1
|
Rojas V, Larrondo LF. Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast. ACS Synth Biol 2023; 12:71-82. [PMID: 36534043 PMCID: PMC9872819 DOI: 10.1021/acssynbio.2c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Abstract
Cell communication is a widespread mechanism in biology, allowing the transmission of information about environmental conditions. In order to understand how cell communication modulates relevant biological processes such as survival, division, differentiation, and apoptosis, different synthetic systems based on chemical induction have been successfully developed. In this work, we coupled cell communication and optogenetics in the budding yeast Saccharomyces cerevisiae. Our approach is based on two strains connected by the light-dependent production of α-factor pheromone in one cell type, which induces gene expression in the other type. After the individual characterization of the different variants of both strains, the optogenetic intercellular system was evaluated by combining the cells under contrasting illumination conditions. Using luciferase as a reporter gene, specific co-cultures at a 1:1 ratio displayed activation of the response upon constant blue light, which was not observed for the same cell mixtures grown in darkness. Then, the system was assessed at several dark/blue-light transitions, where the response level varies depending on the moment in which illumination was delivered. Furthermore, we observed that the amplitude of response can be tuned by modifying the initial ratio between both strains. Finally, the two-population system showed higher fold inductions in comparison with autonomous strains. Altogether, these results demonstrated that external light information is propagated through a diffusible signaling molecule to modulate gene expression in a synthetic system involving microbial cells, which will pave the road for studies allowing optogenetic control of population-level dynamics.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Luis F. Larrondo
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| |
Collapse
|
2
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
3
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
4
|
Landman C, Grill JP, Mallet JM, Marteau P, Humbert L, Le Balc’h E, Maubert MA, Perez K, Chaara W, Brot L, Beaugerie L, Sokol H, Thenet S, Rainteau D, Seksik P, Quévrain E. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS One 2018; 13:e0202587. [PMID: 30157234 PMCID: PMC6114859 DOI: 10.1371/journal.pone.0202587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background and aims N-acyl homoserine lactones (AHLs), which are autoinducer quorum-sensing molecules involved in the bacterial communication network, also interact with eukaryotic cells. Searching for these molecules in the context of inflammatory bowel disease (IBD) is appealing. The aims of our study were to look for AHL molecules in faecal samples from healthy subjects (HS) and IBD patients to correlate AHL profiles with the microbiome and investigate the effect of AHLs of interest on epithelial cells. Methods Using mass spectrometry, we characterised AHL profiles in faecal samples from HS (n = 26) and IBD patients in remission (n = 24) and in flare (n = 25) and correlated the presence of AHLs of interest with gut microbiota composition obtained by real-time qPCR and 16S sequencing. We synthesised AHLs of interest to test the inflammatory response after IL1β stimulation and paracellular permeability on Caco-2 cells. Results We observed 14 different AHLs, among which one was prominent. This AHL corresponded to 3-oxo-C12:2 and was found significantly less frequently in IBD patients in flare (16%) and in remission (37.5%) versus HS (65.4%) (p = 0.001). The presence of 3-oxo-C12:2 was associated with significantly higher counts of Firmicutes, especially Faecalbacterium prausnitzii, and lower counts of Escherichia coli. In vitro, 3-oxo-C12:2 exerted an anti-inflammatory effect on Caco-2 cells. Interestingly, although 3-oxo-C12, the well-known AHL from Pseudomonas aeruginosa, increased paracellular permeability, 3-oxo-C12:2 did not. Conclusions We identified AHLs in the human gut microbiota and discovered a new and prominent AHL, 3-oxo-C12:2, which correlates with normobiosis and exerts a protective effect on gut epithelial cells.
Collapse
Affiliation(s)
- Cécilia Landman
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Pierre Grill
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Maurice Mallet
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Marteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Lydie Humbert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Eric Le Balc’h
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Marie-Anne Maubert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Kevin Perez
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Loic Brot
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Laurent Beaugerie
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Harry Sokol
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Centre de Recherche des Cordeliers, PSL University, EPHE, Paris, France
| | - Dominique Rainteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Seksik
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
- * E-mail:
| | - Elodie Quévrain
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | | |
Collapse
|
5
|
Taste Receptors Mediate Sinonasal Immunity and Respiratory Disease. Int J Mol Sci 2017; 18:ijms18020437. [PMID: 28218655 PMCID: PMC5343971 DOI: 10.3390/ijms18020437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 02/07/2023] Open
Abstract
The bitter taste receptor T2R38 has been shown to play a role in the pathogenesis of chronic rhinosinusitis (CRS), where the receptor functions to enhance upper respiratory innate immunity through a triad of beneficial immune responses. Individuals with a functional version of T2R38 are tasters for the bitter compound phenylthiocarbamide (PTC) and exhibit an anti-microbial response in the upper airway to certain invading pathogens, while those individuals with a non-functional version of the receptor are PTC non-tasters and lack this beneficial response. The clinical ramifications are significant, with the non-taster genotype being an independent risk factor for CRS requiring surgery, poor quality-of-life (QOL) improvements post-operatively, and decreased rhinologic QOL in patients with cystic fibrosis. Furthermore, indirect evidence suggests that non-tasters also have a larger burden of biofilm formation. This new data may influence the clinical management of patients with infectious conditions affecting the upper respiratory tract and possibly at other mucosal sites throughout the body.
