1
|
Swain M, Soman SK, Tapia K, Dagda RY, Dagda RK. Brain-derived neurotrophic factor protects neurons by stimulating mitochondrial function through protein kinase A. J Neurochem 2023; 167:104-125. [PMID: 37688457 PMCID: PMC10543477 DOI: 10.1111/jnc.15945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated. In this study, we surmised that BDNF binds to the TrkB receptor and translocates to mitochondria to govern mitochondrial physiology in a PKA-dependent manner. Confocal microscopy and biochemical subcellular fractionation assays confirm the localization of the TrkB receptor in mitochondria. The translocation of the TrkB receptor to mitochondria was significantly enhanced upon treating primary cortical neurons with exogenous BDNF, leading to rapid PKA activation. Showing a direct role of BDNF in regulating mitochondrial structure/function, time-lapse confocal microscopy in primary cortical neurons showed that exogenous BDNF enhances mitochondrial fusion, anterograde mitochondrial trafficking, and mitochondrial content within dendrites, which led to increased basal and ATP-linked mitochondrial respiration and glycolysis as assessed by an XF24e metabolic analyzer. BDNF-mediated regulation of mitochondrial structure/function requires PKA activity as treating primary cortical neurons with a pharmacological inhibitor of PKA or transiently expressing constructs that target an inhibitor peptide of PKA (PKI) to the mitochondrion abrogated BDNF-mediated mitochondrial fusion and trafficking. Mechanistically, western/Phos-tag blots show that BDNF stimulates PKA-mediated phosphorylation of Drp1 and Miro-2 to promote mitochondrial fusion and elevate mitochondrial content in dendrites, respectively. Effects of BDNF on mitochondrial function were associated with increased resistance of neurons to oxidative stress and dendrite retraction induced by rotenone. Overall, this study revealed new mechanisms of BDNF-mediated neuroprotection, which entails enhancing mitochondrial health and function of neurons.
Collapse
Affiliation(s)
- Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Smijin K. Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Kylea Tapia
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Raul Y. Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Ruben K. Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| |
Collapse
|
2
|
Rijlaarsdam J, Cosin-Tomas M, Schellhas L, Abrishamcar S, Malmberg A, Neumann A, Felix JF, Sunyer J, Gutzkow KB, Grazuleviciene R, Wright J, Kampouri M, Zar HJ, Stein DJ, Heinonen K, Räikkönen K, Lahti J, Hüls A, Caramaschi D, Alemany S, Cecil CAM. DNA methylation and general psychopathology in childhood: an epigenome-wide meta-analysis from the PACE consortium. Mol Psychiatry 2023; 28:1128-1136. [PMID: 36385171 PMCID: PMC7614743 DOI: 10.1038/s41380-022-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
The general psychopathology factor (GPF) has been proposed as a way to capture variance shared between psychiatric symptoms. Despite a growing body of evidence showing both genetic and environmental influences on GPF, the biological mechanisms underlying these influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses to identify both probe- and region-level associations of DNA methylation (DNAm) with school-age general psychopathology in six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total samples of N = 2178 and N = 2190, respectively. At school-age, we identified one probe (cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively associated with GPF (p = 8.58 × 10-8). We also identified a significant differentially methylated region (DMR) at school-age (p = 1.63 × 10-8), implicating the SHC Adaptor Protein 4 (SHC4) gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been previously implicated in multiple types of psychiatric disorders in adulthood, including obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no prospective associations were identified with DNAm at birth. Taken together, results of this study revealed some evidence of an association between DNAm at school-age and GPF. Future research with larger samples is needed to further assess DNAm variation associated with GPF.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de investigación biomédica en red en epidemiología y salud pública (ciberesp), Madrid, Spain.
