1
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Huang L, Zhang M, Bai D, Qu Y. Deciphering the impact of TERT/telomerase on immunosenescence and T cell revitalization. Front Immunol 2024; 15:1465006. [PMID: 39376566 PMCID: PMC11456497 DOI: 10.3389/fimmu.2024.1465006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Immunosenescence impacts both the innate and adaptive immune systems, predominantly affecting certain immune cell types. A notable manifestation of immunosenescence is the diminished efficacy of adaptive immunity. The excessive senescence of immune cells, particularly T cells, leads to marked immune deficiency, consequently escalating the risk of infections, tumors, and age-associated disorders. Lymphocytes, especially T cells, are subject to both replicative and premature senescence. Telomerase reverse transcriptase (TERT) and telomerase have multifaceted roles in regulating cellular behavior, possessing the ability to counteract both replicative and premature senescence in lymphocytes. This review encapsulates recent advancements in understanding immunosenescence, with a focus on T cell senescence, and the regulatory mechanisms involving TERT/telomerase. Additionally, it comprehensively discusses strategies aimed at inhibiting immunosenescence by augmenting TERT/telomerase activity.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingfu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients 2024; 16:496. [PMID: 38398820 PMCID: PMC10892939 DOI: 10.3390/nu16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium is an essential ion in the human body that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age. Age-related chronic diseases and the aging process itself are frequently associated with low-grade chronic inflammation, called 'inflammaging'. Because chronic magnesium insufficiency has been linked to excessive generation of inflammatory markers and free radicals, inducing a chronic inflammatory state, we formerly hypothesized that magnesium inadequacy may be considered among the intermediaries helping us explain the link between inflammaging and aging-associated diseases. We show in this review evidence of the relationship of magnesium with all the hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled autophagy, dysbiosis, and chronic inflammation), which may positively affect the human healthspan. It is feasible to hypothesize that maintaining an optimal balance of magnesium during one's life course may turn out to be a safe and economical strategy contributing to the promotion of healthy aging. Future well-designed studies are necessary to further explore this hypothesis.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- School of Medicine, “Kore” University of Enna, 94100 Enna, Italy;
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
5
|
Wang C, Bi L, Du Y, Lu C, Zhao M, Lin X, Ding Y, Fan W. The role of telomerase in hair growth and relevant disorders: A review. J Cosmet Dermatol 2023; 22:2925-2929. [PMID: 37667425 DOI: 10.1111/jocd.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Hair diseases may present with hair loss, hirsutism, hair melanin abnormalities and other manifestations. Hair follicles are known as mini-organs that undergo periodic remodeling, and their constant regeneration in vivo reflects interesting anti-aging functions. Telomerase prevents cellular senescence by maintaining telomere length, but its excessive proliferation in cancer cells may also induce cancer. However, the effects of telomerase in hair growth have rarely been reported. METHODS In this study, we reviewed the role of telomerase in hair growth and the effects of hair disorders through literature search and analysis. RESULTS There is growing evidence that telomerase plays an important role in maintaining hair follicle function and proliferation. Changes in telomerase levels in hair follicles have also been found in a variety of hair disorders. CONCLUSION Telomerase plays a positive role in hair growth and is expected to become a new target for the treatment of alopecia or other hair diseases in the future.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingbo Bi
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yimei Du
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changpei Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuewen Lin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunbu Ding
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
González-Giraldo Y, Fonseca ÁYG, Aristizabal-Pachon A. TERT silencing alters the expression of ARG1, GLUL, VIM, NES genes and hsa-miR-29b-3p in the T98G cell line. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:464-477. [PMID: 36533634 DOI: 10.1080/15257770.2022.2155301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The central function of telomerase is maintaining the telomere length. However, several extra-telomeric roles have been identified for this protein complex. In this study, we evaluated the effect of the silencing of the catalytic subunit of telomerase (TERT) on the expression of candidate microRNAs, cell activation markers and glial-related genes in a glioblastoma cell line (T98G). The silencing was performed by a siRNA and the qPCR method was used to analyze the expression of TERT and downstream genes. Flow cytometry was used to quantify the TERT protein, and bioinformatics analysis was carried out to analyze the functions of microRNA target genes. Here, it was observed that after a 50% reduction of the TERT gene, the expression of ARG1 (Arginase 1) was upregulated, whereas NES (Nestin), GLUL (Glutamate-Ammonia Ligase), VIM (Vimentin) and the hsa-miR-29b-3p microRNA were downregulated (P-value <0.05). A bioinformatic analysis showed that target genes of hsa-miR-29b are associated with focal adhesion, the PI3K-Akt signaling pathway, among others. These results are important because they contribute to the knowledge of extratelomeric functions by providing relevant evidence about novel genes modulated by TERT.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Ángela Y. García Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Aristizabal-Pachon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
8
|
Teloxantron inhibits the processivity of telomerase with preferential DNA damage on telomeres. Cell Death Dis 2022; 13:1005. [PMID: 36437244 PMCID: PMC9701690 DOI: 10.1038/s41419-022-05443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Telomerase reactivation is one of the hallmarks of cancer, which plays an important role in cellular immortalization and the development and progression of the tumor. Chemical telomerase inhibitors have been shown to trigger replicative senescence and apoptotic cell death both in vitro and in vivo. Due to its upregulation in various cancers, telomerase is considered a potential target in cancer therapy. In this study, we identified potent, small-molecule telomerase inhibitors using a telomerase repeat amplification protocol assay. The results of the assay are the first evidence of telomerase inhibition by anthraquinone derivatives that do not exhibit G-quadruplex-stabilizing properties. The stability of telomerase in the presence of its inhibitor was evaluated under nearly physiological conditions using a cellular thermal shift assay. Our data showed that the compound induced aggregation of the catalytic subunit (hTERT) of human telomerase, and molecular studies confirmed the binding of the hit compound with the active site of the enzyme. The ability of new derivatives to activate DNA double-strand breaks (DSBs) was determined by high-resolution microscopy and flow cytometry in tumor cell lines differing in telomere elongation mechanism. The compounds triggered DSBs in TERT-positive A549 and H460 lung cancer cell lines, but not in TERT-negative NHBE normal human bronchial epithelial and ALT-positive U2OS osteosarcoma cell lines, which indicates that the induction of DSBs was dependent on telomerase inhibition. The observed DNA damage activated DNA damage response pathways involving ATM/Chk2 and ATR/Chk1 cascades. Additionally, the compounds induced apoptotic cell death through extrinsic and intrinsic pathways in lung cancer cells. Taken together, our study demonstrated that anthraquinone derivatives can be further developed into novel telomerase-related anticancer agents.