Collapse
|
6
|
Cohen NA. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. Laryngoscope 2017; 127:44-51. [PMID: 27650657 PMCID: PMC5177547 DOI: 10.1002/lary.26198] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic rhinosinusitis (CRS) refractory to therapeutic intervention may involve a particularly resistant infection known as a bacterial biofilm. Critical to biofilm formation is the microbial process of quorum sensing whereby microbes secrete factors that regulate the expression of microbial genes involved in biofilm formation, persistence, and virulence. Here, we review recent work demonstrating that the bitter taste receptor T2R38, expressed on the apical surface of the sinonasal epithelium, serves a sentinel role in eavesdropping on microbial quorum-sensing communications and regulates localized innate biocidal defenses. Furthermore, studies investigating whether cilia are necessary for T2R38 expression and function in the upper airway are presented. METHODS Primary human sinonasal air-liquid interface cultures were used to elucidate cellular pathways responsive to quorum-sensing molecules, whereas clinical studies investigated the contribution of T2R38 polymorphisms to recalcitrant chronic rhinosinusitis. RESULTS T2R38 is stimulated by acyl-homoserine lactones, gram-negative quorum-sensing molecules, and subsequently activates nitric oxide-dependent innate immune responses. The formation of mature cilia is necessary for T2R38 expression and function, and polymorphisms that underlie T2R38 functionality appear to be involved in susceptibility to upper respiratory infection and recalcitrant CRS. CONCLUSION Taste receptors are emerging as critical components of early-phase respiratory innate immunity, detecting molecules used by microbes to communicate and stimulating localized host defenses. Genetic polymorphisms are very common within the taste receptors, and recent linkage studies have demonstrated associations of taste receptor genetics with CRS. Lastly, ciliogenesis, which is often impacted in CRS, is critical for the functional expression of T2R38. LEVEL OF EVIDENCE N/A. Laryngoscope, 127:44-51, 2017.
Collapse
Affiliation(s)
- Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
- Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, U.S.A
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
7
|
Gallo S, Grossi S, Montrasio G, Binelli G, Cinquetti R, Simmen D, Castelnuovo P, Campomenosi P. TAS2R38 taste receptor gene and chronic rhinosinusitis: new data from an Italian population. BMC MEDICAL GENETICS 2016; 17:54. [PMID: 27515546 PMCID: PMC4982233 DOI: 10.1186/s12881-016-0321-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 06/10/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a frequent disease with high social impact and multifactorial pathogenesis. Recently, single nucleotide polymorphisms within the TAS2R38 gene have been implicated as possible contributors to the complex gene-environment interactions in CRS. The purpose of this study was to confirm the proposed correlation between TAS2R38 genotype, CRS and related comorbidities. METHODS Fifty-three CRS patients and 39 healthy individuals were genotyped at the TAS2R38 locus. CRS patients were treated by endoscopic sinus surgery and medical therapies and subdivided in CRS with nasal polyps (CRSwNPs) and CRS without nasal polyps (CRSsNPs). The effect of genotype on CRS and CRS-related comorbidities was assessed. RESULTS The distribution of the different genotypes at the TAS2R38 locus was not significantly different between CRS patients, either with or without nasal polyps, and controls. Besides, no association was found between the different genotypes at the TAS2R38 locus and CRS-related comorbidities. CONCLUSIONS No association was found between TAS2R38 alleles or genotypes and CRS, thus questioning its role in the pathogenesis of CRS.
