1
|
Svobodová G, Šadibolová M, Velecká E, Mráziková L, Vaculová P, Matoušková P, Kuneš J, Maletínská L, Boušová I. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models. Antioxidants (Basel) 2024; 13:1371. [PMID: 39594513 PMCID: PMC11591148 DOI: 10.3390/antiox13111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Vaculová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| |
Collapse
|
2
|
Lu Q, Ding Y, Liu W, Liu S. Viral Infections and the Glutathione Peroxidase Family: Mechanisms of Disease Development. Antioxid Redox Signal 2024. [PMID: 39446976 DOI: 10.1089/ars.2024.0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Significance: The glutathione peroxidase (GPx) family is recognized for its essential function in maintaining cellular redox balance and countering the overproduction of reactive oxygen species (ROS), a process intricately linked to the progression of various diseases including those spurred by viral infections. The modulation of GPx activity by viruses presents a critical juncture in disease pathogenesis, influencing cellular responses and the trajectory of infection-induced diseases. Recent Advances: Cutting-edge research has unveiled the GPx family's dynamic role in modulating viral pathogenesis. Notably, GPX4's pivotal function in regulating ferroptosis presents a novel avenue for the antiviral therapy. The discovery that selenium, an essential micronutrient for GPx activity, possesses antiviral properties has propelled us toward rethinking traditional treatment modalities. Critical Issues: Deciphering the intricate relationship between viral infections and GPx family members is paramount. Viral invasion can precipitate significant alterations in GPx function, influencing disease outcomes. The multifaceted nature of GPx activity during viral infections suggests that a deeper understanding of these interactions could yield novel insights into disease mechanisms, diagnostics, prognostics, and even chemotherapeutic resistance. Future Directions: This review aims to synthesize current knowledge on the impact of viral infections on GPx activity and expression and identify key advances. By elucidating the mechanisms through which GPx family members intersect with viral pathogenesis, we propose to uncover innovative therapeutic strategies that leverage the antioxidant properties of GPx to combat viral infections. The exploration of GPx as a therapeutic target and biomarker holds promise for the development of next-generation antiviral therapies. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
5
|
Broadaway KA, Brotman SM, Rosen JD, Currin KW, Alkhawaja AA, Etheridge AS, Wright F, Gallins P, Jima D, Zhou YH, Love MI, Innocenti F, Mohlke KL. Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits. Am J Hum Genet 2024; 111:1899-1913. [PMID: 39173627 PMCID: PMC11393674 DOI: 10.1016/j.ajhg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan D Rosen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abdalla A Alkhawaja
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy S Etheridge
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Fred Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Chen B, Fu W, Jie C, Zhang G, Li Z, Liu Y, Zhou S. GPX7 reduces chondrocyte inflammation and extracellular matrix degradation triggered by IL‑1β, via a mechanism mediated by ferroptosis. Mol Med Rep 2024; 30:118. [PMID: 38757339 PMCID: PMC11129537 DOI: 10.3892/mmr.2024.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
During osteoarthritis (OA), chondrocytes become highly active, with increased matrix synthesis and inflammatory cytokine‑induced catabolic pathways. Early intervention strategies targeting pathological changes may attenuate or halt disease progression. The present study aimed to reveal the role of glutathione peroxidase (GPX)7 in OA. For this purpose, a research model was established by inducing C28/I2 human chondrocytes with interleukin (IL)‑1β, and the expression level of GPX7 was determined. To explore its roles, C28/I2 cells were transfected to gain GPX7 overexpression. The effects of GPX7 overexpression on intracellular inflammation, extracellular matrix (ECM) degradation, apoptosis and ferroptosis were then evaluated. In addition, the cells were treated with the ferroptosis inducer, erastin, and its effects on the aforementioned phenotypes were assessed. The level of GPX7 was decreased in response to IL‑1β treatment, and GPX7 overexpression suppressed cellular inflammation, ECM degradation and apoptosis. Moreover, the reduction of lipid peroxidation, ferrous ions and transferrin indicated that GPX7 overexpression inhibited ferroptosis. Subsequently, inflammation, ECM degradation and apoptosis were found to be promoted in the cells upon treatment with erastin. These findings suggested that the regulatory role of GPX7 may be mediated by a pathway involving ferroptosis. On the whole, the present study revealed that GPX7 reduces IL‑1β‑induced chondrocyte inflammation, apoptosis and ECM degradation partially through a mechanism involving ferroptosis. The results of the present study lay a theoretical foundation for subsequent OA‑related research and may enable the development of translational strategies for the treatment of OA.