Collapse
|
9
|
Ellis PS, Martins RR, Thompson EJ, Farhat A, Renshaw SA, Henriques CM. A subset of gut leukocytes has telomerase-dependent "hyper-long" telomeres and require telomerase for function in zebrafish. Immun Ageing 2022; 19:31. [PMID: 35820929 PMCID: PMC9277892 DOI: 10.1186/s12979-022-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.
Collapse
Affiliation(s)
- Pam S Ellis
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Raquel R Martins
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Emily J Thompson
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Asma Farhat
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Catarina M Henriques
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
10
|
S M N Mydin RB, Sreekantan S, Widera D, Saharudin KA, Hazan R, Farid Wajidi MF. Genome-nanosurface interaction of titania nanotube arrays: evaluation of telomere, telomerase and NF-κB activities on an epithelial cell model. RSC Adv 2022; 12:2237-2245. [PMID: 35425228 PMCID: PMC8979010 DOI: 10.1039/d1ra05325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Titanium dioxide nanotube arrays (TNAs) provide a promising platform for medical implants and nanomedicine applications. The present cell-TNA study has provided profound understanding on protection of genome integrity via telomere, telomerase and NF-κB activities using an epithelial cell model. It has been revealed in this study that cell-TNA interaction triggers the telomere shortening activity and inhibition of telomerase activity at the mRNA and protein level. The present work supported that the cell-TNA stimulus might involve controlled transcription and proliferative activities via NBN and TERF21P mechanisms. Moreover, inhibition of NF-κB may promote molecular sensitivity via senescence-associated secretory phenotype activities and might result in reduced inflammatory response which would be good for cell and nanosurface adaptation activities. Thus, this nanomaterial-molecular knowledge is beneficial for further nanomaterial characterization and advanced medical application.
Collapse
Affiliation(s)
- Rabiatul Basria S M N Mydin
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia 13200 Bertam, Kepala Batas Pulau Pinang Malaysia +60-04-5622351
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| | - Darius Widera
- Reading School of Pharmacy Whiteknights Reading UK RG6 6U
| | - Khairul Arifah Saharudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
- Qdos Interconnect Sdn Bhd No 99 Bayan Lepas Industrial Estate 11900 Penang Malaysia
| | - Roshasnorlyza Hazan
- Materials Technology Group, Industrial Technology Division, Nuclear Malaysia Agency Bangi, Kajang 43000 Selangor Malaysia
| | | |
Collapse
|
11
|
Parulekar A, Choksi A, Taye N, Totakura KVS, Firmal P, Kundu GC, Chattopadhyay S. SMAR1 suppresses the cancer stem cell population via hTERT repression in colorectal cancer cells. Int J Biochem Cell Biol 2021; 141:106085. [PMID: 34551340 DOI: 10.1016/j.biocel.2021.106085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
One of the hallmarks of a cancer cell is the ability for indefinite proliferation leading to the immortalization of the cell. Activation of several signaling pathways leads to the immortalization of cancer cells via the reactivation of enzyme telomerase (hTERT). hTERT is active in germ cells, stem cells and also cancer cells. An earlier report from our lab suggests that SMAR1, a tumor suppressor protein, is significantly downregulated in the higher grades of colorectal cancers. Our study identifies SMAR1 as a transcriptional repressor of hTERT. We find that SMAR1 interacts with HDAC1/mSin3a co-repressor complex at the hTERT promoter and brings about HDAC1-mediated transcriptional repression of the promoter. Most solid tumors including colorectal cancer reactivate hTERT expression as it confers several advantages to the cancer cells like increased proliferation and angiogenesis. One of these non-canonical functions of hTERT is inducing the pool of cancer stem cell population. We find that in the CD133HighCD44High cancer stem cells population, SMAR1 expression is highly diminished leading to elevated hTERT expression. We also find that knockdown of SMAR1 promotes total CD133+CD44+ population and impart enhanced sphere-forming ability to the colorectal cancer cells. SMAR1 also inhibits invasion and metastasis in colorectal cancer cell lines via repression of hTERT. Our study provides evidence that downregulation of SMAR1 causes activation of hTERT leading to an increase in the cancer stem cell phenotype in colorectal cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Gopal C Kundu
- National Centre for Cell Science, Pune, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, India; Birla Institute of Technology and Science, Goa, India.
| |
Collapse
|
12
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
13
|
Zhang G, Zhang C, Leng D, Yan P, Wang Z, Zhang M, Wu Z. The non-canonical functions of telomerase reverse transcriptase gene GlTert on regulating fungal growth, oxidative stress, and ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2021; 105:7353-7365. [PMID: 34515845 DOI: 10.1007/s00253-021-11564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
The telomerase reverse transcriptase (TERT) is the core catalytic subunit of telomerase. Its canonical function is synthesizing telomeric repeats to maintain telomere length and chromosomal stability. Accumulating evidence suggests that TERT has other important fundamental functions in addition to its catalytic telomere repeat synthesis activity. However, the non-canonical roles of TERT independent of its enzymatic activity are not clear in filamentous fungi. In the present study, we characterized the GlTert gene in Ganoderma lucidum. The non-canonical roles of GlTert were explored using GlTert-silenced strains (Terti8 and Terti25) obtained by RNA interference. Silencing GlTert delayed the fungal growth, decreased the length between hyphal branches, and induced fungal resistance to oxidative stress in G. ludicum. Further examination revealed that the intracellular ROS (reactive oxygen species) levels were increased while the enzyme activities of the antioxidant systems (superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase) were decreased in GlTert-silenced strains. In addition, silencing GlTert decreased the ganoderic acid (GA) biosynthesis of G. lucidum. Taken together, our results indicate that GlTert plays a fundamental function on fungal growth, oxidative stress, and GA biosynthesis in G. lucidum, providing new insights for the canonical functions of TERT in filamentous fungi. KEY POINTS: • GlTert affected fungal growth and hyphal branching of G. lucidum. • Silencing GlTert increased the intracellular ROS levels of G. lucidum. • GlTert regulated GA biosynthesis of G. lucidum.