| | - Laura Schellhas
- School of Psychological Science, MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg, Eppendorf, Germany
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anni Malmberg
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | | | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de investigación biomédica en red en epidemiología y salud pública (ciberesp), Madrid, Spain
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mariza Kampouri
- Department of Social Medicine, University of Crete, Crete, Greece
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kati Heinonen
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
- Psychology/ Welfare Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Katri Räikkönen
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Doretta Caramaschi
- Medical Research Council Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Psychology, , University of Exeter, Exeter, UK
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Yue T, Zuo S, Zhu J, Guo S, Huang Z, Li J, Wang X, Liu Y, Chen S, Wang P. Two Similar Signatures for Predicting the Prognosis and Immunotherapy Efficacy of Stomach Adenocarcinoma Patients. Front Cell Dev Biol 2021; 9:704242. [PMID: 34414187 PMCID: PMC8369372 DOI: 10.3389/fcell.2021.704242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background Globally, stomach adenocarcinoma (STAD)’s high morbidity and mortality should arouse our urgent attention. How long can STAD patients survive after surgery and whether novel immunotherapy is effective are questions that our clinicians cannot escape. Methods Various R packages, GSEA software, Metascape, STRING, Cytoscape, Venn diagram, TIMER2.0 website, TCGA, and GEO databases were used in our study. Results In the TCGA and GEO, macrophage abundance of STAD tissues was significantly higher than that of adjacent tissues and was an independent prognostic factor, significantly related to the overall survival (OS) of STAD patients. Between the high- and low- macrophage abundance, we conducted differential expression, univariate and multivariate Cox analysis, and obtained 12 candidate genes, and finally constructed a 3-gene signature. Both low macrophage abundance group and group D had higher TMB and PD-L1 expression. Furthermore, top 5 common gene-mutated STAD tissues had lower macrophage abundance. Macrophage abundance and 3 key genes expression were also lower in the Epstein-Barr Virus (EBV) and HM-indel STAD subtypes and significantly correlated with the tumor microenvironment score. The functional enrichment and ssGSEA revealed 2 signatures were similar and closely related to BOQUEST_STEM_CELL_UP, including genes up-regulated in proliferative stromal stem cells. Hsa-miR-335-5p simultaneously regulated 3 key genes and significantly related to the expression of PD-L1, CD8A and PDCD1. Conclusion macrophage abundance and 3-gene signature could simultaneously predict the OS and immunotherapy efficacy, and both 2 signatures had remarkable similarities. Hsa-miR-335-5p and BOQUEST_STEM_CELL_UP might be novel immunotherapy targets.
Collapse
Affiliation(s)
- Taohua Yue
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shihao Guo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Zhihao Huang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jichang Li
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
4
|
Chen X, Xiao JW, Cao P, Zhang Y, Cai WJ, Song JY, Gao WM, Li B. Brain-derived neurotrophic factor protects against acrylamide-induced neuronal and synaptic injury via the TrkB-MAPK-Erk1/2 pathway. Neural Regen Res 2021; 16:150-157. [PMID: 32788470 PMCID: PMC7818888 DOI: 10.4103/1673-5374.286976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acrylamide has been shown to be neurotoxic. Brain-derived neurotrophic factor (BDNF) can alleviate acrylamide-induced synaptic injury; however, the underlying mechanism remains unclear. In this study, dibutyryl-cyclic adenosine monophosphate-induced mature human neuroblastoma (NB-1) cells were exposed with 0–100 μg/mL acrylamide for 24–72 hours. Acrylamide decreased cell viability and destroyed synapses. Exposure of co-cultured NB-1 cells and Schwann cells to 0–100 μg/mL acrylamide for 48 hours resulted in upregulated expression of synapsin I and BDNF, suggesting that Schwann cells can activate self-protection of neurons. Under co-culture conditions, activation of the downstream TrkB-MAPK-Erk1/2 pathway strengthened the protective effect. Exogenous BDNF can increase expression of TrkB, Erk1/2, and synapsin I, while exogenous BDNF or the TrkB inhibitor K252a could inhibit these changes. Taken together, Schwann cells may act through the BDNF-TrkB-MAPK-Erk1/2 signaling pathway, indicating that BDNF plays an important role in this process. Therefore, exogenous BDNF may be an effective treatment strategy for acrylamide-induced nerve injury. This study was approved by the Laboratory Animal Welfare and Ethics Committee of the National Institute of Occupational Health and Poison Control, a division of the Chinese Center for Disease Control and Prevention (approval No. EAWE-2017-008) on May 29, 2017.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing-Wei Xiao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Cao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Jian Cai
