modification of proteins by small ubiquitin like modifier (SUMO) proteins play an important role during the developmental process and in response to abiotic stresses in plants. However, little is known about SUMOylation in peanut (Arachis hypogaea L.), one of the world's major food legume crops. In this study, we characterized the SUMOylation system from the diploid progenitor genomes of peanut, Arachis duranensis (AA) and Arachis ipaensis (BB). RESULTS Genome-wide analysis revealed the presence of 40 SUMO system genes in A. duranensis and A. ipaensis. Our results showed that peanut also encodes a novel class II isotype of the SCE1, which was previously reported to be uniquely present in cereals. RNA-seq data showed that the core components of the SUMOylation cascade SUMO1/2 and SCE1 genes exhibited pod-specific expression patterns, implying coordinated regulation during pod development. Furthermore, both transcripts and conjugate profiles revealed that SUMOylation has significant roles during the pod development. Moreover, dynamic changes in the SUMO conjugates were observed in response to abiotic stresses. CONCLUSIONS The identification and organization of peanut SUMO system revealed SUMOylation has important roles during stress defense and pod development. The present study will serve as a resource for providing new strategies to enhance agronomic yield and reveal the mechanism of peanut pod development.
Collapse
Affiliation(s)
- Yiyang Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jiao Zhu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sheng Sun
- College of Teacher Education, Heze University, Heze, China
| | - Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yan Han
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Zhenying Peng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xuejie Zhang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Shubo Wan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Guowei Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Rosa MT, Abreu IA. Exploring the regulatory levels of SUMOylation to increase crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:43-51. [PMID: 31177030 DOI: 10.1016/j.pbi.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
SUMOylation is an essential post-translational modification that affects several cellular processes, from gene replication to stress response. Studies using the SUMO (de)conjugation machinery have provided evidence regarding its potential to improve crop performance and productivity under normal and adverse conditions. However, the pleiotropic effect of SUMOylation can be a disadvantage in both situations, especially when considering unpredictable environmental conditions caused by climate changes. Here, we discuss the pleiotropic effects caused by disrupting the SUMOylation machinery, and new strategies that may help to overcome pleiotropy. We propose exploring the several regulatory levels of SUMOylation recently revealed, including transcriptional, post-transcriptional regulation by alternative splicing, and post-translational modifications. These new findings may provide valuable tools to increase crop productivity.
Collapse
Affiliation(s)
- Margarida Tg Rosa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
15
|
Wang H, Wang M, Xia Z. Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:113-121. [PMID: 30824044 DOI: 10.1016/j.plantsci.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/16/2023]
Abstract
As an essential regulatory process of post-translational modifications, Sumoylation has been shown to play a central role in stress responses in higher plants. However, the mechanisms underlying the involvement of the Sumoylation in stress responses in crops are largely unknown. In this study, a putative SUMO conjugating enzyme ortholog from Zea mays (ZmSCE1e) was isolated. Sequence alignments and phylogenetic analysis showed that ZmSCE1e possesses a central active domain similar to known SCE1 proteins, but is the cereal-specific isoform.The transcript levels of ZmSCE1e were markedly up-regulated by salt or drought stress. Over-expression of ZmSCE1e in tobacco plants increased levels of SUMO conjugates and enhanced their tolerances to salt and drought stresses. ZmSCE1e-transgenic plants showed higher activities of key antioxidant enzymes but lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulations under salt or drought stress. Furthermore, expression of several stress defense genes was significantly elevated as revealed by qPCR in the ZmSCE1e-transgenic lines. Together, these data have demonstrated that ZmSCE1e improved salt and drought tolerance likely by modulating Sumoylation levels, antioxidant capability, and stress defense gene expression in transgenic plants. This study may facilitate our understanding of the biological roles of SCE-mediated Sumoylation under stress conditions in higher plants and accelerate genetic improvement of crop plants tolerant to environmental stresses.