Collapse
Affiliation(s)
- Guang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China.
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China.
| | - Chaohui Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Doudou Leng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Peng Yan
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Zhenhe Wang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Mingxia Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Zhongwei Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China
| |
Collapse
|
14
|
Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci 2021; 22:6381. [PMID: 34203694 PMCID: PMC8232155 DOI: 10.3390/ijms22126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
Collapse
Affiliation(s)
| | | | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (B.J.); (B.R.)
| |
Collapse
|
15
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
16
|
Affiliation(s)
- Yongkang Zou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yu-sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
17
|
Modulation of telomerase expression and function by miRNAs: Anti-cancer potential. Life Sci 2020; 259:118387. [PMID: 32890603 DOI: 10.1016/j.lfs.2020.118387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
Telomerase is a nucleoprotein reverse transcriptase that maintains the telomere, a protective structure at the ends of the chromosome, and is active in cancer cells, stem cells, and fetal cells. Telomerase immortalizes cancer cells and induces unlimited cell division by preventing telomere shortening. Immortalized cancer cells have unlimited proliferative potential due to telomerase activity that causes tumorigenesis and malignancy. Therefore, telomerase can be a lucrative anti-cancer target. The regulation of catalytic subunit of telomerase (TERT) determines the extent of telomerase activity. miRNAs, as an endogenous regulator of gene expression, can control telomerase activity by targeting TERT mRNA. miRNAs that have a decreasing effect on TERT translation mediate modulation of telomerase activity in cancer cells by binding to TERT mRNA and regulating TERT translation. In this review, we provide an update on miRNAs that influence telomerase activity by regulation of TERT translation.
Collapse
|
18
|
Zou Y, Cong YS, Zhou J. Implications of telomerase reverse transcriptase in tumor metastasis. BMB Rep 2020; 53:458-465. [PMID: 32731912 PMCID: PMC7526981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 08/03/2024] Open
Abstract
Metastasis is the main culprit of the great majority of cancerrelated deaths. However, the complicated process of the invasion-metastasis cascade remains the least understood aspect of cancer biology. Telomerase plays a pivotal role in bypassing cellular senescence and sustaining the cancer progression by maintaining telomere homeostasis and genomic integrity. Telomerase reverse transcriptase (TERT) exerts a series of fundamental functions that are independent of its enzymatic cellular activity, including proliferation, inflammation, epithelia-mesenchymal transition (EMT), angiogenesis, DNA repair, and gene expression. Accumulating evidence indicates that TERT may facilitate most steps of the invasion-metastasis cascade. In this review, we summarize important advances that have revealed some of the mechanisms by which TERT facilitates tumor metastasis, providing an update on the non-canonical functions of telomerase beyond telomere maintaining. [BMB Reports 2020; 53(9): 458-465].
Collapse
Affiliation(s)
- Yongkang Zou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yu-sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
19
|
Fazeli Z, Rajabibazl M, Faramarzi S, Omrani MD, Ghaderian SMH, Safavi Naini N. Correlation of TCF4, GSK, TERT and TERC Expressions with Proliferation Potential of Early and Late Culture of Human Peripheral Blood Mesenchymal Stem Cells. CELL JOURNAL 2020; 22:431-436. [PMID: 32347036 PMCID: PMC7211286 DOI: 10.22074/cellj.2021.6920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/22/2019] [Indexed: 11/23/2022]
Abstract
Objective In the recent years, mesenchymal stem cells (MSCs) were considered as the suitable source of cells for
transplantation into the damaged tissues in regenerative medicine. There was low number of these cells in different
organs and this characteristic was the main drawback to use them in treatment of diseases. Cellular senescence of the
stem cells has been demonstrated to be dependent to the telomerase activity. The aim of present experimental study
was to evaluate correlation of the expression of telomerase components and WNT signaling pathway in MSCs derived
from human peripheral blood (PB-MSCs).
Materials and Methods In this experimental study, following the isolation of MSCs from peripheral blood mononuclear
cells, RNA was extracted from these cells in the early culture (8-9th days) and late culture (14-17th days). Then, expression
of TERT, TERC, TCF4, GSK and CTNNB1 was determined by quantitative reverse transcription polymerase chain
reaction (qRT-PCR) based on SYBR Green.
Results Our data indicated that there was a significantly reduced expression of TERT in the late culture of human
MSCs derived from peripheral blood (P<0.05). Although a negative correlation was observed between GSK and TERC
expression levels in the early culture of MSCs, spearman analysis showed that there was no significant correlation
between the expression of telomerase components (TERC and TERT) and WNT signaling pathway (P>0.05).
