1
|
Graziosi A, Corrieri C, Sita G, Ghelli L, Angelini S, di Villa Bianca RD, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Impact of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) exposure on microRNAs expression and their target genes in differentiated SH-SY5Y cells. Sci Rep 2025; 15:2722. [PMID: 39837947 DOI: 10.1038/s41598-025-86911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP. Our results show that both EDCs downregulated specific miRNAs-miR-18b-5p, miR-200a-3p, and miR-653-5p-affecting key processes such as cell proliferation, survival, and apoptosis. Gene expression analysis revealed the upregulation of EGFR, IGF1R, BTG2, and SH3BP4, implicating these miRNAs in the regulation of the Ras and PI3K/Akt/mTOR pathways. Our findings highlight distinct cellular responses: DEP disrupts PTEN activity, while EE2 enhances phosphorylation within the PI3K/Akt/mTOR pathway, promoting pro-survival and anti-apoptotic signals. This study emphasizes the urgent need for regulatory measures to mitigate the neurotoxic effects of EDCs and offers valuable insights into their molecular impacts on brain health.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy.
| | - Luca Ghelli
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples - Federico II, via Montesano 49, Naples, 80131, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples - Federico II, via Montesano 49, Naples, 80131, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| |
Collapse
|
2
|
Caldwell BA, Ie S, Lucas A, Li L. Ticam2 ablation facilitates monocyte exhaustion recovery after sepsis. Sci Rep 2025; 15:2059. [PMID: 39814939 PMCID: PMC11735619 DOI: 10.1038/s41598-025-86103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2-/- mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown. Using a cecal slurry injection sepsis model, we monitored the establishment and recovery of monocyte exhaustion in Ticam2-/- mice. After one week of recovery, we profiled bone marrow and splenic reservoir monocytes in Ticam2-/- mice and found that, in contrast to the persistent exhaustion observed in wild-type monocytes, Ticam2-/- monocytes largely resembled healthy controls. To determine the impact of TICAM2 ablation on innate epigenetic memory in sepsis, we measured genome-wide DNA methylation in bone marrow monocytes and found that Ticam2-/- cells exhibit a unique profile of altered methylation at CEBPE binding sites and regulatory features for key immune genes such as Dmkn and Btg1. Bearing human translational relevance, a case study of time course blood samples collected from a sepsis patient presenting with SIRS and a positive qSOFA revealed a similar effect in human monocytes, which steadily transition into an exhausted memory characterized by a CD38high; CX3CR1low; HLA-DRlow state within four days of hospital admittance. Together, our data reveal the chronic preservation of monocyte exhaustion, partially controlled by TICAM2.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Susanti Ie
- Carillion Roanoke Memorial Hospital, Roanoke, VA, 24014, USA
| | - Amy Lucas
- Carillion Roanoke Memorial Hospital, Roanoke, VA, 24014, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
3
|
Du J, Zhou T, Zhang W, Peng W. Developing the new diagnostic model by integrating bioinformatics and machine learning for osteoarthritis. J Orthop Surg Res 2024; 19:832. [PMID: 39695788 DOI: 10.1186/s13018-024-05340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common cause of disability among the elderly, profoundly affecting quality of life. This study aims to leverage bioinformatics and machine learning to develop an artificial neural network (ANN) model for diagnosing OA, providing new avenues for early diagnosis and treatment. METHODS From the Gene Expression Omnibus (GEO) database, we first obtained OA synovial tissue microarray datasets. Differentially expressed genes (DEGs) associated with OA were identified through utilization of the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, protein-protein interaction (PPI) network analysis and machine learning were employed to identify the most relevant potential feature genes of OA, and ANN diagnostic model and receiver operating characteristic (ROC) curve were constructed to evaluate the diagnostic performance of the model. In addition, the expression levels of the feature genes were verified using real-time quantitative polymerase chain reaction (qRT-PCR). Finally, immune cell infiltration analysis was performed using CIBERSORT algorithm to explore the correlation between feature genes and immune cells. RESULTS The Limma package and WGCNA identified a total of 72 DEGs related to OA, of which 12 were up-regulated and 60 were down-regulated. Then, the PPI network analysis identified 21 hub genes, and three machine learning algorithms finally screened four feature genes (BTG2, CALML4, DUSP5, and GADD45B). The ANN diagnostic model was constructed based on these four feature genes. The AUC of the training set was 0.942, and the AUC of the validation set was 0.850. In addition, the qRT-PCR validation results demonstrated a significant downregulation of BTG2, DUSP5, and GADD45 mRNA expression levels in OA samples compared to normal samples, while CALML4 mRNA expression level exhibited an upregulation. Immune cell infiltration analysis revealed B cells memory, T cells gamma delta, B cells naive, Plasma cells, T cells CD4 memory resting, and NK cells The abnormal infiltration of activated cells may be related to the progression of OA. CONCLUSIONS BTG2, CALML4, DUSP5, and GADD45B were identified as potential feature genes for OA, and an ANN diagnostic model with good diagnostic performance was developed, providing a new perspective for the early diagnosis and personalized treatment of OA.
