1
|
Gormley A, Garavito-Duarte Y, Kim SW. The Role of Milk Oligosaccharides in Enhancing Intestinal Microbiota, Intestinal Integrity, and Immune Function in Pigs: A Comparative Review. BIOLOGY 2024; 13:663. [PMID: 39336091 PMCID: PMC11428639 DOI: 10.3390/biology13090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The objective of this review was to identify the characteristics and functional roles of milk coproducts from human, bovine, and porcine sources and their impacts on the intestinal microbiota and intestinal immunity of suckling and nursery pigs. Modern pig production weans piglets at 3 to 4 weeks of age, which is earlier than pigs would naturally be weaned outside of artificial rearing. As a result, the immature intestines of suckling and nursery pigs face many challenges associated with intestinal dysbiosis, which can be caused by weaning stress or the colonization of the intestines by enteric pathogens. Milk oligosaccharides are found in sow milk and function as a prebiotic in the intestines of pigs as they cannot be degraded by mammalian enzymes and are thus utilized by intestinal microbial populations. The consumption of milk oligosaccharides during suckling and through the nursery phase can provide benefits to young pigs by encouraging the proliferation of beneficial microbial populations, preventing pathogen adhesion to enterocytes, and through directly modulating immune responses. Therefore, this review aims to summarize the specific functional components of milk oligosaccharides from human, bovine, and porcine sources, and identify potential strategies to utilize milk oligosaccharides to benefit young pigs through the suckling and nursery periods.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (A.G.); (Y.G.-D.)
| |
Collapse
|
2
|
Kiely LJ, Busca K, Lane JA, van Sinderen D, Hickey RM. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. FEMS Microbiol Rev 2023; 47:fuad056. [PMID: 37793834 PMCID: PMC10629584 DOI: 10.1093/femsre/fuad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.
Collapse
Affiliation(s)
- Leonie Jane Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Kizkitza Busca
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
3
|
Singh TP, Arora S, Sarkar M. Yak milk and milk products: functional, bioactive constituents and therapeutic potential. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Bunyatratchata A, Parc AL, de Moura Bell JMLN, Cohen JL, Duman H, Arslan A, Kaplan M, Barile D, Karav S. Release of bifidogenic N-glycans from native bovine colostrum proteins by an endo-β-N-acetylglucosaminidase. Enzyme Microb Technol 2023; 162:110138. [DOI: 10.1016/j.enzmictec.2022.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
5
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
6
|
Belyaeva IA, Bombardirova EP, Turti TV. The Choice of Product for Mixed or Formula Feeding of Infant: Beneficial Properties of Goat’s Milk Formula. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review summarizes the benefits of goat’s milk as the basis to produce adapted milk formulas according to relevant infants feeding issues. The characteristics of main nutrients of modern goat’s milk formulas are presented. A balanced protein composition enriched with β-palmitate, presence of prebiotics-oligosaccharides, natural nucleotides and probiotics advances these formulas closer to breast milk and provide their multipotent sanogenetic effects. The unique composition of goat’s milk formulas allows to ensure normal physical growth of a baby, induces tissue and systemic immunity via adequate intestinal microbiota formation, maintains normal functioning of gut-brain axis, that promotes vegetative and visceral disorders (due to functional digestive disorders) correction. Thus, it is possible to recommend goat’s milk formulas in cases of forced mixed or formula feeding of healthy infants and children with functional digestive disorders.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
7
|
Kaplan M, Şahutoğlu AS, Sarıtaş S, Duman H, Arslan A, Pekdemir B, Karav S. Role of milk glycome in prevention, treatment, and recovery of COVID-19. Front Nutr 2022; 9:1033779. [PMID: 36424926 PMCID: PMC9680090 DOI: 10.3389/fnut.2022.1033779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 08/23/2023] Open
Abstract
Milk contains all essential macro and micro-nutrients for the development of the newborn. Its high therapeutic and antimicrobial content provides an important function for the prevention, treatment, and recovery of certain diseases throughout life. The bioactive components found in milk are mostly decorated with glycans, which provide proper formation and modulate the biological functions of glycosylated compounds. The glycome of milk consists of free glycans, glycolipids, and N- and O- glycosylated proteins. Recent studies have shown that both free glycans and glycan-containing molecules have antiviral characteristics based on different mechanisms such as signaling, microbiome modulation, natural decoy strategy, and immunomodulatory action. In this review, we discuss the recent clinical studies and potential mechanisms of free and conjugated glycans' role in the prevention, treatment, and recovery of COVID-19.
Collapse
Affiliation(s)
- Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Mendis PM, Jackson GP. Structural characterization of human milk oligosaccharides using ultrahigh performance liquid chromatography-helium charge transfer dissociation mass spectrometry. Glycobiology 2022; 32:483-495. [PMID: 35275172 PMCID: PMC9271224 DOI: 10.1093/glycob/cwac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions. Results demonstrate that He-CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He-CTD produces informative fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He-CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving most of the labile Neu5Ac and fucose groups.