Conclusion The obtained results suggested that WNT signaling pathway likely plays a minor role in the maintenance
of telomere length and proliferation potential of MSCs.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Faramarzi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Safavi Naini
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wang ST, Huang SW, Liu KT, Lee TY, Shieh JJ, Wu CY. Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell Death Discov 2020; 6:17. [PMID: 32257389 PMCID: PMC7105491 DOI: 10.1038/s41420-020-0252-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a hepatic malignancy, has a poor prognosis and contributes to cancer-related death worldwide. Cellular senescence is an anticancer therapeutic strategy that causes irreversible cell cycle arrest and enables immune-mediated clearance of cancer cells. Atorvastatin, an HMG-CoA reductase inhibitor, has been shown to inhibit tumor growth and induce apoptosis or autophagy in malignant tumors. However, whether atorvastatin can induce HCC cell senescence and the mechanisms involved are poorly understood. The effects of atorvastatin-induced senescence were examined in both HCC cells and mouse xenograft models. The phenomenon and mechanism of senescence were examined by cell cycle analysis, senescence-associated β-galactosidase (SA-β-gal) staining and western blotting in HCC cells, and HCC tissues from mice were analyzed by immunohistochemical (IHC) staining. We demonstrated that atorvastatin induced cell growth inhibition and G0/G1 phase cell cycle arrest, leading to senescence in HCC cells. Atorvastatin-induced senescence was independent of p53, p14, and p16, and atorvastatin not only decreased the secretion of IL-6, a major senescence-associated secretory phenotype (SASP) factor, and the phosphorylation of STAT3 but also inhibited the expression of hTERT, a catalytic subunit of telomerase. Supplementation with exogenous IL-6 reversed both atorvastatin-induced suppression of STAT3 phosphorylation and hTERT expression and atorvastatin-induced senescence. Overexpression of constitutively activated STAT3 rescued HCC cells from atorvastatin-induced hTERT suppression and senescence. Moreover, atorvastatin decreased tumor growth in mouse xenograft models. Consistent with these results, atorvastatin decreased the IL-6, p-STAT3, and hTERT levels and increased β-gal expression in tumor sections. Taken together, these data indicate that atorvastatin can induce atypical cellular senescence in HCC cells to inhibit tumor growth, an effect mediated by downregulation of hTERT through suppression of the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Sin-Ting Wang
- Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shi-Wei Huang
- Center for Cell Therapy and Translation Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Teng-Yu Lee
- Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Department of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Ying Wu
- Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, Institute of Clinical Medicine, and Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Taiwan Microbiota Consortium, Taipei, Taiwan
| |
Collapse
|
21
|
Ségal-Bendirdjian E, Geli V. Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front Cell Dev Biol 2019; 7:332. [PMID: 31911897 PMCID: PMC6914764 DOI: 10.3389/fcell.2019.00332] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Telomerase plays a critical role in stem cell function and tissue regeneration that depends on its ability to elongate telomeres. For nearly two decades, it turned out that TERT regulates a broad spectrum of functions including signal transduction, gene expression regulation, and protection against oxidative damage that are independent of its telomere elongation activity. These conclusions that were mainly obtained in cell lines overexpressing telomerase were further strengthened by in vivo models of ectopic expression of telomerase or models of G1 TERT knockout mice without detectable telomere dysfunction. However, the later models were questioned due to the presence of aberrantly shortened telomere in the germline of the parents TERT+/- that were used to create the G1 TERT -/- mice. The physiological relevance of the functions associated with overexpressed telomerase raised also some concerns due to artifactual situations and localizations and complications to quantify the level of TERT. Another concern with non-canonical functions of TERT was the difficulty to separate a direct TERT-related function from secondary effects. Despite these concerns, more and more evidence accumulates for non-canonical roles of telomerase that are non-obligatory extra-telomeric. Here, we review these non-canonical roles of the TERT subunit of telomerase. Also, we emphasize recent results that link TERT to mitochondria and protection to reactive oxygen species suggesting a protective role of TERT in neurons. Throughout this review, we dissect some controversies regarding the non-canonical functions of telomerase and provide some insights to explain these discrepancies. Finally, we discuss the importance of understanding these alternative functions of telomerase for the development of anticancer strategies.
Collapse
Affiliation(s)
- Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1124, Team: Cellular Homeostasis, Cancer and Therapies, INSERM US36, CNRS UMS 2009, BioMedTech Facilities, Université de Paris, Paris, France
| | - Vincent Geli
- Marseille Cancer Research Center, U1068 INSERM, UMR 7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Equipe labellisée Ligue, Marseille, France
| |
Collapse
|
22
|
Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci Rep 2019; 9:18118. [PMID: 31792359 PMCID: PMC6889131 DOI: 10.1038/s41598-019-54741-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
The telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.
Collapse
|
23
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
24
|
Mustafin RN, Khusnutdinova EK. The Role of Reverse Transcriptase in the Origin of Life. BIOCHEMISTRY (MOSCOW) 2019; 84:870-883. [DOI: 10.1134/s0006297919080030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wang L, Taniguchi Y, Okamura H, Sasaki S. Modification of the aminopyridine unit of 2'-deoxyaminopyridinyl-pseudocytidine allowing triplex formation at CG interruptions in homopurine sequences. Nucleic Acids Res 2019; 46:8679-8688. [PMID: 30102410 PMCID: PMC6158708 DOI: 10.1093/nar/gky704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
The antigene strategy based on site-specific recognition of duplex DNA by triplex DNA formation has been exploited in a wide range of biological activities. However, specific triplex formation is mostly restricted to homo-purine strands within the target duplex DNA, due to the destabilizing effect of CG and TA inversion sites where there is an absence of natural nucleotides that can recognize the CG and TA base pairs. Hence, the design of artificial nucleosides, which can selectively recognize these inversion sites with high affinity, should be of great significance. Recently, we determined that 2-amino-3-methylpyridinyl pseudo-dC (3MeAP-ΨdC) possessed significant affinity and selectivity toward a CG inversion site and showed effective inhibition of gene expression. We now describe the design and synthesis of new modified aminopyridine derivatives by focusing on small chemical modification of the aminopyridine unit to tune and enhance the selectivity and affinity toward CG inversion sites. Remarkably, we have newly found that 2-amino-4-methoxypyridinyl pseudo-dC (4OMeAP-ΨdC) could selectively recognize the CG base pair in all four adjacent base pairs and form a stable triplex structure against the promoter sequence of the human gene including multiple CG inversion sites.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidenori Okamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
27
|
de Punder K, Heim C, Wadhwa PD, Entringer S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology 2019; 101:87-100. [PMID: 30445409 PMCID: PMC6458519 DOI: 10.1016/j.psyneuen.2018.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
Chronic stress is associated with the accelerated aging of the immune system and represents a potent risk factor for the development and progression of a wide range of physical and mental disorders. The elucidation of molecular pathways and mechanisms underlying the link between stress and cellular aging is an area of considerable interest and investigation. In this context, telomere biology has emerged as a particularly attractive candidate mechanism. Several studies have linked immune cell telomere length with stress-related conditions and states, and also with several physical and mental disorders. Because the cellular reverse transcriptase enzyme telomerase is the primary regulator of telomere length (by adding telomeric DNA to telomeres and thereby attenuating telomere shortening), the understanding of its regulation and regulatory functions constitutes a prime target for developing strategies to prevent, attenuate or reverse the adverse consequences of immune system aging (immunosenescence). In this review we provide an overview of the mechanistic pathways linking telomerase with stress and cellular aging, with an emphasis on the immune system. We summarize and synthesize the current state of the literature on immune cell telomerase in different stress- and aging-related disease states and provide recommendations for future research directions.
