1
|
Lüddecke I, Jarvis AG. Expanding the scope of copper artificial metalloenzymes: A potential fluorinase? J Inorg Biochem 2025; 263:112777. [PMID: 39615315 DOI: 10.1016/j.jinorgbio.2024.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Biocatalysts for fluorination are rare, and thus of great interest for artificial enzyme design. Biohybrid catalysts including Cu-based DNAzymes and dinucleotide catalysts can catalyse enantioselective electrophilic fluorination of β-ketoesters. Here we report the investigation of Cu-based artificial metalloenzymes as catalysts for electrophilic fluorination reactions. A library of artificial copper proteins was prepared by bioconjugation of bidentate and tridentate nitrogen ligands to cysteine variants of the Sterol Carrier Protein 2 L (SCP-2 L) and subsequent addition of Cu(II) salts. The resulting copper proteins were screened for activity for the fluorination of β-ketoesters using Selectfluor. Under aqueous acidic conditions it was observed that the designed catalysts did not outcompete the uncatalysed background reaction. This work highlights that careful consideration of substrate reactivity and background reactions is needed when considering potential reactions for artificial metalloenzyme catalysis.
Collapse
Affiliation(s)
- Isabeau Lüddecke
- EaStCHEM School of Chemistry, Joseph Black Building, Kings Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, Kings Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
2
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
3
|
The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.
Collapse
|
4
|
Jones JA, Cristie-David AS, Andreas MP, Giessen TW. Triggered Reversible Disassembly of an Engineered Protein Nanocage*. Angew Chem Int Ed Engl 2021; 60:25034-25041. [PMID: 34532937 PMCID: PMC8578439 DOI: 10.1002/anie.202110318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/13/2023]
Abstract
Protein nanocages play crucial roles in sub-cellular compartmentalization and spatial control in all domains of life and have been used as biomolecular tools for applications in biocatalysis, drug delivery, and bionanotechnology. The ability to control their assembly state under physiological conditions would further expand their practical utility. To gain such control, we introduced a peptide capable of triggering conformational change at a key structural position in the largest known encapsulin nanocompartment. We report the structure of the resulting engineered nanocage and demonstrate its ability to disassemble and reassemble on demand under physiological conditions. We demonstrate its capacity for in vivo encapsulation of proteins of choice while also demonstrating in vitro cargo loading capabilities. Our results represent a functionally robust addition to the nanocage toolbox and a novel approach for controlling protein nanocage disassembly and reassembly under mild conditions.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, 1150 W. Medical Center Dr., MSRB2, Ann Arbor, MI, 48109-5622, USA
| | - Ajitha S Cristie-David
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, 1150 W. Medical Center Dr., MSRB2, Ann Arbor, MI, 48109-5622, USA
| | - Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, 1150 W. Medical Center Dr., MSRB2, Ann Arbor, MI, 48109-5622, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, 1150 W. Medical Center Dr., MSRB2, Ann Arbor, MI, 48109-5622, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, 1150 W. Medical Center Dr., MSRB2, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
5
|
Jones JA, Cristie‐David AS, Andreas MP, Giessen TW. Triggered Reversible Disassembly of an Engineered Protein Nanocage**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse A. Jones
- Department of Biomedical Engineering University of Michigan Medical School, Ann Arbor 1150 W. Medical Center Dr., MSRB2 Ann Arbor MI 48109-5622 USA
| | - Ajitha S. Cristie‐David
- Department of Biomedical Engineering University of Michigan Medical School, Ann Arbor 1150 W. Medical Center Dr., MSRB2 Ann Arbor MI 48109-5622 USA
| | - Michael P. Andreas