Collapse
Affiliation(s)
- Stefania Gallo
- Clinica Otorinolaringoiatrica, Ospedale di Circolo e Fondazione Macchi, Università degli Studi dell’Insubria, Varese, Italy
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
| | - Sarah Grossi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
| | - Giulia Montrasio
- Clinica Otorinolaringoiatrica, Ospedale di Circolo e Fondazione Macchi, Università degli Studi dell’Insubria, Varese, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
| | - Raffaella Cinquetti
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
| | - Daniel Simmen
- Center for Rhinology, Skull Base Surgery and Facial Plastic Surgery, ORL-Zentrum, Klinik Hirslanden, Zurich, Switzerland
| | - Paolo Castelnuovo
- Clinica Otorinolaringoiatrica, Ospedale di Circolo e Fondazione Macchi, Università degli Studi dell’Insubria, Varese, Italy
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
| | - Paola Campomenosi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell’Insubria, Via J.H. Dunant, 3, Varese, 21100 Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and Università degli Studi dell’Insubria, Varese, Italy
| |
Collapse
|
8
|
Carey RM, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ, Cohen NA. Human upper airway epithelium produces nitric oxide in response to Staphylococcus epidermidis. Int Forum Allergy Rhinol 2016; 6:1238-1244. [PMID: 27509402 DOI: 10.1002/alr.21837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nitric oxide (NO) is produced by sinonasal epithelial cells as part of the innate immune response against bacteria. We previously described bitter-taste-receptor-dependent and -independent NO responses to product(s) secreted by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. We hypothesized that sinonasal epithelium would be able to detect the gram-positive, coagulase-negative bacteria Staphylococcus epidermidis and mount a similar NO response. METHODS Sinonasal air-liquid interface cultures were treated with conditioned medium (CM) from lab strains and clinical isolates of coagulase-negative staphylococci and S aureus. NO production was quantified by fluorescence imaging. Bitter taste receptor signaling inhibitors were utilized to characterize the pathway responsible for NO production in response to S epidermidis CM. RESULTS S epidermidis CM contains a low-molecular-weight, heat, and protease-stabile product that induces an NO synthase (NOS)-mediated NO production that is less robust than the response triggered by S aureus CM. The S epidermidis CM-stimulated NO response is not inhibited by antagonists of phospholipase C isoform β-2 nor the transient receptor potential melastatin isoform 5 ion channel, both critical to bitter taste signaling. CONCLUSION This study identifies an NO-mediated innate defense response in sinonasal epithelium elicited by S epidermidis product(s). The active bacterial product is likely a small, nonpeptide molecule that stimulates a pathway independent of bitter taste receptors. Although the NO response to S epidermidis is less vigorous compared with S aureus, the product(s) share similar characteristics. Together, the responses to staphylococci species may help explain the pathophysiology of upper respiratory infections.
Collapse
Affiliation(s)
- Ryan M Carey
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Philadelphia Veterans Administration Medical Center Surgical Services, Philadelphia, PA
| |
Collapse
|
9
|
Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 2016; 81:1477-89. [PMID: 25527543 DOI: 10.1128/aem.03290-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum- quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.
Collapse
|
10
|
Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol 2015; 79:208-15. [PMID: 24552512 DOI: 10.1111/bcp.12356] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
New antibacterials need new approaches to overcome the problem of rapid antibiotic resistance. Here we review the development of potential new antibacterial drugs that do not kill bacteria or inhibit their growth, but combat disease instead by targeting bacterial virulence.
Collapse
Affiliation(s)
- Begoña Heras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic
| | | | | |
Collapse
|
11
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|
12
|
Carey RM, Workman AD, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ, Cohen NA. Staphylococcus aureus triggers nitric oxide production in human upper airway epithelium. Int Forum Allergy Rhinol 2015; 5:808-13. [PMID: 26097237 DOI: 10.1002/alr.21568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND Nitric oxide (NO) is an important antibacterial defense molecule produced by upper airway (sinonasal) epithelial cells. We previously showed that a bitter taste receptor expressed in airway epithelium detects quorum-sensing molecules secreted by Gram-negative bacteria and subsequently triggers bactericidal NO production. We hypothesized that the upper airway epithelium may also be able to detect the Gram-positive aerobe Staphylococcus aureus and mount an NO response. METHODS Human sinonasal air-liquid interface (ALI) cultures were treated with methicillin-resistant S. aureus (MRSA)-conditioned medium (CM), and NO production was measured using fluorescence imaging. Inhibitors of bitter taste receptor signaling were used to pharmacologically determine if this pathway was involved in the production of NO. RESULTS A low-molecular-weight, heat, and protease-stabile product found in MRSA CM induced differential, NO synthase (NOS)-mediated NO production. This response varied markedly between individual patients. The MRSA-stimulated NO production was not dependent on 2 important components of bitter taste signaling: phospholipase C isoform β-2 or the transient receptor potential melastatin isoform 5 (TRPM5) ion channel. CONCLUSION This study shows that a S. aureus product elicits an NO-mediated innate defense response in human upper airway epithelium. The active bacterial product is likely a small, nonpeptide molecule that triggers a pathway independent of bitter taste receptors. Patient variation in the NO response to MRSA product(s), potentially due to genetic differences, might play a role in pathophysiology of Gram-positive upper respiratory infections and/or pathogenesis of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Ryan M Carey