Collapse
Affiliation(s)
- Karin de Punder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.
| | - Christine Heim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, USA
| | - Pathik D Wadhwa
- Department of Psychiatry & Human Behavior, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Obstetrics & Gynecology, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA; Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
28
|
Zhdanov DD, Plyasova AA, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Lobaeva TA, Sokolov NN. Inhibition of telomerase activity by splice-switching oligonucleotides targeting the mRNA of the telomerase catalytic subunit affects proliferation of human CD4 + T lymphocytes. Biochem Biophys Res Commun 2019; 509:790-796. [PMID: 30612734 DOI: 10.1016/j.bbrc.2018.12.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Telomerase activity is regulated at the mRNA level by alternative splicing (AS) of its catalytic subunit hTERT. The aim of this study was to define the ability of splice-switching oligonucleotides (SSOs) that pair with hTERT pre-mRNA to induce AS and inhibit telomerase activity in human CD4+ T lymphocytes. SSOs that blocked the binding of a single splicing regulatory protein, SRp20 or SRp40, to its site within intron 8 of hTERT pre-mRNA demonstrated rather moderate capacities to induce AS and inhibit telomerase. However, a SSO that blocked the interaction of both SRp20 and SRp40 proteins with pre-mRNA was the most active. Cultivation of lymphocytes with spliced hTERT and inhibited telomerase resulted in the reduction of proliferative activity without significant induction of cell death. These results should facilitate further investigation of telomerase activity regulation, and antitelomerase SSOs could become promising agents for antiproliferative cell therapy.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia.
| | - Anna A Plyasova
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia
| | - Yulia A Gladilina
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia; N.N. Blokhin Cancer Research Center, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia
| | - Vladimir A Grachev
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
| | - Valentina S Orlova
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
| | | | | | - Tatiana A Lobaeva
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
| | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya st, 119121, Moscow, Russia
| |
Collapse
|
29
|
Hadzic M, Haveric S, Haveric A, Lojo-Kadric N, Galic B, Ramic J, Pojskic L. Bioflavonoids protect cells against halogenated boroxine-induced genotoxic damage by upregulation of hTERT expression. ACTA ACUST UNITED AC 2018; 74:125-129. [DOI: 10.1515/znc-2018-0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Plant bioflavonoids are widely present in the human diet and have various protective properties. In this study, we have demonstrated the capacity of delphinidin and luteolin to increase human telomerase reverse transcriptase (hTERT) expression level and act as protective agents against halogenated boroxine-induced genotoxic damage. Halogenated boroxine K2(B3O3F4OH) (HB), is a novel compound with potential for the treatment of both benign and malignant skin changes. In vivo and in vitro studies have confirmed the inhibitory effects of HB on carcinoma cell proliferation and cell cycle progression as well as enzyme inhibition. However, minor genotoxic effects of HB are registered in higher applied concentrations, but those can be suppressed by in vitro addition of delphinidin and luteolin in appropriate concentrations. Fresh peripheral blood samples were cultivated for 72 h followed by independent and concomitant treatments of HB with luteolin or delphinidin. We analyzed the differences in relative hTERT expression between series of treatments compared with controls, which were based on normalized ratios with housekeeping genes. The obtained results have shown that selected bioflavonoids induce upregulation of hTERT that may contribute to the repair of genotoxic damage in vitro.
Collapse
Affiliation(s)
- Maida Hadzic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Sanin Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Naida Lojo-Kadric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Borivoj Galic
- Faculty of Science, Department for Chemistry , University of Sarajevo , Zmaja od Bosne 33-35 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Jasmin Ramic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| |
Collapse
|
30
|
Melicher D, Illés A, Pállinger É, Kovács ÁF, Littvay L, Tárnoki ÁD, Tárnoki DL, Bikov A, Molnár MJ, Buzás EI, Falus A. Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity. Cell Mol Life Sci 2018; 75:2447-2456. [PMID: 29290038 PMCID: PMC11105316 DOI: 10.1007/s00018-017-2738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 01/02/2023]
Abstract
Our study analyzed lymphocyte subpopulations of 32 monozygotic twins and compared the level of the catalytic reverse transcriptase protein subunit (hTERT) in T lymphocytes (Tly), helper- (Th), cytotoxic- (Tc) and regulatory T cell (Treg) subgroups. Four variables related to telomere and mitochondrial biology were simultaneously assessed, applying multi-parametric flow cytometry, TRAP-ELISA assay and qPCR standard curve method on peripheral blood mononuclear cell (PBMC) samples of genetically matched individuals. Twin data of telomerase activity (TA), hTERT protein level, telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were analyzed for co-twin similarity. The present study has provided novel information by demonstrating very high intraclass correlation (ICC) of hTERT protein level in T lymphocytes (0.891) and in both Th (0.896), Treg (0.885) and Tc (0.798) cell subgroups. When comparing results measured from PBMCs, intraclass correlation was also high for telomere length (0.815) and considerable for mtDNA copy number (0.524), and again exceptionally high for the rate-limiting telomerase subunit, hTERT protein level (0.946). In contrast, telomerase activity showed no co-twin similarity (ICC 0). By comparing relative amounts of hTERT protein levels in different lymphocyte subgroups of twin subjects, in Treg cells significantly higher level could be detected compared to Tly, Th or Tc cell subgroups. This is the first study that simultaneously analyzed co-twin similarity in MZ twins for the above four variables and alongside assessed their relationship, whereby positive association was found between TL and mtDNAcn.