- Department of Biomedical Engineering University of Michigan Medical School, Ann Arbor 1150 W. Medical Center Dr., MSRB2 Ann Arbor MI 48109-5622 USA
| | - Tobias W. Giessen
- Department of Biomedical Engineering University of Michigan Medical School, Ann Arbor 1150 W. Medical Center Dr., MSRB2 Ann Arbor MI 48109-5622 USA
- Department of Biological Chemistry University of Michigan Medical School, Ann Arbor 1150 W. Medical Center Dr., MSRB2 Ann Arbor MI 48109-5622 USA
| |
Collapse
|
6
|
Pyo CE, Chang JH. Hydrophobic Mesoporous Silica Particles Modified With Nonfluorinated Alkyl Silanes. ACS OMEGA 2021; 6:16100-16109. [PMID: 34179655 PMCID: PMC8223430 DOI: 10.1021/acsomega.1c01981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
This work reports the preparation of hydrophobic mesoporous silica particles (MSPs) modified with nonfluorinated alkyl silanes. Alkyl silanes were grafted onto the surface of the MSPs as a function of the length of nonfluorinated alkyl chains such as propyltriethoxysilane (C3), octyltriethoxysilane (C8), dodecyltriethoxysilane (C12), and octadecyltriethoxysilane (C18). Moreover, the grafting of the different alkyl silanes onto the surface of MSPs to make them hydrophobic was demonstrated using different conditions such as by changing the pH (0, 4, 6, 8, and 13), solvent type (protic and aprotic), concentration of silanes (0, 0.12, 0.24, 0.36, 0.48, and 0.60 M), reaction time (1, 2, 3, and 4 days), and reaction temperature (25 and 40 °C). The contact angles of the alkyl silane-modified MSPs were increased as a function of the alkyl chain lengths in the order of C18 > C12 > C8 > C3, and the contact angle of C18-modified MSPs was 4 times wider than that of unmodified MSPs. The unmodified MSPs had a contact angle of 25.3°, but C18-modified MSPs had a contact angle of 102.1°. Furthermore, the hydrophobicity of the nonfluorinated alkyl silane-modified MSPs was also demonstrated by the adsorption of a hydrophobic lecithin compound, which showed the increase of lecithin adsorption as a function of the alkyl chain lengths. The cross-linking ratios of the modified silanes on the MSPs were confirmed by solid-state 29Si-MAS nuclear magnetic resonance (NMR) measurement. Consequently, the hydrophobic modification on MSPs using nonfluorinated alkyl silanes was best preferred in a protic solvent, with a reaction time of ∼24 h at 25 °C and at a high concentration of silanes.
Collapse
Affiliation(s)
- Chae Eun Pyo
- Korea
Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam 52851, Korea
- Department
of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeong Ho Chang
- Korea
Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam 52851, Korea
| |
Collapse
|
7
|
Isanapong J, Pornwongthong P. Immobilized laccase on zinc oxide nanoarray for catalytic degradation of tertiary butyl alcohol. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125104. [PMID: 33482503 DOI: 10.1016/j.jhazmat.2021.125104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Laccase is an effective biocatalyst in bioremediation process; however, the application of the enzyme is limited due to its cost, recovery, and stability. In this study, we developed, characterized and evaluated the efficiency of immobilized laccase on zinc oxide nanostructure to catalyze biodegradation of TBA in comparison to the suspended enzyme. The results showed that both immobilized and suspended laccase were capable of catalyzing TBA biodegradation; however, the efficiency of the immobilized laccase on TBA removal was higher than that of the suspended enzyme. The repeatability testing revealed the potential of the immobilized laccase for repeatedly catalyzing TBA biodegradation with storage capacity. While the Vmax of immobilized enzyme was higher than suspended laccase (2.25 ± 0.542 mg TBA/h∙U vs. 1.47 ± 0.185 mg TBA/h∙U), the km of the immobilized enzyme was higher than the suspended laccase (67.9 ± 20.5 mg TBA/L vs. 33.5 ± 7.10 mg TBA/L). This suggests that the immobilized laccase is better in TBA removal, but has lower affinity with TBA than the suspended enzyme. Thus, immobilization of the enzyme can be applied to increase the efficiency and minimize the use of laccase for TBA remediation.