Collapse
Affiliation(s)
- Boyuan Chen
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Weihao Fu
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chunyang Jie
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Guoxiu Zhang
- Department of General Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Zhen Li
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yihai Liu
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shibo Zhou
- Department of Physical Education, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
7
|
Yang Y, Wang Y, Wei S, Wang X, Zhang J. Effects and Mechanisms of Non-Thermal Plasma-Mediated ROS and Its Applications in Animal Husbandry and Biomedicine. Int J Mol Sci 2023; 24:15889. [PMID: 37958872 PMCID: PMC10648079 DOI: 10.3390/ijms242115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Non-thermal plasma (NTP) is an ionized gas composed of neutral and charged reactive species, electric fields, and ultraviolet radiation. NTP presents a relatively low discharge temperature because it is characterized by the fact that the temperature values of ions and neutral particles are much lower than that of electrons. Reactive species (atoms, radicals, ions, electrons) are produced in NTP and delivered to biological objects induce a set of biochemical processes in cells or tissues. NTP can mediate reactive oxygen species (ROS) levels in an intensity- and time-dependent manner. ROS homeostasis plays an important role in animal health. Relatively low or physiological levels of ROS mediated by NTP promote cell proliferation and differentiation, while high or excessive levels of ROS mediated by NTP cause oxidative stress damage and even cell death. NTP treatment under appropriate conditions not only produces moderate levels of exogenous ROS directly and stimulates intracellular ROS generation, but also can regulate intracellular ROS levels indirectly, which affect the redox state in different cells and tissues of animals. However, the treatment condition of NTP need to be optimized and the potential mechanism of NTP-mediated ROS in different biological targets is still unclear. Over the past ten decades, interest in the application of NTP technology in biology and medical sciences has been rapidly growing. There is significant optimism that NTP can be developed for a wide range of applications such as wound healing, oral treatment, cancer therapy, and biomedical materials because of its safety, non-toxicity, and high efficiency. Moreover, the combined application of NTP with other methods is currently a hot research topic because of more effective effects on sterilization and anti-cancer abilities. Interestingly, NTP technology has presented great application potential in the animal husbandry field in recent years. However, the wide applications of NTP are related to different and complicated mechanisms, and whether NTP-mediated ROS play a critical role in its application need to be clarified. Therefore, this review mainly summarizes the effects of ROS on animal health, the mechanisms of NTP-mediated ROS levels through antioxidant clearance and ROS generation, and the potential applications of NTP-mediated ROS in animal growth and breeding, animal health, animal-derived food safety, and biomedical fields including would healing, oral treatment, cancer therapy, and biomaterials. This will provide a theoretical basis for promoting the healthy development of animal husbandry and the prevention and treatment of diseases in both animals and human beings.
Collapse
Affiliation(s)
| | | | | | | | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.Y.); (Y.W.); (S.W.); (X.W.)
| |
Collapse
|
8
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Ye Q, Jiang Y, Wu D, Cai J, Jiang Z, Zhou Z, Liu L, Ling Q, Wang Q, Zhao G. Atractylodin alleviates nonalcoholic fatty liver disease by regulating Nrf2-mediated ferroptosis. Heliyon 2023; 9:e18321. [PMID: 37539262 PMCID: PMC10395531 DOI: 10.1016/j.heliyon.2023.e18321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Oxidative stress is one of the main inducers of NAFLD. Atractylodin (ART), a major active ingredient of Atractylodes lancea, possesses potential antioxidant and anti-inflammatory activity in many types of disease. In the current study, the underlying mechanism by which ART alleviates the progression of NAFLD was explored. The function of ART in facilitating NAFLD was investigated in vitro and in vivo. Functionally, ART attenuated high-fat diet (HFD)-induced NAFLD in mice and palmitic acid (PA)-induced oxidative stress in HepG2 cells. Furthermore, our data verified that ART attenuated HFD-induced NAFLD by inhibiting ferroptosis of hepatocyte cells, as evidenced by decreased Fe2+ concentration, reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and increased glutathione (GSH) content. The protective effect of ART on the cell viability of hepatocytes was blocked by a specific ferroptosis inhibitor (ferrostatin-1). Mechanistically, ART treatment promoted the translocation of nuclear factor erythroid 2-related Factor 2 (NFE2L2/NRF2) and thus increased glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11) expression. Taken together, ART alleviates NAFLD by regulating Nrf2-mediated ferroptosis.