Collapse
Affiliation(s)
- Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA.,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506-6121, USA
| |
Collapse
|
9
|
Vinjamuri A, Davis JCC, Totten SM, Wu LD, Klein LD, Martin M, Quinn EA, Scelza B, Breakey A, Gurven M, Jasienska G, Kaplan H, Valeggia C, Hinde K, Smilowitz JT, Bernstein RM, Zivkovic AM, Barratt MJ, Gordon JI, Underwood MA, Mills DA, German JB, Lebrilla CB. Human Milk Oligosaccharide Compositions Illustrate Global Variations in Early Nutrition. J Nutr 2022; 152:1239-1253. [PMID: 35179194 PMCID: PMC9071347 DOI: 10.1093/jn/nxac027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are an abundant class of compounds found in human milk and have been linked to the development of the infant, and specifically the brain, immune system, and gut microbiome. OBJECTIVES Advanced analytical methods were used to obtain relative quantitation of many structures in approximately 2000 samples from over 1000 mothers in urban, semirural, and rural sites across geographically diverse countries. METHODS LC-MS-based analytical methods were used to profile the compounds with broad structural coverage and quantitative information. The profiles revealed their structural heterogeneity and their potential biological roles. Comparisons of HMO compositions were made between mothers of different age groups, lactation periods, infant sexes, and residing geographical locations. RESULTS A common behavior found among all sites was a decrease in HMO abundances during lactation until approximately postnatal month 6, where they remained relatively constant. The greatest variations in structural abundances were associated with the presence of α(1,2)-fucosylated species. Genomic analyses of the mothers were not performed; instead, milk was phenotyped according to the abundances of α(1,2)-fucosylated structures. Mothers from the South American sites tended to have higher proportions of phenotypic secretors [mothers with relatively high concentrations of α(1,2)-fucosylated structures] in their populations compared to the rest of the globe, with Bolivia at ∼100% secretors, Peru at ∼97%, Brazil at ∼90%, and Argentina at ∼85%. Conversely, the cohort sampled in Africa manifested the lowest proportion of secretors (South Africa ∼ 63%, the Gambia ∼ 64%, and Malawi ∼ 75%). Furthermore, we compared total abundances of HMOs in secretors compared with nonsecretors and found that nonsecretors have lower abundances of HMOs compared to secretors, regardless of geographical location. We also observed compositional differences of the 50+ most abundant HMOs between milk types and geographical locations. CONCLUSIONS This study represents the largest structural HMO study to date and reveals the general behavior of HMOs during lactation among different populations.
Collapse
Affiliation(s)
- Anita Vinjamuri
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Jasmine C C Davis
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Sarah M Totten
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Lauren D Wu
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Laura D Klein
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Melanie Martin
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - E A Quinn
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brooke Scelza
- Department of Anthropology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Hillard Kaplan
- Health Economics and Anthropology, Chapman University, Orange, CA, USA
| | | | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ,
USA
| | - Jennifer T Smilowitz
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Robin M Bernstein
- Department of Anthropology, University of Colorado, Boulder, CO, USA
- Institute of Behavioral Science, University of Colorado, Boulder, CO, USA
| | - Angela M Zivkovic
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO,
USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO,
USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, MO, USA
| | - Mark A Underwood
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Abstract
Few classes of natural products rival the structural audacity of oligosaccharides. Their complexity, however, has stood as an immense roadblock to translational research, as access to homogeneous material from nature is challenging. Thus, while carbohydrates are critical to the myriad functional and structural aspects of the biological sciences, their behavior is largely descriptive. This challenge presents an attractive opportunity for synthetic chemistry, particularly in the area of human milk science. First, there is an inordinate need for synthesizing homogeneous human milk oligosaccharides (HMOs). Superimposed on this goal is the mission of conducting syntheses at scale to enable animal studies. Herein, we present a personalized rumination of our involvement, and that of our colleagues, which has led to the synthesis and characterization of HMOs and mechanistic probes. Along the way, we highlight chemical, chemoenzymatic, and synthetic biology based approaches. We close with a discussion on emergent challenges and opportunities for synthesis, broadly defined, in human milk science.
Collapse
Affiliation(s)
- Lianyan L Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
11
|
Errasfa M. Milk Oligosaccharides and Lectins as Candidates for Clinical Trials against Covid-19. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200819125355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Covid-19 pandemic is causing a very high death toll around the world and
a severe fall in the global economy. Many clinical trials are currently underway to check the effectiveness
of some known drugs. The physiopathology associated with the virus infection is currently
better understood and good prophylactic drug therapies are implemented, such as antibiotics and
blood thinners, though, no specific drugs against SARS-Cov-2 were developed yet.
Objective:
In the present research work, it is aimed to carry out a bibliographic investigation on
some active molecular species that could be used against Covid-19, based on their chemical properties
to bind to glycoproteins. In the case of SARS-Cov-2, the targeted glycoprotein is the surface
virus spike S glycoprotein, that the virus uses to attach to and invade human cells. It is of high pharmacological
value to investigate possible active natural substances endowed with a property to
bind glycoproteins. In this line of research, oligosaccharides and lectins are two molecular species
that have glycoprotein binding properties.