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Yang Song
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei-Min Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Bin Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Corponi F, Bonassi S, Vieta E, Albani D, Frustaci A, Ducci G, Landi S, Boccia S, Serretti A, Fabbri C. Genetic basis of psychopathological dimensions shared between schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:23-29. [PMID: 30149091 DOI: 10.1016/j.pnpbp.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Shared genetic vulnerability between schizophrenia (SCZ) and bipolar disorder (BP) was demonstrated, but the genetic underpinnings of specific symptom domains are unclear. This study investigated which genes and gene sets may modulate specific psychopathological domains and if genome-wide significant loci previously associated with SCZ or BP may play a role. Genome-wide data were available in patients with SCZ (n = 226) or BP (n = 228). Phenotypes under investigation were depressive and positive symptoms severity, suicidal ideation, onset age and substance use disorder comorbidity. Genome-wide analyses were performed at gene and gene set level, while 148 genome-wide significant loci previously associated with SCZ and/or BP were investigated. Each sample was analyzed separately then a meta-analysis was performed. SH3GL2 and CLVS1 genes were associated with suicidal ideation in SCZ (p = 5.62e-08 and 0.01, respectively), the former also in the meta-analysis (p = .01). SHC4 gene was associated with depressive symptoms severity in BP (p = .003). A gene set involved in cellular differentiation (GO:0048661) was associated with substance disorder comorbidity in the meta-analysis (p = .03). Individual loci previously associated with SCZ or BP did not modulate the phenotypes of interest. This study provided confirmatory and new findings. SH3GL2 (endophilin A1) showed a role in suicidal ideation that may be due to its relevance to the glutamate system. SHC4 regulates BDNF-induced MAPK activation and was previously associated with depression. CLVS1 is involved in lysosome maturation and was for the first time associated with a psychiatric trait. GO:0048661 may mediate the risk of substance disorder through an effect on neurodevelopment/neuroplasticity.
Collapse
Affiliation(s)
- Filippo Corponi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Eduard Vieta
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Diego Albani
- Laboratory of Biology of Neurodegenerative Disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandra Frustaci
- Barnet, Enfield and Haringey Mental Health NHS Trust, St.Ann's Hospital, St.Ann's Road, N15 3 TH London, UK
| | | | - Stefano Landi
- Dipartimento di Biologia, Universita' di Pisa, Pisa, Italy
| | - Stefania Boccia
- Section of Hygiene, Institute of Public Health, Universita' Cattolica del Sacro Cuore, Fondazione Policlinico "Agostino Gemelli" IRCCS, Rome, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy.
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy
| |
Collapse
|
6
|
Budde M, Friedrichs S, Alliey-Rodriguez N, Ament S, Badner JA, Berrettini WH, Bloss CS, Byerley W, Cichon S, Comes AL, Coryell W, Craig DW, Degenhardt F, Edenberg HJ, Foroud T, Forstner AJ, Frank J, Gershon ES, Goes FS, Greenwood TA, Guo Y, Hipolito M, Hood L, Keating BJ, Koller DL, Lawson WB, Liu C, Mahon PB, McInnis MG, McMahon FJ, Meier SM, Mühleisen TW, Murray SS, Nievergelt CM, Nurnberger JI, Nwulia EA, Potash JB, Quarless D, Rice J, Roach JC, Scheftner WA, Schork NJ, Shekhtman T, Shilling PD, Smith EN, Streit F, Strohmaier J, Szelinger S, Treutlein J, Witt SH, Zandi PP, Zhang P, Zöllner S, Bickeböller H, Falkai PG, Kelsoe JR, Nöthen MM, Rietschel M, Schulze TG, Malzahn D. Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. Eur Neuropsychopharmacol 2019; 29:156-170. [PMID: 30503783 DOI: 10.1016/j.euroneuro.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022]
Abstract
Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 - 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 - rs2086256 - rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.