Collapse
Affiliation(s)
- Jian Du
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- Graduate School of Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Graduate School of Hebei North University, Zhangjiakou, 075000, China
| | - Wei Zhang
- Graduate School of Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
4
|
Xia CH, Lin W, Li R, Xing X, Shang GJ, Zhang H, Gong X. Altered Cell Clusters and Upregulated Aqp1 in Connexin 50 Knockout Lens Epithelium. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39287589 PMCID: PMC11412383 DOI: 10.1167/iovs.65.11.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses. Methods Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed. Differentially expressed genes were identified, and selected DEGs were further studied by quantitative real-time PCR (RT-qPCR) analysis and Western blot analysis. Results The expression profiles of several thousand genes were identified by scRNA-seq data analysis. In comparison to the WT control, many DEGs were identified in the Cx50KO lens epithelial cells, including growth regulating transcriptional factors and genes encoding water channels. Significantly upregulated aquaporin 1 (Aqp1) gene expression was confirmed by RT-qPCR, and upregulated AQP1 protein expression was confirmed by Western blot analysis and immunostaining both in vivo and in vitro. Conclusions Lens epithelial cells exhibit an intrinsic heterogeneity of different cell clusters in regulating lens homeostasis and lens growth. Upregulated Aqp1 in Cx50KO lens epithelial cells suggests that both connexin 50 and AQP1 likely play important roles in regulating water homeostasis in lens epithelial cells.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - William Lin
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Rachel Li
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xinfang Xing
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Guangdu Jack Shang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Haiwei Zhang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
5
|
Bestepe F, Ghanem GF, Fritsche CM, Weston J, Sahay S, Mauro AK, Sahu P, Tas SM, Ruemmele B, Persing S, Good ME, Chatterjee A, Huggins GS, Salehi P, Icli B. MicroRNA-409-3p/BTG2 signaling axis improves impaired angiogenesis and wound healing in obese mice. FASEB J 2024; 38:e23459. [PMID: 38329343 DOI: 10.1096/fj.202302124rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.
Collapse
Affiliation(s)
- Furkan Bestepe
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - George F Ghanem
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Colette M Fritsche
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Weston
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sumedha Sahay
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amanda K Mauro
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Parul Sahu
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sude M Tas
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brooke Ruemmele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sarah Persing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Miranda E Good
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Abhishek Chatterjee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Payam Salehi
- Division of Vascular Surgery, Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Basak Icli
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Li Y, Xu P, Sun T, Peng S, Wang F, Wang L, Xing Y, Wang W, Zhao J, Dong Z. Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish. Mol Ecol 2024; 33:e17249. [PMID: 38133544 DOI: 10.1111/mec.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Collapse
Affiliation(s)
- Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yixuan Xing
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Wenhui Wang
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Kulikov EI, Malakheeva LI, Komarchev AS. The role of BTG1 and BTG2 genes and their effects on insulin in poultry. Front Physiol 2024; 15:1315346. [PMID: 38357499 PMCID: PMC10864570 DOI: 10.3389/fphys.2024.1315346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Egor Igorevich Kulikov
- Federal Scientific Center, All-Russian Research and Technological Poultry Institute, RAS, Sergiyev Posad, Russia
| | | | | |
Collapse
|
8
|
Li S, Ma L, Cui R. Identification of Novel Diagnostic Biomarkers and Classification Patterns for Osteoarthritis by Analyzing a Specific Set of Genes Related to Inflammation. Inflammation 2023; 46:2193-2208. [PMID: 37462886 DOI: 10.1007/s10753-023-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 11/25/2023]
Abstract
Osteoarthritis (OA) is a prevalent joint disease globally. TNFA is recognized as a crucial inflammatory cytokine that plays a significant role in the pathophysiological mechanisms that occur during the progression of OA. However, the TNFA_SIGNALING_VIA_NFKB (TSVN)-related genes (TRGs) during the progression of OA remain unclear. By conducting a combinatory analysis of OA transcriptome data from three datasets, various differentially expressed TRGs were identified. The logistic regression model was used to mine hub TRGs for OA, and a nomogram prediction model was subsequently constructed using these TRGs. To identify new molecular subgroups, we performed consensus clustering. We then conducted functional analyses, including GO, KEGG, GSVA, and GSEA, to elucidate the underlying mechanisms. To determine the immune microenvironment, we applied xCell. The logistic regression analysis identified three hub TRGs (BHLHE40, BTG2, and CCNL1) as potential biomarkers for OA. Based on these TRGs, we constructed an OA predictive model. This model has demonstrated promising results in enhancing the accuracy of OA diagnosis, as evident from the ROC analysis (AUC merged dataset = 0.937, AUC validating dataset = 0.924). We identified two molecular subtypes, C1 and C2, and found that the C1 subtype showed activation of immune- and inflammation-related pathways. The involvement of TSVN in the development and progression of OA has been established. We identified several hub genes, such as BHLHE40, BTG2, and CCNL1, that may have a significant association with the progression of OA. Furthermore, our logistic regression model based on these genes has shown promising results in accurately diagnosing OA patients.