Collapse
Affiliation(s)
- Jantiya Isanapong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand
| | - Peerapong Pornwongthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand.
| |
Collapse
|
8
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
9
|
Preparation of photo-crosslinkable cinnamate modified hyaluronic acid for immobilization of horseradish peroxidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Matta LL, Alocilja EC. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk. J Food Prot 2018; 81:1941-1949. [PMID: 30452292 DOI: 10.4315/0362-028x.jfp-18-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rapid detection of bacterial contamination in the food supply chain is critically important for food safety monitoring. Reliable extraction and concentration of bacteria from complex matrices is required to achieve high detection sensitivity, especially in situations of low contamination and infective dose. Carbohydrate ligands that attach to microbial cell-surface epitopes are promising economical and biocompatible substitutes for cell-targeting ligands and antibodies. Two different carbohydrate ligands immobilized onto magnetic nanoparticles (MNPs) were easily suspended in liquid food (milk) and allowed expedient extraction of microbes within minutes, without the need for centrifugation or loss in capture capacity. In this pilot study, 25-mL samples of undiluted milk were spiked with 5 mg of MNPs and artificially contaminated with bacteria at 3 to 5 log CFU/mL. MNPs and bacteria formed MNP-cell complexes, which were rapidly separated from the milk matrix with a simple magnet to allow supernatant removal. MNP-cell complexes were then concentrated by resuspension in 1 mL of fresh milk and plated per Bacteriological Analytical Manual procedures. Capture was carried out in vitamin D, 2% reduced fat, and fat-free milk spiked with Salmonella Enteritidis, Escherichia coli O157:H7, and Bacillus cereus for a combined total of 18 experiments (three replicates each). An additional eight experiments were conducted to investigate the effect of competitive bacteria on capture. All experiments were carried out over several months to account for environmental variations. Capture efficiency, on a log basis, for all combinations of milk and bacteria was 73 to 90%. Long-term exposure of the MNPs to milk did not markedly affect capture efficiency. These carbohydrate-functionalized MNPs have potential as nonspecific receptors for rapid extraction of bacteria from complex liquids, opening the door to discovery of biocompatible ligands that can reliably target pathogens in our food.
Collapse
Affiliation(s)
- Leann Lerie Matta
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| |
Collapse
|
11
|
Rai M, Ingle AP, Pandit R, Paralikar P, Biswas JK, da Silva SS. Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1479503] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mahendra Rai
- Nanotechnology Lab., Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
| | - Avinash P. Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| | - Raksha Pandit
- Nanotechnology Lab., Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
| | - Priti Paralikar
- Nanotechnology Lab., Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Silvio Silverio da Silva
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| |
Collapse
|
12
|
Mahdi R, Guérard-Hélaine C, Laroche C, Michaud P, Prévot V, Forano C, Lemaire M. Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Ogorzalek TL, Wei S, Liu Y, Wang Q, Brooks CL, Chen Z, Marsh ENG. Molecular-Level Insights into Orientation-Dependent Changes in the Thermal Stability of Enzymes Covalently Immobilized on Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6145-53. [PMID: 25973638 DOI: 10.1021/acs.langmuir.5b01735] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface-immobilized enzymes are important for a wide range of technological applications, including industrial catalysis, drug delivery, medical diagnosis, and biosensors; however, our understanding of how enzymes and proteins interact with abiological surfaces on the molecular level remains extremely limited. We have compared the structure, activity, and thermal stability of two variants of a β-galactosidase attached to a chemically well-defined maleimide-terminated self-assembled monolayer surface through a unique cysteinyl residue. In one case the enzyme is attached through an α helix and in the other case through an adjacent loop. Both enzymes exhibit similar specific activities and adopt similar orientations with respect to the surface normal, as determined by sum-frequency generation and attenuated total reflectance FT-IR spectroscopies. Surprisingly, however, the loop-tethered enzyme exhibits a thermal stability 10 °C lower than the helix-tethered enzyme and 13 °C lower than the enzyme in free solution. Using coarse-grain models, molecular dynamics simulations of the thermal unfolding of the surface-tethered enzymes were able to reproduce these differences in stability. Thus, revealing that tethering through the more flexible loop position provides more opportunity for surface residues on the protein to interact with the surface and undergo surface-induced unfolding. These observations point to the importance of the location of the attachment point in determining the performance of surface-supported biocatalysts and suggest strategies for optimizing their activity and thermal stability through molecular simulations.