Collapse
Affiliation(s)
- Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany
| | - Stefanie Friedrichs
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, United States
| | - Seth Ament
- Institute for Systems Biology, Seattle, WA 98109, United States
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Cinnamon S Bloss
- University of California San Diego, La Jolla, CA 92093, United States
| | - William Byerley
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94103, United States
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - William Coryell
- University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - David W Craig
- The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - Franziska Degenhardt
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Andreas J Forstner
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany; Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland; Department of Psychiatry (UPK), University of Basel, Basel 4012, Switzerland
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, United States
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, United States; Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | - Maria Hipolito
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC 20060, United States
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, United States
| | - Brendan J Keating
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-5159, United States; Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, United States
| | - Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - William B Lawson
- Dell Medical School, University of Texas at Austin, Austin, TX 78723, United States
| | - Chunyu Liu
- SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Pamela B Mahon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, United States
| | - Francis J McMahon
- U.S. Department of Health & Human Services, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20894, United States
| | - Sandra M Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany; National Centre for Register-Based Research, Aarhus University, Aarhus V 8210, Denmark
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Sarah S Murray
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, CA 92037, United States; Department of Pathology, University of California San Diego, La Jolla, CA 92093, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Evaristus A Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC 20060, United States
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa School of Medicine, Iowa City, IA 52242, United States
| | - Danjuma Quarless
- J. Craig Venter Institute, La Jolla, CA 92037, United States; University of California San Diego, La Jolla, CA 92093, United States
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Jared C Roach
- Institute for Systems Biology, Seattle, WA 98109, United States
| | | | - Nicholas J Schork
- J. Craig Venter Institute, La Jolla, CA 92037, United States; The Translational Genomics Research Institute, Phoenix, AZ 85004, United States; University of California San Diego, La Jolla, CA 92093, United States
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Erin N Smith
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, CA 92037, United States; Department of Pediatrics and Rady's Children's Hospital, School of Medicine, University of California San Diego, La Jolla, CA 92037, United States
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Szabolcs Szelinger
- The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Peng Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, United States
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany
| | - Peter G Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States; U.S. Department of Health & Human Services, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20894, United States.
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany.
| |
Collapse
|
7
|
Mabruk ZA, Ahmed SBM, Thomas AC, Prigent SA. The role of the ShcD and RET interaction in neuroblastoma survival and migration. Biochem Biophys Rep 2018; 13:99-108. [PMID: 29556564 PMCID: PMC5857170 DOI: 10.1016/j.bbrep.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 01/15/2023] Open
Abstract
Preliminary screening data showed that the ShcD adaptor protein associates with the proto-oncogene RET receptor tyrosine kinase. In the present study, we aimed to investigate the molecular interaction between ShcD and RET in human neuroblastoma cells and study the functional impact of this interaction. We were able to show that ShcD immunoprecipitated with RET from SK-N-AS neuroblastoma cell lysates upon GDNF treatment. This result was validated by ShcD-RET co-localization, which was visualized using a fluorescence microscope. ShcD-RET coexpression promoted ShcD and RET endosomal localization, resulting in unexpected inhibition of the downstream ERK and AKT pathways. Interestingly, ShcD-RET association reduced the viability and migration of SK-N-AS cells. Although ShcD was previously shown to trigger melanoma cell migration and tumorigenesis, our data showed an opposite role for ShcD in neuroblastoma SK-N-AS cells via its association with RET in GDNF-treated cells. In conclusion, ShcD acts as a switch molecule that promotes contrasting biological responses depending on the stimulus ad cell type. The melanoma associated Shc adaptor, ShcD, is found to interact with Ret oncogene receptor in SK-N-AS neuroblastoma cells. ShcD and Ret coexpression favoures their endosomal localization. ShcD-Ret association has suppressed ERK and AKT signalling. The functional consequence of ShcD and Ret interaction was shown to negatively affect cell survival and cellular migration in.
Collapse
Key Words
- ALK,, Anaplastic Lymphoma Kinase
- Akt,, Protein kinase B;
- CMV,, Cytomegalovirus
- DMEM,, Dulbecoo Modified Eagle's Medium;
- DNA,, Deoxyribonucleic Acid
- ECL,, Enhanced Chemiluminescence;
- EGF,, Epidermal Growth Factor;
- EGFR,, Epidermal Growth Factor Receptor;