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alan D Workman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Philadelphia Veterans Administration Medical Center Surgical Services, Philadelphia, PA
| |
Collapse
|
13
|
Hatten KM, Palmer JN, Lee RJ, Adappa ND, Kennedy DW, Cohen NA. Corticosteroid use does not alter nasal mucus glucose in chronic rhinosinusitis. Otolaryngol Head Neck Surg 2015; 152:1140-4. [PMID: 25820586 DOI: 10.1177/0194599815577567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To evaluate nasal mucus glucose concentrations in patients with and without chronic rhinosinusitis and determine if corticosteroid therapy alters mucus glucose. STUDY DESIGN Prospective observational study. SETTING Single tertiary care center. SUBJECTS Ninety-five patients presenting to an otolaryngology clinic. METHODS Participants completed questionnaires that included a history of medical and surgical therapies as well as sinusitis-specific quality-of-life measurements. Nasal mucus was collected in an outpatient clinic using an open cell foam technique. The nasal mucus glucose concentrations of patients with and without chronic rhinosinusitis were compared to the use of systemic and topical glucocorticoid treatment. RESULTS A statistically significant difference was measured between mean nasal glucose secretions of control patients, 10.2 mg/dL, compared with patients diagnosed with chronic rhinosinusitis, 18.4 mg/dL (P < .0001). Use of corticosteroids, both topical and systemic, did not correlate with nasal glucose concentrations. CONCLUSION Patients diagnosed with chronic rhinosinusitis have elevated nasal glucose concentrations compared with control patients, and this elevated nasal glucose level was independent of corticosteroid use. Nasal glucose may independently contribute to the pathophysiology of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Kyle M Hatten
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA Philadelphia Veterans Affairs Medical Center Surgical Services, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Biomedically relevant circuit-design strategies in mammalian synthetic biology. Mol Syst Biol 2014; 9:691. [PMID: 24061539 PMCID: PMC3792348 DOI: 10.1038/msb.2013.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/07/2013] [Indexed: 12/24/2022] Open
Abstract
The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
Collapse
|
15
|
Berthelot JM, de la Cochetière MF, Potel G, Le Goff B, Maugars Y. Evidence supporting a role for dormant bacteria in the pathogenesis of spondylarthritis. Joint Bone Spine 2013; 80:135-40. [PMID: 23473929 DOI: 10.1016/j.jbspin.2012.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/18/2022]
Abstract
Spondylarthritis is still viewed as a reaction to infectious agents, as opposed to an infection by persistent bacteria, for several reasons: (a) an infection is considered proven only when the organism can be cultured; (b) no studies have identified dormant bacteria in the tissues targeted by spondylarthritis; (c) the bacterial persistence hypothesis has no therapeutic implications at the time being, since antibiotics are effective neither on dormant bacteria nor on the manifestations of spondylarthritis; and (d) the high prevalence of borderline disorders combining features of spondylarthritis and of psoriatic arthritis, or even rheumatoid arthritis (RA), would indicate a role for dormant bacteria in these last two diseases. However, recent data on dormant bacteria have rekindled interest in the bacterial persistence hypothesis. Dormant bacteria cannot be cultured, because they express only a small group of genes, known as the regulon, which includes genes for transcription factors that block the expression of the usual bacterial genes. Certain forms of cell stress, such as molecule misfolding, promote the entry of bacteria into a state of dormancy, which induces the low-level release by the host cells of cytokines such as TNF. Whether HLA-B27 misfolding facilitates the persistence of dormant bacteria within spondylarthritis tissue targets remains to be determined. If it does, then treatments that reactivate dormant bacteria might make these organisms susceptible to appropriate antibiotics and might therefore serve as useful adjuncts to nonsteroidal anti-inflammatory drugs and TNFα antagonists. TNFα antagonists rarely reactivate dormant bacteria, with the exception of Mycobacterium tuberculosis, which, together with metastatic cells, is the most extensively studied latency model to date.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | | | | | | |
Collapse
|
16
|
Bacchus W, Fussenegger M. Engineering of synthetic intercellular communication systems. Metab Eng 2013; 16:33-41. [DOI: 10.1016/j.ymben.2012.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
17
|
Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 2012; 122:4145-59. [PMID: 23041624 PMCID: PMC3484455 DOI: 10.1172/jci64240] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/02/2012] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Guoxiang Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Jennifer M. Kofonow
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Bei Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Anna Lysenko
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Peihua Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Valsamma Abraham
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Laurel Doghramji
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - David W. Kennedy
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Gary K. Beauchamp
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Paschalis-Thomas Doulias
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - James L. Kreindler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Danielle R. Reed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Lee SS, Monnappa AK, Mitchell RJ. Biological activities of lignin hydrolysate-related compounds. BMB Rep 2012; 45:265-74. [DOI: 10.5483/bmbrep.2012.45.5.265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
19
|
Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 2011; 402:1785-97. [PMID: 21922308 DOI: 10.1007/s00216-011-5364-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/10/2011] [Accepted: 08/24/2011] [Indexed: 01/09/2023]
|