Methods:
A bibliographic research was carried out on oligosaccharides and lectins in various
sources of scientific publications. Relevant chemical and pharmacological properties of oligosaccharides
and lectins were searched and their main natural sources were identified.
Results:
In the present paper, I summarize some scientific evidence to support the therapeutic potential
of camel milk as a source of oligosaccharides and its possible use as a functional diet in parallel
to drug therapies of Covid-19. On the other hand, sugar and glycoprotein binding properties of
some lectins of plant and seaweed origin are reported, and their pharmaceutical use is underlined.
Conclusion:
In the present study, scientific evidence was documented that encouraged further clinical
investigations on camel milk oligosaccharides and lectins of plant and seaweed origin in the management
of Covid-19 physiopathology.
Collapse
Affiliation(s)
- Mourad Errasfa
- Department of Pharmacology, Faculty of Medicine and Pharmacy, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
12
|
Parschat K, Schreiber S, Wartenberg D, Engels B, Jennewein S. High-Titer De Novo Biosynthesis of the Predominant Human Milk Oligosaccharide 2'-Fucosyllactose from Sucrose in Escherichia coli. ACS Synth Biol 2020; 9:2784-2796. [PMID: 32966739 DOI: 10.1021/acssynbio.0c00304] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) are unique components of human breast milk. Their large-scale production by fermentation allows infant formulas to be fortified with HMOs, but current fermentation processes require lactose as a starting material, increasing the costs, bioburden, and environmental impact of manufacturing. Here we report the development of an Escherichia coli strain that produces 2'-fucosyllactose (2'-FL), the most abundant HMO, de novo using sucrose as the sole carbon source. Strain engineering required the expression of a novel glucose-accepting galactosyltransferase, overexpression of the de novo UDP-d-galactose and GDP-l-fucose pathways, the engineering of an intracellular pool of free glucose, and overexpression of a suitable α(1,2)-fucosyltransferase. The export of 2'-FL was facilitated using a sugar efflux transporter. The final production strain achieved 2'-FL yields exceeding 60 g/L after fermentation for 84 h. This efficient strategy facilitates the lactose-independent production of HMOs by fermentation, which will improve product quality and reduce the costs of manufacturing.
Collapse
Affiliation(s)
- Katja Parschat
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Sandra Schreiber
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Dirk Wartenberg
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Benedikt Engels
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Stefan Jennewein
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| |
Collapse
|
13
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annu Rev Food Sci Technol 2019; 9:429-450. [PMID: 29580136 DOI: 10.1146/annurev-food-030216-030207] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.
Collapse
Affiliation(s)
- Nina Kirmiz
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Randall C Robinson
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Ishita M Shah
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Daniela Barile
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - David A Mills
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA; .,Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| |
Collapse
|
15
|
Seydametova E, Shin J, Yu SH, Kim C, Kim H, Park YJ, Yang JK, Cho S, Kim HR, Moon SO, Ban C, Kweon DH. Development of a quantitative assay for 2´-fucosyllactose via one-pot reaction with α1,2-fucosidase and l-fucose dehydrogenase. Anal Biochem 2019; 582:113358. [DOI: 10.1016/j.ab.2019.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|
16
|
Mernie EG, Tolesa LD, Lee MJ, Tseng MC, Chen YJ. Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Anal Chem 2019; 91:11544-11552. [DOI: 10.1021/acs.analchem.9b01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elias Gizaw Mernie
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Leta Deressa Tolesa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Ming-Jer Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, Soochow University, Taipei 106, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
17
|
Fucosylated Human Milk Oligosaccharides and N-Glycans in the Milk of Chinese Mothers Regulate the Gut Microbiome of Their Breast-Fed Infants during Different Lactation Stages. mSystems 2018; 3:mSystems00206-18. [PMID: 30637338 PMCID: PMC6306508 DOI: 10.1128/msystems.00206-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts. The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.