Collapse
Affiliation(s)
- Qingyan Ye
- Department of Paediatrics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Yun Jiang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Di Wu
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Jingwen Cai
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Zhitian Jiang
- Department of Outpatient and Emergency Office, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Zhen Zhou
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Liyan Liu
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Qihua Ling
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| | - Gang Zhao
- Department of Outpatient and Emergency Office, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
11
|
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 2023; 14:1147414. [PMID: 36937839 PMCID: PMC10017475 DOI: 10.3389/fphar.2023.1147414] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing H2O2 and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca2+ in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xingyu Pan
- Department of Pediatric Surgrey, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Yi Hua,
| |
Collapse
|
12
|
Zhang Y, Huang Y, Chen R, Chen S, Lü X. The interaction mechanism of nickel ions with L929 cells based on integrative analysis of proteomics and metabolomics data. Regen Biomater 2022; 9:rbac040. [PMID: 35812349 PMCID: PMC9258689 DOI: 10.1093/rb/rbac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aim of this paper was to study the toxicity mechanism of nickel ions (Ni2+) on L929 cells by combining proteomics and metabolomics. First, iTRAQ-based proteomics and LC/MS metabolomics analyses were used to determine the protein and metabolite expression profiles in L929 cells after treatment with 100 μM Ni2+ for 12, 24 and 48 h. A total of 177, 2191 and 2109 proteins and 40, 60 and 74 metabolites were found to be differentially expressed. Then, the metabolic pathways in which both differentially expressed proteins and metabolites were involved were identified, and three pathways with proteins and metabolites showing upstream and downstream relationships were affected at all three time points. Furthermore, the protein-metabolite-metabolic pathway network was constructed, and two important metabolic pathways involving 4 metabolites and 17 proteins were identified. Finally, the functions of the important screened metabolic pathways, metabolites and proteins were investigated and experimentally verified. Ni2+ mainly affected the expression of upstream proteins in the glutathione metabolic pathway and the arginine and proline metabolic pathway, which further regulated the synthesis of downstream metabolites, reduced the antioxidant capacity of cells, increased the level of superoxide anions and the ratio of GSSG to GSH, led to oxidative stress, affected energy metabolism and induced apoptosis.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Shulin Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2# Si Pailou, Nanjing 210096, China
| |
Collapse
|
13
|
Lee GR, Lee HI, Kim N, Lee J, Kwon M, Kang YH, Song HJ, Yeo CY, Jeong W. Dynein light chain LC8 alleviates nonalcoholic steatohepatitis by inhibiting NF-κB signaling and reducing oxidative stress. J Cell Physiol 2022; 237:3554-3564. [PMID: 35696549 DOI: 10.1002/jcp.30811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.
Collapse
Affiliation(s)
- Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ye Hee Kang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hyeong Ju Song
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
14
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
16
|
Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021; 10:foods10081854. [PMID: 34441631 PMCID: PMC8391153 DOI: 10.3390/foods10081854] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a status of imbalance between oxidants and antioxidants, resulting in molecular damage and interruption of redox signaling in an organism. Indeed, oxidative stress has been associated with many metabolic disorders due to unhealthy dietary patterns and may be alleviated by properly increasing the intake of antioxidants. Thus, it is quite important to adopt a healthy dietary mode to regulate oxidative stress and maintain cell and tissue homeostasis, preventing inflammation and chronic metabolic diseases. This review focuses on the links between dietary nutrients and health, summarizing the role of oxidative stress in ‘unhealthy’ metabolic pathway activities in individuals and how oxidative stress is further regulated by balanced diets.
Collapse
|
17
|
Hanousková B, Vávrová G, Ambrož M, Boušová I, Karlsen TA, Skálová L, Matoušková P. MicroRNAs mediated regulation of glutathione peroxidase 7 expression and its changes during adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194734. [PMID: 34339889 DOI: 10.1016/j.bbagrm.2021.194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis. The effect of the transfection of selected miRNAs mimics on GPx7 expression was tested in three cell models (HEK293, SW480, AT-MSC). The interaction of selected miRNAs with the 3'UTR of GPx7 was followed up on using a luciferase gene reporter assay. In addition, the levels of GPx7 and selected miRNAs in adipose tissue mesenchymal stem cells (AT-MSC) and mature adipocytes from four human donors were compared, with the changes in these levels during adipogenesis analyzed. Our results show for the first time that miR-137 and miR-29b bind to the 3'UTR region of GPx7 and inhibit the expression of this enzyme at the mRNA and protein level in all the human cells tested. However, no negative correlation between miR-137 nor miR-29b level and GPx7 was observed during adipogenesis. Despite the confirmed inhibition of GPx7 expression by miR-137 and miR-29b, the action of these two molecules in adipogenesis and mature adipocytes must be accompanied by other regulators.