Collapse
Affiliation(s)
- Dóra Melicher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
- MTA-SE Immunproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Árpád Ferenc Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Levente Littvay
- Hungarian Twin Registry, Budapest, Hungary
- Central European University, Budapest, Hungary
| | - Ádám Domonkos Tárnoki
- Hungarian Twin Registry, Budapest, Hungary
- Department of Radiology, Semmelweis University, Budapest, Hungary
| | - Dávid László Tárnoki
- Hungarian Twin Registry, Budapest, Hungary
- Department of Radiology, Semmelweis University, Budapest, Hungary
| | - András Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immunproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - András Falus
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
31
|
Gutmajster E, Chudek J, Augusciak-Duma A, Szwed M, Szybalska A, Mossakowska M, Puzianowska-Kuznicka M, Wiecek A, Sieron AL. Possible association of the TERT promoter polymorphisms rs2735940, rs7712562 and rs2853669 with diabetes mellitus in obese elderly Polish population: results from the national PolSenior study. J Appl Genet 2018; 59:291-299. [PMID: 29938393 PMCID: PMC6060992 DOI: 10.1007/s13353-018-0450-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
One of the markers of aging is lymphocyte telomere length (LTL), which is affected by genetic constitution of the organism and environmental conditions, such as development and diseases, including diabetes. The relationship of the later seems to be bilateral. The enzyme responsible for the maintenance of telomere length is a subunit of telomerase-telomerase reverse transcriptase (TERT). The aims of the present study were to (1) determine the influence of the TERT promoter sequence SNP variants on relative telomere length (RTL) in an elderly Polish population and (2) explore the potential associations of the SNPs with the type 2 diabetes mellitus (T2DM) in the obese individuals. Two highly homogenous subgroups of PolSenior participants were investigated, the first constituted 70 relatively healthy respondents and the second 70 individuals with T2DM. Telomere length ratio (T/S value) was measured; 1.5 kb part upstream of the transcription start site of the TERT promoter was sequenced, and the frequencies of polymorphisms were calculated and compared against analysed data. Low-frequency SNPs were evaluated but excluded from further comparative analyses to RTL and glucose metabolism markers. No significant difference in telomere length was found between the two studied subgroups. Univariate statistical analyses showed only a weak association of environmental or genetic factors altering this marker of aging. Approximate frequency of four SNPs in TERT promoter sequence was assessed in Polish population aged 65-95 years, but three of them (rs2735940, rs7712562 and rs2853669) were selected for further analyses. The SNP selection was based on their minor allele frequencies in general population and on published data. The univariate analysis has revealed that carriers of CC SNP (rs2853669) have had the shortest RTL in the T2DM group. Multivariate analysis has also revealed that the genetic effect of TERT promoter CC SNP was strengthened by the incidence of T2DM. The additional variation in RTL in paired groups indicates that in addition to T2DM and genetics, there are other factors contributing to development of the age-related diseases.
Collapse
Affiliation(s)
- Ewa Gutmajster
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia in Katowice, 18 Medykow Street, 40-752, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-027, Katowice, Poland
| | - Aleksandra Augusciak-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia in Katowice, 18 Medykow Street, 40-752, Katowice, Poland
| | - Malgorzata Szwed
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 02-106, Warsaw, Poland
| | | | | | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 02-106, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813, Warsaw, Poland
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Aleksander L Sieron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia in Katowice, 18 Medykow Street, 40-752, Katowice, Poland.
| |
Collapse
|
32
|
Manafi Shabestari R, Alikarami F, Bashash D, Paridar M, Safa M. Overexpression of MiR-138 Inhibits Cell Growth and Induces Caspase-mediated Apoptosis in Acute Promyelocytic Leukemia Cell Line. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:24-31. [PMID: 30234070 PMCID: PMC6134423 DOI: 10.22088/ijmcm.bums.7.1.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpression of miR-138 on telomerase activity, and cell proliferation of acute promyelocytic leukemia NB4 cells. MiR-138 was overexpressed in NB4 cells using GFP hsa-miR-138-expressing lentiviruses. hTERT mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis. For evaluation of apoptosis, annexin-V staining and activation of caspases were assessed using flow cytometry and western blot analysis, respectively. Our data demonstrate that overexpression of miR-138 attenuated the hTERT mRNA and protein expression levels. In addition, cell growth was inhibited, and malignant cells underwent caspase mediated-apoptosis in response to miR-138 overexpression. These findings suggest that loss of miR-138 expression may be associated with increased telomerase activity in NB4 cells. Therefore, strategies for up-regulation of miR-138 may result in inhibition of malignant cell growth, and provide a promising therapeutic approach for acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Rima Manafi Shabestari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Paridar
- Ministry of Health and Medical Education, Deputy of Management and Resources Development, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Dobrakowski M, Boroń M, Kasperczyk S, Kozłowska A, Kasperczyk A, Płachetka A, Pawlas N. The analysis of blood lead levels changeability over the 5-year observation in workers occupationally exposed to lead. Toxicol Ind Health 2016; 33:469-477. [PMID: 27807287 DOI: 10.1177/0748233716674380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to compare a group of workers with stable lead levels with a group of workers with fluctuating lead levels in terms of selected hematological, biochemical, and immunological parameters. The examined group included male workers occupationally exposed to lead. Blood lead (PbB) levels were measured every 3 months during the 5-year observation. Based on standard deviation of mean PbB levels, the examined population was divided into two groups: low level of fluctuation (L-SD) and high level of fluctuation (H-SD) groups. The mean and maximal PbB levels were significantly higher in the H-SD group than in the L-SD group by 9 and 22%, respectively. At the same time, the maximal level of zinc protoporphyrin (ZPP) and standard deviation of mean ZPP level were higher in the H-SD group by 29 and 55%, respectively. The maximal level of hemoglobin and white blood cell (WBC) count as well as standard deviation of the mean hemoglobin level and WBC count were higher in the H-SD group by 2, 8, 58, and 24%, respectively. The expression of nuclear factor kappa-B1 gene and telomerase reverse transcriptase gene was significantly greater in the H-SD group than in the L-SD group by 11 and 28%, respectively. Workers occupationally exposed to lead do not represent a homogenous population. Some present stable lead levels, whereas others have fluctuating lead levels. These fluctuations are related to secondary changes in ZPP and hemoglobin levels as well as WBC count.