- ERK,, Extracellular Signal–Regulated Kinases;
- Endosomes
- FBS,, Fetal Bovine Serum
- FGFR,, fibroblast growth factor receptors
- GDNF
- GDNF,, Glial Cell Line-Derived Neurotropic Factor;
- GFLs,, GDNF Family Ligands;
- GFP,, Green Fluorescent Protein
- GPCR,, G-Protein Coupled Receptor
- GRB2,, Growth Factor Receptor-Bound Protein 2;
- HGFR,, hepatocyte growth factor receptor;
- HRP,, Horseradish Peroxidase
- IGF,, Insulin Growth Factor;
- LB,, Luria-Bertani
- MAP,, Mitogen-Activated Protein;
- MAPK,, Mitogen-Activated Protein Kinases
- MuSK,, Muscle Specific Kinase
- NFDM,, Non-Fat Dry Milk
- Neuroblastoma
- PBS,, Phosphate-Buffered Saline
- PBST,, Phosphate-Buffered Saline Tween
- PDGF,, Platelet-Derived Growth Factor;
- PI3K,, Phosphoinositide 3-Kinase
- PMSF,, Phenylmethylsulfonyl Fluoride
- PVDF,, Polyvinylidene Fluoride
- RET
- RET,, Rearranged During Transfection
- RT,, Room Temperature;
- RTKs,, Receptor Tyrosine Kinase
- SDS-PAGE,, Sodium Dodecylsulphate Polyacrylamide Gel Electrophoresis
- ShcD
- ShcD,, Src Homology And Collagen D
- Src,, Proto-Oncogene Tyrosine-Protein Kinase Src
- TKRs,, Tyrosine Kinase Receptor;
- TrkA/B/C,, Tropomyosin-Related Kinase Receptor A/B/C
- hrs,, Hours
- mAb,, Monoclonal Antibody
- min,, Minute
- pAb,, Polyclonal Antibody
- pTyr,, Phospho-Tyrosine
- rpm,, revolution per minute;
Collapse
Affiliation(s)
- Zeanap A Mabruk
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Samrein B M Ahmed
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Asha Caroline Thomas
- Sharjah Institute for Medical Research and College of Medicine University of Sharjah, United Arab Emirates
| | - Sally A Prigent
- Department of Molecular and Cellular Biology, University of Leicester, UK
| |
Collapse
|
8
|
Genome-wide haplotype-based association analysis of major depressive disorder in Generation Scotland and UK Biobank. Transl Psychiatry 2017; 7:1263. [PMID: 29187746 PMCID: PMC5802488 DOI: 10.1038/s41398-017-0010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies using genotype data have had limited success in the identification of variants associated with major depressive disorder (MDD). Haplotype data provide an alternative method for detecting associations between variants in weak linkage disequilibrium with genotyped variants and a given trait of interest. A genome-wide haplotype association study for MDD was undertaken utilising a family-based population cohort, Generation Scotland: Scottish Family Health Study (n = 18,773), as a discovery cohort with UK Biobank used as a population-based replication cohort (n = 25,035). Fine mapping of haplotype boundaries was used to account for overlapping haplotypes potentially tagging the same causal variant. Within the discovery cohort, two haplotypes exceeded genome-wide significance (P < 5 × 10-8) for an association with MDD. One of these haplotypes was nominally significant in the replication cohort (P < 0.05) and was located in 6q21, a region which has been previously associated with bipolar disorder, a psychiatric disorder that is phenotypically and genetically correlated with MDD. Several haplotypes with P < 10-7 in the discovery cohort were located within gene coding regions associated with diseases that are comorbid with MDD. Using such haplotypes to highlight regions for sequencing may lead to the identification of the underlying causal variants.
Collapse
|
9
|
Wills MKB, Keyvani Chahi A, Lau HR, Tilak M, Guild BD, New LA, Lu P, Jacquet K, Meakin SO, Bisson N, Jones N. Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. J Biol Chem 2017; 292:5748-5759. [PMID: 28213521 DOI: 10.1074/jbc.m116.770511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.
Collapse
Affiliation(s)
- Melanie K B Wills
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ava Keyvani Chahi
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hayley R Lau
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Manali Tilak
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brianna D Guild
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura A New
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Peihua Lu
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kévin Jacquet
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Susan O Meakin
- Department of Biochemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Nicolas Bisson
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Nina Jones
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada,
| |
Collapse
|
10
|
de Rezende Corrêa G, Soares VHP, de Araújo-Martins L, Dos Santos AA, Giestal-de-Araujo E. Ouabain and BDNF Crosstalk on Ganglion Cell Survival in Mixed Retinal Cell Cultures. Cell Mol Neurobiol 2015; 35:651-60. [PMID: 25651946 DOI: 10.1007/s10571-015-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known and well-studied neurotrophin. Most biological effects of BDNF are mediated by the activation of TrkB receptors. This neurotrophin regulates several neuronal functions as cell proliferation, viability, and differentiation. Ouabain is a steroid that binds to the Na(+)/K(+) ATPase, inducing the activation of several intracellular signaling pathways. Previous data from our group described that ouabain treatment increases retinal ganglion cells survival (RGC). The aim of the present study was to evaluate, if this cardiac glycoside can have a synergistic effect with BDNF, the classical trophic factor for retinal ganglion cells, as well as investigate the intracellular signaling pathways involved. Our work demonstrated that the activation of Src, PLC, and PKCδ participates in the signaling cascade mediated by 50 ng/mL BDNF, since their selective inhibitors completely blocked the trophic effect of BDNF. We also demonstrated a synergistic effect on RGC survival when we concomitantly used ouabain (0.75 nM) and BDNF (10 ng/mL). Moreover, the signaling pathways involved in this synergistic effect include Src, PLC, PKCδ, and JNK. Our results suggest that the synergism between ouabain and BDNF occurs through the activation of the Src pathway, JNK, PLC, and PKCδ.