Collapse
Affiliation(s)
- Barbora Hanousková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gabriela Vávrová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Iva Boušová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Tommy A Karlsen
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lenka Skálová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Ahn JS, Yang JW, Oh SJ, Shin YY, Kang MJ, Park HR, Seo Y, Kim HS. Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway. BMB Rep 2021. [PMID: 34078528 PMCID: PMC8249874 DOI: 10.5483/bmbrep.2021.54.6.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.
Collapse
Affiliation(s)
- Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Min-Jung Kang
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hae Ryoun Park
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Yoojin Seo
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
19
|
Bai Y, Wang W, Wang L, Ma L, Zhai D, Wang F, Shi R, Liu C, Xu Q, Chen G, Lu Z. Obacunone Attenuates Liver Fibrosis with Enhancing Anti-Oxidant Effects of GPx-4 and Inhibition of EMT. Molecules 2021; 26:molecules26020318. [PMID: 33435504 PMCID: PMC7827035 DOI: 10.3390/molecules26020318] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/13/2023] Open
Abstract
Obacunone, a limonin triterpenoid extracted from Phellodendronchinense Schneid or Dictamnus dasycarpusb Turcz plant, elicits a variety of pharmacological effects such as anti-inflammatory, anti-neoplastic, anti-oxidation, and anti-lung-fibrosis ones. However, the anti-fibrotic effect of obacunone and the detailed underlying mechanism in liver fibrosis remain unclear. Liver fibrosis is a debilitating disease threatening human health. Transforming growth factor (TGF)-β/P-Smad is a major pathway of fibrosis featured with epithelia mesenchymal transformations (EMT) and collagen depositions, accompanying with excessive oxygen-free radicals. Nrf-2 acts as a key anti-oxidative regulator driving the expressions of various antioxidant-related genes. Glutathionperoxidase-4 (GPx-4) is a member of the glutathione peroxidase family that directly inhibits phospholipid oxidation to alleviate oxidative stress. In the present study, we aimed to explore the role of obacunone in mouse liver fibrosis model induced by carbon tetrachloride (CCl4) and in hepatic stellate cells (LX2 cell line) challenging with TGF-β. Obacunone demonstrated potent ameliorative effects on liver fibrosis both in activated LX2 and in mice liver tissues with reduced levels of α-SMA, collagen1, and vimentin. Obacunone also remarkably suppressed the TGF-β/P-Smad signals and EMT process. Meanwhile, obacunone exerted a potent anti-oxidation effect by reducing the levels of reactive oxygen species (ROS) in both models. The antioxidant effect of obacunone was attributed to the activation of GPx-4 and Nrf-2. In addition, the therapeutic effect of obacunone on LX2 cells was significantly removed in vitro plus with GPx-4 antagonist RSL3, in parallel with the re-elevated levels of ROS. Thus, we demonstrate that obacunone is able to attenuate liver fibrosis via enhancing GPx-4 signal and inhibition of the TGF-β/P-Smad pathway and EMT process.
Collapse
Affiliation(s)
- Yongquan Bai
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Military Medical University, Xi’an 710083, China; (W.W.); (L.W.)
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Military Medical University, Xi’an 710083, China; (W.W.); (L.W.)
| | - Lirong Ma
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Dongsheng Zhai
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an 710083, China;
| | - Furong Wang
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Rui Shi
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Chaoyang Liu
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Qing Xu
- The College of Life Sciences, Northwest University, Xi’an 710127, China; (Y.B.); (L.M.); (F.W.); (R.S.); (C.L.); (Q.X.)
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Military Medical University, Xi’an 710083, China; (W.W.); (L.W.)
- Correspondence: (G.C.); (Z.L.); Tel.: +86-186-2904-7181 (G.C.); +86-152-0296-3679 (Z.L.)
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Military Medical University, Xi’an 710083, China; (W.W.); (L.W.)
- Correspondence: (G.C.); (Z.L.); Tel.: +86-186-2904-7181 (G.C.); +86-152-0296-3679 (Z.L.)
| |
Collapse
|
20
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|