Collapse
Affiliation(s)
- Huanyan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
16
|
Pei W, Jain A, Ai H, Liu X, Feng B, Wang X, Sun Y, Xu G, Sun S. OsSIZ2 regulates nitrogen homeostasis and some of the reproductive traits in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:51-60. [PMID: 30530203 DOI: 10.1016/j.jplph.2018.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Small ubiquitin-related modifier (SUMO) is a post-translational modification of proteins that has important roles in plant growth and development as well as nutrition study. OsSIZ1, a SUMO E3 ligase in rice (Oryza sativa), exerts regulatory influence on nitrogen (N) homeostasis. Here, we investigated the biological function of OsSIZ2, a paralog of OsSIZ1, in the responses to nitrogen, anther dehiscence, and seed length using a reverse genetics approach. The expression of OsSIZ2 was increased during N deficiency. Under -N condition, total N concentration in the root of OsSIZ2-Ri plants and ossiz2 was significantly increased compared with wild type. Further, 15N-labelled uptake assay revealed the role of OsSIZ2 in acquisition and mobilization of N. Moreover, qRT-PCR analyses revealed that several genes involved in the maintenance of N homeostasis were altered in OsSIZ2 mutants. In addition, ossiz2 indicated obvious defects in anther dehiscence, pollen fertility, and seed set percentage. Interestingly, however, the seed length was longer in the mutant compared with wild type. Overall, these results suggest pivotal roles of OsSIZ2 in regulating homeostasis of N and different agronomic traits including anther and seed development.
Collapse
Affiliation(s)
- Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University, Kant Kalwar NH-11C, Jaipur, India
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Bing Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Xiaowen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China.
| |
Collapse
|
17
|
Rosa MTG, Almeida DM, Pires IS, da Rosa Farias D, Martins AG, da Maia LC, de Oliveira AC, Saibo NJM, Oliveira MM, Abreu IA. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC PLANT BIOLOGY 2018; 18:349. [PMID: 30541427 PMCID: PMC6291987 DOI: 10.1186/s12870-018-1547-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.
Collapse
Affiliation(s)
- Margarida T. G. Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Diego M. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM), Montpellier, France
| | - Inês S. Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- Frontiers Media SA, Avenue du Tribunal-Fédéral 34, CH-1015 Lausanne, Switzerland
| | - Daniel da Rosa Farias
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Alice G. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - António Costa de Oliveira
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
18
|
Benlloch R, Lois LM. Sumoylation in plants: mechanistic insights and its role in drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4539-4554. [PMID: 29931319 DOI: 10.1093/jxb/ery233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Post-translational modification by SUMO is an essential process that has a major role in the regulation of plant development and stress responses. Such diverse biological functions are accompanied by functional diversification among the SUMO conjugation machinery components and regulatory mechanisms that has just started to be identified in plants. In this review, we focus on the current knowledge of the SUMO conjugation system in plants in terms of components, substrate specificity, cognate interactions, enzyme activity, and subcellular localization. In addition, we analyze existing data on the role of SUMOylation in plant drought tolerance in model plants and crop species, paying attention to the genetic approaches used to stimulate or inhibit endogenous SUMO conjugation. The role in drought tolerance of potential SUMO targets identified in proteomic analyses is also discussed. Overall, the complexity of SUMOylation and the multiple genetic and environmental factors that are integrated to confer drought tolerance highlight the need for significant efforts to understand the interplay between SUMO and drought.
Collapse
Affiliation(s)
- Reyes Benlloch
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
19
|
Pei W, Jain A, Sun Y, Zhang Z, Ai H, Liu X, Wang H, Feng B, Sun R, Zhou H, Xu G, Sun S. OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice. Sci Rep 2017; 7:12280. [PMID: 28947784 PMCID: PMC5612973 DOI: 10.1038/s41598-017-10274-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
OsSIZ1, a small ubiquitin-related modifier (SUMO) E3 ligase, exerts regulatory influences on the developmental responses and phosphate (Pi) homeostasis in rice (Oryza sativa). Whether paralogs OsSIZ1 and OsSIZ2 are functionally redundant or the latter regulates these traits independent of the former is not known. To determine this, in this study, OsSIZ2 was functionally characterized by employing reverse genetic approaches. Although the relative expression of OsSIZ2 was spatiotemporally regulated, it showed constitutive expression in root and leaf blade irrespective of Pi regime. Analysis of T-DNA insertion knockout (ossiz2) and RNAi-mediated knockdown (Ri1-3) mutants revealed positive influences on growth and developmental responses including yield-related traits. On the contrary, these mutants exhibited negative effects on the concentrations of Pi and total P in different tissues. The relative expression levels of some of the genes that are involved in Pi sensing and signaling cascades were differentially modulated in the mutants. Further, attenuation in the expression levels of OsSIZ2 in the roots of ossiz1 and relatively similar trend of the effects of the mutation in OsSIZ1 and OsSIZ2 on growth and development and total P concentration in different tissues suggested a prevalence of partial functional redundancy between these paralogs.