Collapse
Affiliation(s)
- Gustavo de Rezende Corrêa
- Departamento de Neurobiologia, Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro, CEP 24020-140, Brazil,
| | | | | | | | | |
Collapse
|
11
|
Corradini BR, Iamashita P, Tampellini E, Farfel JM, Grinberg LT, Moreira-Filho CA. Complex network-driven view of genomic mechanisms underlying Parkinson's disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. BIOMED RESEARCH INTERNATIONAL 2014; 2014:543673. [PMID: 25525598 PMCID: PMC4261556 DOI: 10.1155/2014/543673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD)—classically characterized by severe loss of dopaminergic neurons in the substantia nigra pars compacta—has a caudal-rostral progression, beginning in the dorsal motor vagal nucleus and, in a less extent, in the olfactory system, progressing to the midbrain and eventually to the basal forebrain and the neocortex. About 90% of the cases are idiopathic. To study the molecular mechanisms involved in idiopathic PD we conducted a comparative study of transcriptional interaction networks in the dorsal motor vagal nucleus (VA), locus coeruleus (LC), and substantia nigra (SN) of idiopathic PD in Braak stages 4-5 (PD) and disease-free controls (CT) using postmortem samples. Gene coexpression networks (GCNs) for each brain region (patients and controls) were obtained to identify highly connected relevant genes (hubs) and densely interconnected gene sets (modules). GCN analyses showed differences in topology and module composition between CT and PD networks for each anatomic region. In CT networks, VA, LC, and SN hub modules are predominantly associated with neuroprotection and homeostasis in the ageing brain, whereas in the patient's group, for the three brain regions, hub modules are mostly related to stress response and neuron survival/degeneration mechanisms.
Collapse
Affiliation(s)
- Beatriz Raposo Corradini
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Edilaine Tampellini
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
| | - José Marcelo Farfel
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
- Division of Geriatrics, FMUSP, 01246-903 São Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Pathology, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Neurology and Pathology, University of California, San Francisco, CA 94143, USA
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| |
Collapse
|
12
|
Ahmed SBM, Prigent SA. A nuclear export signal and oxidative stress regulate ShcD subcellular localisation: a potential role for ShcD in the nucleus. Cell Signal 2013; 26:32-40. [PMID: 24036217 DOI: 10.1016/j.cellsig.2013.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 09/02/2013] [Indexed: 01/23/2023]
Abstract
Tumour cells alter their gene expression profile to acquire a more invasive and resistant phenotype. Overexpression of the signalling adaptor protein ShcD in melanoma was found to be a prerequisite for melanoma migration and invasion. In common with other Shc proteins, ShcD has been shown to be involved in coupling receptor tyrosine kinases to the Ras-mitogen activated protein kinase signalling pathway, and to have a predominant cytoplasmic distribution. Here we report that ShcD can exist within the nucleus, and show that its CH2 domain has a critical role in nuclear export of ShcD. Analysis of GFP-tagged ShcD mutants containing deletions or amino acid substitutions within the CH2 domain revealed (83)LCTLIPRM(90) as a functional nuclear export signal. We have further demonstrated that ShcD accumulates in the nucleus upon hydrogen peroxide treatment in FLAG-ShcD expressing HEK293 cells, as well as 518.A2 melanoma cells. Cross linking experiments showed that a proportion of ShcD is associated with DNA. Moreover we have shown that ShcD fused to the GAL4 DNA binding domain can drive transcription of a GAL4 site-driven luciferase reporter, suggesting a role for ShcD in regulating gene transcription. We suggest that ShcD nuclear translocation might provide melanoma cells with a mechanism that enables them to resist DNA damage due to oxidative stress.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
13
|