Collapse
|
18
|
Fischöder T, Cajic S, Reichl U, Rapp E, Elling L. Enzymatic Cascade Synthesis Provides Novel Linear Human Milk Oligosaccharides as Reference Standards for xCGE-LIF Based High-Throughput Analysis. Biotechnol J 2018; 14:e1800305. [PMID: 30076755 DOI: 10.1002/biot.201800305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/10/2018] [Indexed: 12/26/2022]
Abstract
A rising amount of known health benefits leads to an increased attention of science and nutrient industry to human milk oligosaccharides (HMOS). The unique diversity of HMOS includes several rare, complex, and high molecular weight structures. Therefore, identification and elucidation of complex structures, which may occur only in traces, poses a daunting analytical challenge, further complicated by the limited access to suitable standards. Regarding this, inherent diversity of HMOS and their structural complexity make them difficult to synthesize. The use of recombinant Leloir-glycosyltransferases offers a common strategy to overcome the latter issues. In this study, linear long-chained Lacto-N-biose-type (LNT) and Lacto-N-neo-type (LNnT) HMOS are tailored far beyond the known naturally occurring length. Thereby novel well-defined reference standards for screening HMOS composition by high performance and high throughput analytics are provided. It is shown here for the first time the synthesis of LNT oligomers up to 26 and LNnT oligomers up to 30 sugar units in a semi-sequential one-pot synthesis as analyzed by high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF). While being a high-throughput method, xCGE-LIF can also handle long chained linkage isomers of challenging similarity, some of them even present only in trace amounts.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,Prof. U. Reichl, Chair of Bioprocess Engineering Otto-von-Guericke-University, Universitätspl. 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,glyXera GmbH, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
19
|
Wei J, Wang ZA, Wang B, Jahan M, Wang Z, Wynn PC, Du Y. Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs. Sci Rep 2018; 8:4688. [PMID: 29549280 PMCID: PMC5856818 DOI: 10.1038/s41598-018-23025-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/05/2018] [Indexed: 01/27/2023] Open
Abstract
Milk oligosaccharides (MOs) are complex carbohydrates with multifunctional health benefits for the neonate. Poor reproductive performance in primiparous gilts limits their productivity. Changes in the structure and abundance of porcine MO (PMOs) through lactation with parity remains unknown and may explain superior new-born growth in litters from multiparous sows relative to gilts. We report 55 PMOs structures, of which 25 are new (17 sialylated and 8 neutral). Their incidence in gilt and sow colostrum was almost identical (53 vs. 54), but not in transitional milk (48 vs. 53) nor mature milk (41 vs. 47). These PMOs including neutral-, sialyl- and fucosyl- MOs in colostrum were more abundant in the gilt than the sow, but always decreased during lactation. Structural diversity decreased, although fucosylated MO were conserved. In conclusion, high diversity and levels of MO in porcine milk is parity dependent. Given the similarity between porcine and human MO profiles, our findings may help define key roles for MOs as potential dietary additives to improve growth of neonates from first pregnancies in both human and sows.
Collapse
Affiliation(s)
- Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Beijing, 100190, P.R. China
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Beijing, 100190, P.R. China
| | - Bing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China. .,Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| | - Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Zhongfu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, P.R. China
| | - Peter C Wynn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China. .,Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Beijing, 100190, P.R. China.
| |
Collapse
|
20
|
Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev 2018; 75:920-933. [PMID: 29053807 PMCID: PMC5914348 DOI: 10.1093/nutrit/nux044] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Context Oligosaccharides are the third largest solid component in human milk. These diverse compounds are thought to have numerous beneficial functions in infants, including protection against infectious diseases. The structures of more than 100 oligosaccharides in human milk have been elucidated so far. Objective The aim of this review was to identify the main factors that affect the concentrations of oligosaccharides in human milk and to determine whether it is possible to calculate representative and reliable mean concentrations. Data Sources A comprehensive literature search on oligosaccharide concentrations in human milk was performed in 6 electronic databases: BIOSIS, Current Contents Search, Embase, Lancet Titles, MEDLINE and PubMed. Study Selection The initial search resulted in 1363 hits. After the elimination of duplicates, the literature was screened. The application of strict inclusion criteria resulted in 21 articles selected. Data Extraction Oligosaccharide concentrations, both mean values and single values, reported in the literature were sorted by gestational age, secretor status of mothers, and defined lactation periods. Results Mean concentrations, including confidence limits, of 33 neutral and acidic oligosaccharides reported could be calculated. Concentrations of oligosaccharides in human milk show variations that are dependent on both the secretor type of the mother and the lactation period as examined by analyses of variance. In addition, large interlaboratory variations in the data were observed. Conclusions Worldwide interlaboratory quantitative analyses of identical milk samples would be required to identify the most reliable methods of determining concentrations of oligosaccharides in human milk. The data presented here contribute to the current knowledge about the composition and quantities of oligosaccharides in human milk and may foster greater understanding of the biological functions of these compounds.
Collapse
Affiliation(s)
- Stephan Thurl
- Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| | - Manfred Munzert
- Bavarian State Research Centre for Agriculture, Freising, Germany
| | | | | | - Bernd Stahl
- Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|
21
|
Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:49-57. [DOI: 10.1016/j.jchromb.2017.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 01/03/2023]
|
22
|
Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: Fucosylation is a key factor. Food Chem 2017; 235:167-174. [DOI: 10.1016/j.foodchem.2017.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/08/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022]
|
23
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
24
|
Davis JCC, Lewis ZT, Krishnan S, Bernstein RM, Moore SE, Prentice AM, Mills DA, Lebrilla CB, Zivkovic AM. Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota. Sci Rep 2017; 7:40466. [PMID: 28079170 PMCID: PMC5227965 DOI: 10.1038/srep40466] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022] Open
Abstract
Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother's HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3'-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota.