Collapse
Affiliation(s)
- Tadeusz L Ogorzalek
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shuai Wei
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yuwei Liu
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Quiming Wang
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- §Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- ‡Department of Macromolecular Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - E Neil G Marsh
- †Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- ∥Department of Biological Chemistry, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Zhao P, Liu Y, Xiao L, Deng H, Du Y, Shi X. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J Mater Chem B 2015; 3:7577-7584. [DOI: 10.1039/c5tb01056j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A single electrodeposition process to fabricate multilayered chitosan/layered double hydroxides (LDHs) hybrid hydrogel for stimuli responsive protein release.
Collapse
Affiliation(s)
- Pengkun Zhao
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Youyu Liu
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Ling Xiao
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Hongbing Deng
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Yumin Du
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Xiaowen Shi
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| |
Collapse
|
15
|
Preparation of polyphosphazene hydrogels for enzyme immobilization. Molecules 2014; 19:9850-63. [PMID: 25006790 PMCID: PMC6270993 DOI: 10.3390/molecules19079850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/24/2023] Open
Abstract
We report on the synthesis and application of a new hydrogel based on a methacrylate substituted polyphosphazene. Through ring-opening polymerization and nucleophilic substitution, poly[bis(methacrylate)phosphazene] (PBMAP) was successfully synthesized from hexachlorocyclotriphosphazene. By adding PBMAP to methacrylic acid solution and then treating with UV light, we could obtain a cross-linked polyphosphazene network, which showed an ultra-high absorbency for distilled water. Lipase from Candida rugosa was used as the model lipase for entrapment immobilization in the hydrogel. The influence of methacrylic acid concentration on immobilization efficiency was studied. Results showed that enzyme loading reached a maximum of 24.02 mg/g with an activity retention of 67.25% when the methacrylic acid concentration was 20% (w/w).
Collapse
|
16
|
Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K, Åkerman B. Enzymes immobilized in mesoporous silica: a physical-chemical perspective. Adv Colloid Interface Sci 2014; 205:339-60. [PMID: 24112562 DOI: 10.1016/j.cis.2013.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023]
Abstract
Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials.
Collapse
Affiliation(s)
- Nils Carlsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| | - Hanna Gustafsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden
| | - Christian Thörn
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Krister Holmberg
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden.
| | - Björn Åkerman
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10559-64. [PMID: 24095033 DOI: 10.1021/am4022973] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halloysite nanotubes (HNTs) have been proposed as a potential support to immobilize enzymes. Improving enzyme loading on HNTs is critical to their practical applications. Herein, we reported a simple method on the preparation of high-enzyme-loading support by modification with dopamine on the surface of HNTs. The modified HNTs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. The results showed that dopamine could self-polymerize to adhere to the surface of HNTs and form a thin active coating. While the prepared hybrid nanotubes were used to immobilize enzyme of laccase, they exhibited high loading ability of 168.8 mg/g support, which was greatly higher than that on the pristine HNTs (11.6 mg/g support). The immobilized laccase could retain more than 90% initial activity after 30 days of storage and the free laccase only 32%. The immobilized laccase could also maintain more than 90% initial activity after five repeated uses. In addition, the immobilized laccase exhibited a rapid degradation rate and high degradation efficiency for removal of phenol compounds. These advantages indicated that the new hybrid material can be used as a low-cost and effective support to immobilize enzymes.