Collapse
Affiliation(s)
- Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ajay Jain
- Amity Centre of Nano Biotechnology and Plant Nutrition, Kant Kalwar, NH-11C, Jaipur, 303002, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhantian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huadun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rui Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongmin Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
20
|
Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1458. [PMID: 28878795 PMCID: PMC5573446 DOI: 10.3389/fpls.2017.01458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/04/2017] [Indexed: 05/21/2023]
Abstract
Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses.
Collapse
|
21
|
Wu X, Gong F, Cao D, Hu X, Wang W. Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 2016; 16:847-65. [PMID: 26616472 DOI: 10.1002/pmic.201500301] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 11/11/2022]
Abstract
Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Wu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fangping Gong
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Di Cao
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xiuli Hu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
22
|
Wang H, Sun R, Cao Y, Pei W, Sun Y, Zhou H, Wu X, Zhang F, Luo L, Shen Q, Xu G, Sun S. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice. PLANT & CELL PHYSIOLOGY 2015; 56:2381-95. [PMID: 26615033 DOI: 10.1093/pcp/pcv162] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/25/2015] [Indexed: 05/09/2023]
Abstract
SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice.
Collapse
Affiliation(s)
- Huadun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China Present address: Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rui Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Yue Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Hongmin Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Xueneng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Fang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Qirong Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| |
Collapse
|
23
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
24
|
Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. MOLECULAR PLANT 2013; 6:1646-60. [PMID: 23482370 DOI: 10.1093/mp/sst049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sumoylation is an essential posttranslational modification that participates in many biological processes including stress responses. However, little is known about the mechanisms that control Small Ubiquitin-like MOdifier (SUMO) conjugation in vivo. We have evaluated the regulatory role of the heterodimeric E1 activating enzyme, which catalyzes the first step in SUMO conjugation. We have established that the E1 large SAE2 and small SAE1 subunits are encoded by one and three genes, respectively, in the Arabidopsis genome. The three paralogs genes SAE1a, SAE1b1, and SAE1b2 are the result of two independent duplication events. Since SAE1b1 and SAE1b2 correspond to two identical copies, only two E1 small subunit isoforms are present in vivo: SAE1a and SAE1b. The E1 heterodimer nuclear localization is modulated by the C-terminal tail of the SAE2 subunit. In vitro, SUMO conjugation rate is dependent on the SAE1 isoform contained in the E1 holoenzyme and our results suggest that downstream steps to SUMO-E1 thioester bond formation are affected. In vivo, SAE1a isoform deletion in T-DNA insertion mutant plants conferred sumoylation defects upon abiotic stress, consistent with a sumoylation defective phenotype. Our results support previous data pointing to a regulatory role of the E1 activating enzyme during SUMO conjugation and provide a novel mechanism to control sumoylation in vivo by diversification of the E1 small subunit.
Collapse
Affiliation(s)
- Laura Castaño-Miquel
- Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Xu P, Yang C. Emerging role of SUMOylation in plant development. PLANT SIGNALING & BEHAVIOR 2013; 8:e24727. [PMID: 23656877 PMCID: PMC3907438 DOI: 10.4161/psb.24727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 05/20/2023]
Abstract
Post-translational attachment of small ubiquitin-like modifier (SUMO), defined as SUMOylation, has emerged as a new mechanism of protein regulation in plant biology. In plant, SUMOylation has been shown to play crucial roles in a variety of biotic and abiotic stress responses. Recent work using viable mutants with defective SUMOylation have indicated an important role for SUMOylation in a wide range of developmental processes, such as cell division, expansion, survival and differentiation, vegetative growth and reproductive development. This review will summarize the currently emerging information regarding the function of SUMOylation in plant development.