Collapse
Affiliation(s)
- Jasmine C. C. Davis
- Department of Chemistry, University of California, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Zachery T. Lewis
- Foods for Health Institute, University of California, Davis, CA 95616, United States
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, CA 95616, United States
| | - Robin M. Bernstein
- Department of Anthropology, University of Colorado, Boulder, CO 80309, United States
- Health and Society Program, Institute of Behavioral Science, University of Colorado, Boulder, CO 80309, United States
| | - Sophie E. Moore
- Medical Research Council (MRC) Human Nutrition Research, Cambridge, UK
- MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew M. Prentice
- MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK
| | - David A. Mills
- Foods for Health Institute, University of California, Davis, CA 95616, United States
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
- Department of Viticulture and Enology, University of California, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Angela M. Zivkovic
- Foods for Health Institute, University of California, Davis, CA 95616, United States
- Department of Nutrition, University of California, Davis, CA 95616, United States
| |
Collapse
|
25
|
Davis JCC, Totten SM, Huang JO, Nagshbandi S, Kirmiz N, Garrido DA, Lewis ZT, Wu LD, Smilowitz JT, German JB, Mills DA, Lebrilla CB. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community. Mol Cell Proteomics 2016; 15:2987-3002. [PMID: 27435585 PMCID: PMC5013312 DOI: 10.1074/mcp.m116.060665] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Indexed: 02/01/2023] Open
Abstract
Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity.
Collapse
Affiliation(s)
- Jasmine C C Davis
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Sarah M Totten
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Julie O Huang
- From the ‡Department of Chemistry, University of California, Davis, California 95616
| | - Sadaf Nagshbandi
- From the ‡Department of Chemistry, University of California, Davis, California 95616
| | - Nina Kirmiz
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - Daniel A Garrido
- §Foods for Health Institute, University of California, Davis, California 95616; ‖Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Zachery T Lewis
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - Lauren D Wu
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Jennifer T Smilowitz
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - J Bruce German
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - David A Mills
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616; ‖Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Carlito B Lebrilla
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616;
| |
Collapse
|
26
|
Sorbolini S, Gaspa G, Steri R, Dimauro C, Cellesi M, Stella A, Marras G, Marsan PA, Valentini A, Macciotta NPP. Use of canonical discriminant analysis to study signatures of selection in cattle. Genet Sel Evol 2016; 48:58. [PMID: 27521154 PMCID: PMC4983034 DOI: 10.1186/s12711-016-0236-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cattle include a large number of breeds that are characterized by marked phenotypic differences and thus constitute a valuable model to study genome evolution in response to processes such as selection and domestication. Detection of "signatures of selection" is a useful approach to study the evolutionary pressures experienced throughout history. In the present study, signatures of selection were investigated in five cattle breeds farmed in Italy using a multivariate approach. METHODS A total of 4094 bulls from five breeds with different production aptitudes (two dairy breeds: Italian Holstein and Italian Brown Swiss; two beef breeds: Piemontese and Marchigiana; and one dual purpose breed: Italian Simmental) were genotyped using the Illumina BovineSNP50 v.1 beadchip. Canonical discriminant analysis was carried out on the matrix of single nucleotide polymorphisms (SNP) genotyping data, separately for each chromosome. Scores for each canonical variable were calculated and then plotted in the canonical space to quantify the distance between breeds. SNPs for which the correlation with the canonical variable was in the 99th percentile for a specific chromosome were considered to be significantly associated with that variable. Results were compared with those obtained using an FST-based approach. RESULTS Based on the results of the canonical discriminant analysis, a large number of signatures of selection were detected, among which several had strong signals in genomic regions that harbour genes known to have an impact on production and morphological bovine traits, including MSTN, LCT, GHR, SCD, NCAPG, KIT, and ASIP. Moreover, new putative candidate genes were identified, such as GCK, B3GALNT1, MGAT1, GALNTL1, PRNP, and PRND. Similar results were obtained with the FST-based approach. CONCLUSIONS The use of canonical discriminant analysis on 50 K SNP genotypes allowed the extraction of new variables that maximize the separation between breeds. This approach is quite straightforward, it can compare more than two groups simultaneously, and relative distances between breeds can be visualized. The genes that were highlighted in the canonical discriminant analysis were in concordance with those obtained using the FST index.
Collapse
Affiliation(s)
- Silvia Sorbolini
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Giustino Gaspa
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Roberto Steri
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, via Salaria 31, 00015, Monterotondo, Italy
| | - Corrado Dimauro
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Massimo Cellesi
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | | | | | - Paolo Ajmone Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessio Valentini
- Dipartimento per l'Innovazione dei Sistemi Biologici Agroalimentari e Forestali DIBAF, Università della Tuscia, Viterbo, Italy
| | - Nicolò Pietro Paolo Macciotta
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy.
| |
Collapse
|
27
|
Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk. J Pharm Biomed Anal 2016; 130:318-325. [PMID: 27372148 DOI: 10.1016/j.jpba.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
An overview of bioanalytical methods for the determination of environmental and pharmaceutical contaminants in human milk is presented. The exposure of children to these contaminants through lactation has been widely investigated. The human milk contains diverse proteins, lipids, and carbohydrates and the concentration of these components is drastically altered during the lactation period providing a high degree of an analytical challenge. Sample collection and pretreatment are still considered the Achilles' heel. This review presents liquid chromatographic methods developed in the last 10 years for this complex matrix with focuses in the extraction and quantification steps. Green sample preparation protocols have been emphasized.