Forbes K, Skinner L, Aplin JD, Westwood M. The tyrosine phosphatase SHP-1 negatively regulates cytotrophoblast proliferation in first-trimester human placenta by modulating EGFR activation. Cell Mol Life Sci 2012; 69:4029-40. [PMID: 22797910 PMCID: PMC11115170 DOI: 10.1007/s00018-012-1067-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/01/2012] [Accepted: 06/19/2012] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factors (IGFs) influence placental cell (cytotrophoblast) kinetics. We recently reported that the protein tyrosine phosphatase (PTP) SHP-2 positively regulates IGF actions in the placenta. In other systems, the closely related PTP, SHP-1, functions as a negative regulator of signaling events but its role in the placenta is still unknown. We examined the hypothesis that SHP-1 negatively regulates IGF actions in the human placenta. Immunohistochemical (IHC) analysis demonstrated that SHP-1 is abundant in cytotrophoblast. SHP-1 expression was decreased in first-trimester placental explants using siRNA; knockdown did not alter IGF-induced proliferation but it significantly enhanced proliferation in serum-free conditions, revealing that placental growth is endogenously regulated. Candidate regulators were determined by using antibody arrays, Western blotting, and IHC to examine the activation status of multiple receptor tyrosine kinases (RTKs) in SHP-1-depleted explants; amongst the alterations observed was enhanced activation of EGFR, suggesting that SHP-1 may interact with EGFR to inhibit proliferation. The EGFR tyrosine kinase inhibitor PD153035 reversed the elevated proliferation seen in the absence of SHP-1. This study demonstrates a role for SHP-1 in human trophoblast turnover and establishes SHP-1 as a negative regulator of EGFR activation. Targeting placental SHP-1 expression may provide therapeutic benefits in common pregnancy conditions with abnormal trophoblast proliferation.
Collapse
Affiliation(s)
- Karen Forbes
- Maternal and Fetal Health Research Centre, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, School of Biomedicine, Manchester, M13 9WL, UK,
| | | | | | | |
Collapse
|
14
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
15
|
Chan SHH, Chan JYH, Hsu KS, Li FCH, Sun EYH, Chen WL, Chang AYW. Amelioration of central cardiovascular regulatory dysfunction by tropomyocin receptor kinase B in a mevinphos intoxication model of brain stem death. Br J Pharmacol 2012; 164:2015-28. [PMID: 21615729 DOI: 10.1111/j.1476-5381.2011.01508.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Little information exists on the mechanisms that precipitate brain stem death, the legal definition of death in many developed countries. We investigated the role of tropomyocin receptor kinase B (TrkB) and its downstream signalling pathways in the rostral ventrolateral medulla (RVLM) during experimental brain stem death. EXPERIMENTAL APPROACH An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos bilaterally into the RVLM of Sprague-Dawley rats was used, in conjunction with cardiovascular, pharmacological and biochemical evaluations. KEY RESULTS A significant increase in TrkB protein, phosphorylation of TrkB at Tyr(516) (pTrkB(Y516) ), Shc at Tyr(317) (pShc(Y317) ) or ERK at Thr(202) /Tyr(204) , or Ras activity in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Microinjection bilaterally into RVLM of a specific TrkB inhibitor, K252a, antagonized those increases. Pretreatment with anti-pShc(Y317) antiserum, Src homology 3 binding peptide (Grb2/SOS inhibitor), farnesylthioacetic acid (Ras inhibitor), manumycin A (Ras inhibitor) or GW5074 (Raf-1 inhibitor) blunted the preferential augmentation of Ras activity or ERK phosphorylation in RVLM and blocked the up-regulated NOS I/protein kinase G (PKG) signalling, the pro-life cascade that sustains central cardiovascular regulation during experimental brain stem death. CONCLUSIONS AND IMPLICATIONS Activation of TrkB, followed by recruitment of Shc/Grb2/SOS adaptor proteins, leading to activation of Ras/Raf-1/ERK signalling pathway plays a crucial role in ameliorating central cardiovascular regulatory dysfunction via up-regulation of NOS I/PKG signalling cascade in the RVLM in brain stem death. These findings provide novel information for developing therapeutic strategies against this fatal eventuality.
Collapse
Affiliation(s)
- S H H Chan
- Center for Translational Researchin Biomedical Sciences,Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|