Collapse
Affiliation(s)
- Michał Dobrakowski
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marta Boroń
- 2 Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Sławomir Kasperczyk
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kozłowska
- 2 Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Aleksandra Kasperczyk
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Anna Płachetka
- 3 Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Natalia Pawlas
- 2 Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| |
Collapse
|
34
|
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Med 2016; 46:1213-37. [DOI: 10.1007/s40279-016-0482-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD. Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circ Res 2015; 118:856-66. [PMID: 26699654 PMCID: PMC4772813 DOI: 10.1161/circresaha.115.307918] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Telomerase is a nuclear regulator of telomere elongation with recent reports suggesting a role in regulation of mitochondrial reactive oxygen species. Flow-mediated dilation in patients with cardiovascular disease is dependent on the formation of reactive oxygen species. OBJECTIVE We examined the hypothesis that telomerase activity modulates microvascular flow-mediated dilation, and loss of telomerase activity contributes to the change of mediator from nitric oxide to mitochondrial hydrogen peroxide in patients with coronary artery disease (CAD). METHODS AND RESULTS Human coronary and adipose arterioles were isolated for videomicroscopy. Flow-mediated dilation was measured in vessels pretreated with the telomerase inhibitor BIBR-1532 or vehicle. Statistical differences between groups were determined using a 2-way analysis of variance repeated measure (n≥4; P<0.05). L-NAME (N(ω)-nitro-L-arginine methyl ester; nitric oxide synthase inhibitor) abolished flow-mediated dilation in arterioles from subjects without CAD, whereas polyethylene glycol-catalase (PEG-catalase; hydrogen peroxide scavenger) had no effect. After exposure to BIBR-1532, arterioles from non-CAD subjects maintained the magnitude of dilation but changed the mediator from nitric oxide to mitochondrial hydrogen peroxide (% max diameter at 100 cm H2O: vehicle 74.6±4.1, L-NAME 37.0±2.0*, PEG-catalase 82.1±2.8; BIBR-1532 69.9±4.0, L-NAME 84.7±2.2, PEG-catalase 36.5±6.9*). Conversely, treatment of microvessels from CAD patients with the telomerase activator AGS 499 converted the PEG-catalase-inhibitable dilation to one mediated by nitric oxide (% max diameter at 100 cm H2O: adipose, AGS 499 78.5±3.9; L-NAME 10.9±17.5*; PEG-catalase 79.2±4.9). Endothelial-independent dilation was not altered with either treatment. CONCLUSIONS We have identified a novel role for telomerase in re-establishing a physiological mechanism of vasodilation in arterioles from subjects with CAD. These findings suggest a new target for reducing the oxidative milieu in the microvasculature of patients with CAD.
Collapse
Affiliation(s)
- Andreas M Beyer
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.).
| | - Julie K Freed
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Matthew J Durand
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Michael Riedel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Karima Ait-Aissa
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Paula Green
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Joseph C Hockenberry
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - R Garret Morgan
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Anthony J Donato
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Refael Peleg
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Mario Gasparri
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Chris K Rokkas
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Janine H Santos
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Esther Priel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - David D Gutterman
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| |
Collapse
|
36
|
Song G, Wang R, Guo J, Liu X, Wang F, Qi Y, Wan H, Liu M, Li X, Tang H. miR-346 and miR-138 competitively regulate hTERT in GRSF1- and AGO2-dependent manners, respectively. Sci Rep 2015; 5:15793. [PMID: 26507454 PMCID: PMC4623477 DOI: 10.1038/srep15793] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
miRNAs typically downregulate the expression of target genes by binding to their 3'UTR, and dysregulation of miRNAs may contribute to tumorigenesis. Here, we found that miR-346 and miR-138 competitively bind to a common region in the 3'UTR of hTERT mRNA and have opposite effects on the expression and function of hTERT in human cervical cancer cells. Furthermore, G-rich RNA sequence binding factor 1 (GRSF1) mediates the miR-346-dependent upregulation of hTERT by binding to the miR-346 middle sequence motif (CCGCAU) which forms a "bulge loop" when miR-346 is bound to the hTERT 3'UTR, facilitating the recruitment of hTERT mRNA to ribosomes to promote translation in an AGO2-independent manner. Conversely, miR-138 suppresses hTERT expression in an AGO2-dependent manner. Interestingly, replacement of the miR-138 middle sequence with that of miR-346 results in an upregulation of hTERT expression in a GRSF1-dependent manner. Moreover, miR-346 depends on GRSF1 to upregulate another target gene, activin A receptor, type IIB (ACVR2B), in which miR-346 "CCGCAU" motif is essential. These findings reveal novel mechanisms of miRNA-mediated upregulation of target gene expression and describe the coordinated action of multiple miRNAs to control the fate of a single target mRNA through binding to its 3'UTR.
Collapse
Affiliation(s)
- Ge Song
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renjie Wang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junfei Guo
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuyuan Liu
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Qi
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haiying Wan
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Yoo YS, Park S, Gwak J, Ju BG, Oh S. Involvement of transcription repressor Snail in the regulation of human telomerase reverse transcriptase (hTERT) by transforming growth factor-β. Biochem Biophys Res Commun 2015; 465:131-6. [PMID: 26235880 DOI: 10.1016/j.bbrc.2015.07.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022]
Abstract
Human telomerase reverse transcriptase (hTERT), a catalytic subunit of telomerase, is the primary determinant for telomerase enzyme activity, which has been associated with cellular immortality. Expression of the hTERT gene is regulated by various extracellular (external) stimuli and is aberrantly up-regulated in more than 90% of cancers. Here we show that hTERT gene expression was repressed in response to transforming growth factor-β (TGF-β) by a mechanism dependent on transcription factors Snail and c-Myc. TGF-β activated Snail and down-regulated c-Myc gene expression. In addition, ectopic expression of Snail strongly inhibited hTERT promoter activity, although co-expression of c-Myc abrogated this effect. Chromatin immunoprecipitation (ChIP) analysis revealed that TGF-β decreased c-Myc occupancy and dramatically increased recruitment of Snail to the E-box motifs of the hTERT promoter, thereby repressing hTERT expression. Our findings suggest a dynamic alteration in hTERT promoter occupancy by Snail and c-Myc is the mechanistic basis for TGF-β-mediated regulation of hTERT.