Collapse
Affiliation(s)
- Cong Chao
- School of Chemical Engineering, Zhengzhou University , Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Ogorzalek TL, Yang P, Schroeder MM, Marsh ENG, Chen Z. Molecular Orientation of Enzymes Attached to Surfaces through Defined Chemical Linkages at the Solid–Liquid Interface. J Am Chem Soc 2013; 135:12660-9. [DOI: 10.1021/ja403672s] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuwei Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tadeusz L. Ogorzalek
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pei Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - McKenna M. Schroeder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Lee HU, Song YS, Suh YJ, Park C, Kim SW. Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into chitosan bead. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Jin L, Yang K, Yao K, Zhang S, Tao H, Lee ST, Liu Z, Peng R. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS NANO 2012; 6:4864-75. [PMID: 22574614 DOI: 10.1021/nn300217z] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The understanding of interactions between nanomaterials and biomolecules is of fundamental importance to the area of nanobiotechnology. Graphene and its derivative, graphene oxide (GO), are two-dimensional (2-D) nanomaterials with interesting physical and chemical properties and have been widely explored in various directions of biomedicine in recent years. However, how functionalized GO interacts with bioactive proteins such as enzymes and its potential in enzyme engineering have been rarely explored. In this study, we carefully investigated the interactions between serine proteases and GO functionalized with different amine-terminated polyethylene glycol (PEG). Three well-characterized serine proteases (trypsin, chymotrypsin, and proteinase K) with important biomedical and industrial applications were analyzed. It is found that these PEGylated GOs could selectively improve trypsin activity and thermostability (60-70% retained activity at 80 °C), while exhibiting barely any effect on chymotrypsin or proteinase K. Detailed investigation illustrates that the PEGylated GO-induced acceleration is substrate-dependent, affecting only phosphorylated protein substrates, and that at least up to 43-fold increase could be achieved depending on the substrate concentration. This unique phenomenon, interestingly, is found to be attributed to both the terminal amino groups on polymer coatings and the 2-D structure of GO. Moreover, an enzyme-based bioassay system is further demonstrated utilizing our GO-based enzyme modulator in a proof-of-concept experiment. To our best knowledge, this work is the first success of using functionalized GO as an efficient enzyme positive modulator with great selectivity, exhibiting a novel potential of GO, when appropriately functionalized, in enzyme engineering as well as enzyme-based biosensing and detection.
Collapse
Affiliation(s)
- Liling Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee SY, Ahn CY, Lee J, Lee JH, Chang JH. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. NANOSCALE RESEARCH LETTERS 2012; 7:279. [PMID: 22650609 PMCID: PMC3476439 DOI: 10.1186/1556-276x-7-279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/31/2012] [Indexed: 05/19/2023]
Abstract
Thiol group functionalized silica-coated magnetic nanoparticles (Si-MNPs@SH) were synthesized for rapid and selective magnetic field-based separation of mixed proteins. The highest adsorption efficiencies of binary proteins, bovine serum albumin (BSA; 66 kDa; pI = 4.65) and lysozyme (LYZ; 14.3 kDa; pI = 11) were shown at the pH values corresponding to their own pI in the single-component protein. In the mixed protein, however, the adsorption performance of BSA and LYZ by Si-MNPs@SH was governed not only by pH but also by the molecular weight of each protein in the mixed protein.
Collapse
Affiliation(s)
- Soo Youn Lee
- Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, South Korea
| | - Chi Young Ahn
- Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, South Korea
| | - Jiho Lee
- Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, South Korea
| | - Jin Hyung Lee
- Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, South Korea
| | - Jeong Ho Chang
- Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, South Korea
| |
Collapse
|
22
|
Lee SY, Ahn CY, Lee J, Chang JH. Amino acid side chain-like surface modification on magnetic nanoparticles for highly efficient separation of mixed proteins. Talanta 2012; 93:160-5. [DOI: 10.1016/j.talanta.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
|
23
|
Lee J, Ho Chang J. Highly ordered magnetic mesoporous silicas for effective elimination of carbon monoxide. J SOLID STATE CHEM 2012. [DOI: 10.1016/j.jssc.2012.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Lee SY, Lee S, Kho IH, Lee JH, Kim JH, Chang JH. Enzyme–magnetic nanoparticle conjugates as a rigid biocatalyst for the elimination of toxic aromatic hydrocarbons. Chem Commun (Camb) 2011; 47:9989-91. [DOI: 10.1039/c1cc11664a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|