Collapse
|
28
|
Qu S, Barrett-Wilt G, Fonseca LM, Rankin SA. A profile of sphingolipids and related compounds tentatively identified in yak milk. J Dairy Sci 2016; 99:5083-5092. [PMID: 27085416 DOI: 10.3168/jds.2015-10431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/20/2016] [Indexed: 01/11/2023]
Abstract
This work characterized a fraction of constituents in yak milk within the realm of approximately 1,000 to 3,000 Da using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Eleven samples of yak milk powder from the Sichuan province of China were received by the Department of Food Science, University of Wisconsin-Madison, and stored at room temperature until analysis. Sample preparation involved delipidation and deproteinization of yak milk samples and cold ethanol precipitation. Subsequently, MALDI time-of-flight mass spectrometry was performed in positive ion, reflector mode (AB Sciex TOF/TOF 4800 MALDI; AB Sciex, Foster City, CA). The instrument was first calibrated with the manufacturer's 6-peptide mixture, and each spectrum was internally calibrated using the accurate mass of ACTH Fragment 18-39 standard peptide (protonated mass at m/z 2464.199) present in each sample. Laser power was adjusted for the calibration standards and for each sample so that the signal obtained for the most-abundant ion in each spectrum could be maximized, or kept below ~2×10(4) to preserve spectral quality. Structure and name based on mass were matched using the Metlin metabolite database (https://metlin.scripps.edu/index.php). Results of the current work for yak milk powder showed a large variety of sphingolipid structures with clusters around 1,200, 1,600, and 2,000 Da. The profiling matched several glycosphingolipids, such as gangliosides GA1, GD1a, GD1b, GD3, GM1, GM2, GM3, and GT2 and several other unique moieties, including deaminated neuraminic acid (KDN) oligosaccharides, and fucose containing gangliosides. Matrix preparation and MALDI time-of-flight parameters were important factors established in this work to allow high resolution profiling of complex sphingolipids in yak powder milk.
Collapse
Affiliation(s)
- S Qu
- Department of Food Science, Mass Spectrometry/Proteomics Facility, University of Wisconsin-Madison 53706
| | - G Barrett-Wilt
- Biotechnology Center, Mass Spectrometry/Proteomics Facility, University of Wisconsin-Madison 53706
| | - L M Fonseca
- Department of Food Science, Mass Spectrometry/Proteomics Facility, University of Wisconsin-Madison 53706; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasília BEX 18183-12-3, Brazil; School of Veterinary Medicine, Universidade Federal de Minas Gerais, Belo Horizonte MG 31270-901, Brazil
| | - S A Rankin
- Department of Food Science, Mass Spectrometry/Proteomics Facility, University of Wisconsin-Madison 53706.
| |
Collapse
|
29
|
Zhang T, Zhang R, Zhang L, Zhang Z, Hou R, Wang H, Loeffler IK, Watson DG, Kennedy MW. Changes in the Milk Metabolome of the Giant Panda (Ailuropoda melanoleuca) with Time after Birth--Three Phases in Early Lactation and Progressive Individual Differences. PLoS One 2015; 10:e0143417. [PMID: 26630345 PMCID: PMC4668050 DOI: 10.1371/journal.pone.0143417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth.
Collapse
Affiliation(s)
- Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
| | - Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Hairui Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - I. Kati Loeffler
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
| | - Malcolm W. Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Capillary electrophoresis of sialylated oligosaccharides in milk from different species. J Chromatogr A 2015; 1409:288-91. [DOI: 10.1016/j.chroma.2015.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 01/08/2023]
|
31
|
Karav S, Bell JMLNDM, Le Parc A, Liu Y, Mills DA, Block DE, Barile D. Characterizing the release of bioactive N-glycans from dairy products by a novel endo-β-N-acetylglucosaminidase. Biotechnol Prog 2015; 31:1331-9. [PMID: 26097235 DOI: 10.1002/btpr.2135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/17/2015] [Indexed: 01/05/2023]
Abstract
Endo-β-N-acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI-1) is a novel enzyme that cleaves N-N'-diacetyl chitobiose moieties found in the N-glycan core of high mannose, hybrid, and complex N-glycans. These conjugated N-glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45-8.45), temperature (27.5-77.5°C), reaction time (15-475 min), and enzyme/protein ratio (1:3,000-1:333) were evaluated on the release of N-glycans from bovine colostrum whey by EndoBI-1. A central composite design was used, including a two-level factorial design (2(4)) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N-glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan-free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI-1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies.