Collapse
|
26
|
New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:161-209. [PMID: 23273862 DOI: 10.1016/b978-0-12-405210-9.00005-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a small (∼12kDa) protein that occurs in all eukaryotes and participates in the reversible posttranslational modification of target cellular proteins. The three-dimensional structure of SUMO and ubiquitin (Ub) are superimposable although there is very little similarity in their primary amino acid sequences. In all organisms, conjugation and deconjugation of Ub and SUMO proceed by the same reactions while using pathway-specific enzymes. SUMO conjugation in plants is a part of the controls governing important biological processes such as growth, development, flowering, environmental (abiotic) stress responses, and response to pathogen infection. Most of the evidence for this comes from genetic analyses. Recent efforts to dissect the function of sumoylation have focused on uncovering targets of SUMO conjugation by using either a yeast two-hybrid screen employing components of the SUMO cycle as bait or by using affinity purification of SUMO-conjugated proteins followed by identification of these proteins by mass spectrometry. This chapter reviews the current knowledge regarding sumoylation in plants, with special focus on the model plant Arabidopsis thaliana.
Collapse
|
27
|
Karan R, Subudhi PK. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis. BMC PLANT BIOLOGY 2012; 12:187. [PMID: 23051937 PMCID: PMC3534225 DOI: 10.1186/1471-2229-12-187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/05/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND SUMO (Small Ubiquitin related Modifier) conjugation is a post translational regulatory process found in all eukaryotes, mediated by SUMO activating enzyme, SUMO conjugating enzyme, and SUMO ligase for the attachment of SUMO to its target protein. Although the mechanism for regulation of SUMO conjugation pathway genes under abiotic stress has been studied to certain extent, the role of SUMO conjugating enzyme in improving abiotic stress tolerance to plant is largely unexplored. Here, we have characterized a SUMO conjugating enzyme gene 'SaSce9' from a halophytic grass Spartina alterniflora and investigated its role in imparting abiotic stress tolerance. RESULTS SaSce9 gene encodes for a polypeptide of 162 amino acids with a molecular weight of ~18 kD and isoelectric point 8.43. Amino acid sequence comparisons of SaSce9 with its orthologs from other plant species showed high degree (~85-93%) of structural conservation among each other. Complementation analysis using yeast SCE mutant, Ubc9, revealed functional conservation of SaSce9 between yeast and S. alterniflora. SaSce9 transcript was inducible by salinity, drought, cold, and exogenously supplied ABA both in leaves and roots of S. alterniflora. Constitutive overexpression of SaSce9 in Arabidopsis through Agrobacterium mediated transformation improved salinity and drought tolerance of Arabidopsis. SaSce9 overexpressing Arabidopsis plants retained more chlorophyll and proline both under salinity and drought stress. SaSce9 transgenic plants accumulated lower levels of reactive oxygen under salinity stress. Expression analysis of stress responsive genes in SaSce9 Arabidopsis plants revealed the increased expression of antioxidant genes, AtSOD and AtCAT, ion antiporter genes, AtNHX1 and AtSOS1, a gene involved in proline biosynthesis, AtP5CS, and a gene involved in ABA dependent signaling pathway, AtRD22. CONCLUSIONS These results highlight the prospect of improving abiotic stress tolerance in plants through genetic engineering of the sumoylation pathway. The study provides evidence that the overexpression of SaSce9 in plant can improve salinity and drought stress tolerance by protecting the plant through scavenging of ROS, accumulation of an osmolyte, proline, and expression of stress responsive genes. In addition, this study demonstrates the potential of the halophyte grass S. alterniflora as a reservoir of abiotic stress related genes for crop improvement.
Collapse
Affiliation(s)
- Ratna Karan
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA, 70803, USA
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
28
|
Castro PH, Tavares RM, Bejarano ER, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 2012; 69:3269-83. [PMID: 22903295 PMCID: PMC11114757 DOI: 10.1007/s00018-012-1094-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022]
Abstract
Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Rui Manuel Tavares
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo R. Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Herlânder Azevedo
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Lee JH, Kim SH, Kim JJ, Ahn JH. Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis. BMB Rep 2012; 45:515-20. [DOI: 10.5483/bmbrep.2012.45.9.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|