Collapse
Affiliation(s)
- Young-Sun Yoo
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Seoyoung Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jungsug Gwak
- Research Institute for Basic Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Republic of Korea
| | - Bong Gun Ju
- Research Institute for Basic Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
38
|
Affiliation(s)
- James W. Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| | - Andrew R. Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
39
|
Picariello L, Grappone C, Polvani S, Galli A. Telomerase activity: An attractive target for cancer therapeutics. World J Pharmacol 2014; 3:86-96. [DOI: 10.5497/wjp.v3.i4.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Telomeres are non-coding tandem repeats of 1000-2000 TTAGGG nucleotide DNA sequences on the 3’ termini of human chromosomes where they serve as protective “caps” from degradation and loss of genes. The “cap” at the end of chromosome required to protect its integrity is a 150-200 nucleotide-long single stranded G-rich 3’ overhang that forms two higher order structures, a T-loop with Sheltering complex, or a G-quadruplex complex. Telomerase is a human ribonucleoprotein reverse transcriptase that continually added single stranded TTAGGG DNA sequences onto the single strand 3’ of telomere in the 5’ to 3’ direction. Telomerase activity is detected in male germ line cells, proliferative cells of renewal tissues, some adult pluripotent stem cells, embryonic cells, but in most somatic cells is not detected. Re-expression or up-regulation of telomerase in tumours cells is considered as a critical step in cell tumorigenesis and telomerase is widely considered as a tumour marker and a target for anticancer drugs. Different approaches have been used in anticancer therapeutics targeting telomerase. Telomerase inhibitors can block directly Human TElomerase Reverse Transcriptase (hTERT) or Human TElomerase RNA telomerase subunits activity, or G-quadruplex and Sheltering complex components, shortening telomeres and inhibiting cell proliferation. Telomerase can become an immune target and GV1001, Vx-001, I540 are the most widespread vaccines used with encouraging results. Another method is to use hTERT promoter to drive suicide gene expression or to control a lytic virus replication. Recently telomerase activity was used to activate pro-drugs such as Acycloguanosyl 5’-thymidyltriphosphate, a synthetic ACV-derived molecule when it is activated by telomerase it does not require any virus or host active immune response to induce suicide gene therapy. Advantage of all these therapies is that target only neoplastic cells without any effects in normal cells, avoiding toxicity and adverse effects of the current chemotherapy. However, as not all the approaches are equally efficient, further studies will be necessary.
Collapse
|
40
|
Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J Hum Genet 2014; 59:555-61. [PMID: 25142509 DOI: 10.1038/jhg.2014.72] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
Telomerase and telomeric complex have been linked to a variety of disease states related to neurological dysfunction. In amyotrophic lateral sclerosis (ALS) patients, telomerase activity, as human telomerase reverse transcriptase (hTERT) expression, has not been characterized yet. Here, for the first time, we characterized telomerase and related pathway in blood sample and spinal cord from ALS patients compared with healthy controls. We found that hTERT expression level was significantly lower in ALS patients and was correlated either to p53 mRNA expression or p21 expression, pointing out the hypothesis that telomerase inhibition could be a pathogenetic contributor to neurodegeneration in ALS. As a consequence of the reduced telomerase activity, we identified shorter telomeres in leukocytes from sporadic ALS patients compared with healthy control group.
Collapse
|
41
|
Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions. Nat Commun 2014; 5:4599. [PMID: 25118183 DOI: 10.1038/ncomms5599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 07/07/2014] [Indexed: 12/26/2022] Open
Abstract
In addition to performing its canonical function, Telomerase Reverse Transcriptase (TERT) has been shown to participate in cellular processes independent of telomerase activity. Furthermore, although TERT mainly localizes to Cajal bodies, it is also present within the nucleolus. Because the nucleolus is the site of rDNA transcription, we investigated the possible role of telomerase in regulating RNA polymerase I (Pol I). Here we show that TERT binds to rDNA and stimulates transcription by Pol I during liver regeneration and Ras-induced hyperproliferation. Moreover, the inhibition of telomerase activity by TERT- or TERC-specific RNA interference, the overexpression of dominant-negative-TERT, and the application of the telomerase inhibitor imetelstat reduce Pol I transcription and the growth of tumour cells. In vitro, telomerase can stimulate the formation of the transcription initiation complex. Our results demonstrate how non-canonical features of telomerase may direct Pol I transcription in oncogenic and regenerative hyperproliferation.
Collapse
|
42
|
Distribution of TTAGG-specific telomerase activity in insects. Chromosome Res 2014; 22:495-503. [DOI: 10.1007/s10577-014-9436-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/17/2014] [Accepted: 07/10/2014] [Indexed: 01/06/2023]
|
43
|
Asok A, Bernard K, Rosen JB, Dozier M, Roth TL. Infant-caregiver experiences alter telomere length in the brain. PLoS One 2014; 9:e101437. [PMID: 24983884 PMCID: PMC4077840 DOI: 10.1371/journal.pone.0101437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Following adverse childhood experiences, high quality maternal care can protect against accelerated telomere shortening in peripheral cells. It is less clear, however, how telomere length in the brain is influenced by early caregiving experiences. Using rats, we investigated if quality of care (i.e., aversive or nurturing care outside of the homecage) during the first seven days of postnatal (PN) life affected telomere length in the adult brain (PN90) of male and female rats. At PN90, we found that nurturing care outside of the homecage was associated with longer telomeres in the medial prefrontal cortex relative to nurturing care inside the homecage (i.e., normal maternal care) and aversive care outside of the homecage. Further, pups exposed to aversive care outside of the homecage demonstrated longer telomeres in the amygdala relative to pups exposed to nurturing care inside the homecage. These effects were specific to females. No differences in telomere length between caregiving conditions were observed in the ventral hippocampus. Thus, positive and negative early-life experiences result in long-term, sex-specific changes of telomeres in the brain.
Collapse
Affiliation(s)
- Arun Asok
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE, United States of America
| | - Kristin Bernard
- Stony Brook University, Department of Psychology, Stony Brook, NY, United States of America
| | - Jeffrey B. Rosen
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE, United States of America
| | - Mary Dozier
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE, United States of America
| | - Tania L. Roth
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE, United States of America
- * E-mail:
| |
Collapse
|