Collapse
Affiliation(s)
- Sercan Karav
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616
| | | | - Annabelle Le Parc
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616
| | - Yan Liu
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616
| | - David A Mills
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616.,Foods for Health Institute, University of California, One Shields Avenue, Davis, CA, 95616.,Dept. of Viticulture and Enology, University of California, Davis, CA, 95616
| | - David E Block
- Dept. of Viticulture and Enology, University of California, Davis, CA, 95616.,Dept. of Chemical Engineering and Materials Science, University of California, Davis, CA, 95616
| | - Daniela Barile
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616.,Foods for Health Inst., University of California, One Shields Avenue, Davis, CA, 95616
| |
Collapse
|
32
|
Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015; 77:229-35. [PMID: 25303277 PMCID: PMC4350908 DOI: 10.1038/pr.2014.156] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
Oligosaccharides are abundant in human milk. Production of these highly diverse structures requires significant energy expenditure by the mother and yet these human milk oligosaccharides offer no direct nutritive value to her infant. A primary function of human milk oligosaccharides is to shape the infant's intestinal microbiota with life-long consequences. Bifidobacterium longum subspecies infantis (B. infantis) is unique among gut bacteria in its prodigious capacity to digest and consume any human milk oligosaccharide structure, the result of a large repertoire of bacterial genes encoding an array of glycosidases and oligosaccharide transporters not found in other bacterial species. In vitro, B. infantis grows better than other bacterial strains in the presence of human milk oligosaccharides, displays anti-inflammatory activity in premature intestinal cells, and decreases intestinal permeability. In premature infants, B. infantis given in combination with human milk increases B. infantis and decreases Enterobacteriaceae in the feces. Probiotics containing B. infantis decrease the risk of necrotizing enterocolitis in premature infants. Colonization with B. infantis is also associated with increased vaccine responses. Probiotic organisms have historically been selected based on ease of production and stability. The advantages of B. infantis, selected through coevolution with human milk glycans, present an opportunity for focused manipulation of the infant intestinal microbiota.
Collapse
|
33
|
Abstract
One of the most controversial areas in neonatology is whether probiotics should be provided routinely to preterm infants to prevent necrotizing enterocolitis (NEC). This review provides the reader with a brief overview of NEC and current concepts of its pathophysiology, discusses the microbial ecology of the intestine in preterm infants and factors that may lead to a "dysbiosis", summarizes studies of probiotics in preterm infants, elaborates on the need for regulation in this area, and discusses alternatives to probiotics and what is the future for the prevention of NEC.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Department of Pediatrics, Division of Neonatology, 1600 Southwest Archer Road, Human Development Building, HD 112, Gainesville, FL 32610, USA.
| |
Collapse
|
34
|
Abstract
Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant's development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate.
Collapse
Affiliation(s)
- Alline R. Pacheco
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Foods for Health Institute, University of California, Davis, California 95616
| | - Daniela Barile
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Food Science and Technology, University of California, Davis, California 95616
| | - Mark A. Underwood
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Pediatrics, University of California, Davis, California 95616
| | - David A. Mills
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Food Science and Technology, University of California, Davis, California 95616
| |
Collapse
|
35
|
Galeotti F, Coppa GV, Zampini L, Maccari F, Galeazzi T, Padella L, Santoro L, Gabrielli O, Volpi N. Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone. Electrophoresis 2014; 35:811-8. [PMID: 24338619 DOI: 10.1002/elps.201300490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022]
Abstract
Human milk is a unique fluid in glycobiology due to the presence of many free structurally complex oligosaccharides emerging as important dietary factors during early life and having many biological and protective functions. Methods that allow accurate profiling of oligosaccharide mixtures in this complex biological fluid with quantification of the four known genetically determined groups are welcomed. A high-voltage CE separation and detection at 254 nm of 17 neutral and acidic human milk oligosaccharide (HMO) standard along with lactose derivatized with 2-aminoacridone, using a BGE containing 20% methanol as an organic modifier and borate, able to form on-capillary anionic borate-polyol complexes, is reported. This CE approach was able to separate both neutral HMOs and acidic HMOs, with the sialic acid residue, also in the presence of lactose in high content. This method was applied to the four secretory groups individually extracted by a rapid and simple preparative step. LODs were found ranging from ∼50 to 700 fmol. We were able to measure HMO content also in the presence of excess fluorophore, or interference from proteins, peptides, salts, and other impurities normally present in this complex biological fluid. Overall, CE equipped with a UV detector is a common analytical approach and this simple CE separation offers high resolution and sensitivity for the differentiation of human milk samples related to genetic groups and days of lactation by considering that important changes in HMO content are a reflection of the lactation day.
Collapse
Affiliation(s)
- Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moreno FJ, Montilla A, Villamiel M, Corzo N, Olano A. Analysis, structural characterization, and bioactivity of oligosaccharides derived from lactose. Electrophoresis 2014; 35:1519-34. [PMID: 24446419 DOI: 10.1002/elps.201300567] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/18/2022]
Abstract
The increasing interest for prebiotic carbohydrates as functional food ingredients has promoted the synthesis of galactooligosaccharides and new lactose derivatives. This review provides a comprehensive overview on the chromatographic analysis, structural characterization, and bioactivity studies of lactose-derived oligosaccharides. The most common chromatographic techniques used for the separation and structural characterization of this type of oligosaccharides, including GC and HPLC in different operational modes, coupled to various detectors are discussed. Insights on oligosaccharide MS fragmentation patterns, using different ionization sources and mass analyzers, as well as data on structural analysis by NMR spectroscopy are also described. Finally, this article deals with the bioactive effects of galacto oligosaccharides and oligosaccharides derived from lactulose on the gastrointestinal and immune systems, which support their consumption to provide significant health benefits.
Collapse
Affiliation(s)
- F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), CEI (UAM+CSIC), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Castanys-Muñoz E, Martin MJ, Prieto PA. 2'-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev 2013; 71:773-89. [PMID: 24246032 DOI: 10.1111/nure.12079] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lactose is the preeminent soluble glycan in milk and a significant source of energy for most newborn mammals. Elongation of lactose with additional monosaccharides gives rise to a varied repertoire of free soluble glycans such as 2'-fucosyllactose (2'-FL), which is the most abundant oligosaccharide in human milk. In infants, 2'-FL is resistant to digestion and reaches the colon where it is partially fermented, behaving as soluble prebiotic fiber. Evidence also suggests that portions of small soluble milk glycans, including 2'-FL, are absorbed, thus raising the possibility of systemic biological effects. 2'-FL bears an epitope of the Secretor histo-blood group system; approximately 70-80% of all milk samples contain 2'-FL, since its synthesis depends on a fucosyltransferase that is not uniformly expressed. The fact that some infants are not exposed to 2'-FL has helped researchers to retrospectively probe for biological activities of this glycan. This review summarizes the attributes of 2'-FL in terms of its occurrence in mammalian phylogeny, its postulated biological activities, and its variability in human milk.
Collapse
|
38
|
Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 2013; 23:1038-46. [PMID: 23720460 PMCID: PMC3724412 DOI: 10.1093/glycob/cwt040] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
The human intestine houses a dense microbial ecosystem in which the struggle for nutrients creates a continual and dynamic selective force. Host-produced mucus glycans provide a ubiquitous source of carbon and energy for microbial species. Not surprisingly, many gut resident bacteria have become highly adapted to efficiently consume numerous distinct structures present in host glycans. We propose that sophistication in mucus consumption is a trait most likely to be found in gut residents that have co-evolved with hosts, microbes that have adapted to the complexity associated with the host glycan landscape.
Collapse
Affiliation(s)
| | | | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild Building D315, Stanford, CA, USA
| |
Collapse
|
39
|
Kottler R, Mank M, Hennig R, Müller-Werner B, Stahl B, Reichl U, Rapp E. Development of a high-throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laser-induced fluorescence detection. Electrophoresis 2013; 34:2323-36. [PMID: 23716415 DOI: 10.1002/elps.201300016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022]
Abstract
During the last decade, enormous progress regarding knowledge about composition and properties of human milk (HM) has been made. Besides nutrition, the three macro-nutrients: proteins, lipids, and carbohydrates combine a large variety of properties and functions. Especially, complex oligosaccharides emerge as important dietary factors during early life with multiple functions. The characterization of these HM oligosaccharides (HMOS) within the total carbohydrate fraction is prerequisite to understand the relationship between milk composition and biological effects. Therefore, extended studies of large donor cohorts and thus, new high-throughput glycoanalytical methods are needed. The developed method comprises sample preparation, as well as analysis of HMOS by multiplexed CGE with LIF detection (xCGE-LIF). Via a respective database the generated "fingerprints" (normalized electropherograms) could be used for structural elucidation of HMOS. The method was tested on HM samples from five different donors, partly sampled as a series of lactation time points. HMOS could be easily identified and quantified. Consequently, secretor and Lewis status of the donors could be determined, milk typing could be performed and quantitative changes could be monitored along lactation time course. The developed xCGE-LIF based "real" high-throughput HMOS analysis method enables qualitative and quantitative high-performance profiling of the total carbohydrate fraction composition of large sets of samples.
Collapse
Affiliation(s)
- Robert Kottler
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This article provides an overview of the composition of human milk, its variation, and its clinical relevance. The composition of human milk is the biological norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules (eg, lactoferrin) are being investigated as novel therapeutic agents. Human milk changes in composition from colostrum to late lactation, within feeds, by gestational age, diurnally, and between mothers. Feeding infants with expressed human milk is increasing.
Collapse
Affiliation(s)
- Olivia Ballard
- Center for Interdisciplinary Research in Human Milk and Lactation & Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 7009, Cincinnati, OH 45229.
| | - Ardythe L. Morrow
- Center for Interdisciplinary Research in Human Milk and Lactation, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 7009, Cincinnati, OH 45229.
| |
Collapse
|