Collapse
Affiliation(s)
- Songsheng Li
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China.
| | - Lige Ma
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruikai Cui
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Nguyen DM, Poveda C, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. The impact of vaccine-linked chemotherapy on liver health in a mouse model of chronic Trypanosoma cruzi infection. PLoS Negl Trop Dis 2023; 17:e0011519. [PMID: 37988389 PMCID: PMC10697595 DOI: 10.1371/journal.pntd.0011519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25μg Tc24-C4 protein/ 5μg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabian Gusovsky
- Global Health Research, Eisai, Inc., Cambridge, Massachusetts, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| | - Kathryn Marie Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
10
|
He Y, Yang P, Yuan T, Zhang L, Yang G, Jin J, Yu T. miR-103-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2. Int J Mol Sci 2023; 24:15318. [PMID: 37894995 PMCID: PMC10607603 DOI: 10.3390/ijms242015318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle, a vital and intricate organ, plays a pivotal role in maintaining overall body metabolism, facilitating movement, and supporting normal daily activities. An accumulating body of evidence suggests that microRNA (miRNA) holds a crucial role in orchestrating skeletal muscle growth. Therefore, the primary aim of this study was to investigate the influence of miR-103-3p on myogenesis. In our study, the overexpression of miR-103-3p was found to stimulate proliferation while suppressing differentiation in C2C12 myoblasts. Conversely, the inhibition of miR-103-3p expression yielded contrasting effects. Through bioinformatics analysis, potential binding sites of miR-103-3p with the 3'UTR region of BTG anti-proliferative factor 2 (BTG2) were predicted. Subsequently, dual luciferase assays conclusively demonstrated BTG2 as the direct target gene of miR-103-3p. Further investigation into the role of BTG2 in C2C12 myoblasts unveiled that its overexpression impeded proliferation and encouraged differentiation in these cells. Notably, co-transfection experiments showcased that the overexpression of BTG2 could counteract the effects induced by miR-103-3p. In summary, our findings elucidate that miR-103-3p promotes proliferation while inhibiting differentiation in C2C12 myoblasts by targeting BTG2.
Collapse
Affiliation(s)
- Yulin He
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peiyu Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tiantian Yuan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lin Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
11
|
Zhou LH, Feng YQ, Hu YX, Huang H. [Analysis of the feasibility and prognostic value of circulating tumor DNA monitoring in detecting gene mutations in patients with diffuse large B-cell lymphoma receiving chimeric antigen receptor T-cell therapy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:805-812. [PMID: 38049331 PMCID: PMC10694077 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 12/06/2023]
Abstract
Objective: To explore the prognostic value of circulating tumor DNA (ctDNA) testing in patients with refractory/relapsed diffuse large B-cell lymphoma (R/R DLBCL) undergoing chimeric antigen receptor T-cell (CAR-T) therapy, and to guide the prevention and subsequent treatment of CAR-T-cell therapy failure. Methods: In this study, 48 patients with R/R DLBCL who received CAR-T-cell therapy at the First Affiliated Hospital of Zhejiang University School of Medicine between December 2017 and March 2022 were included. Furthermore, ctDNA testing of 187 lymphoma-related gene sets was performed on peripheral blood samples obtained before treatment. The patients were divided into complete remission and noncomplete remission groups. The chi-square test and t-test were used to compare group differences, and the Log-rank test was used to compare the differences in survival. Results: Among the patients who did not achieve complete remission after CAR-T-cell therapy for R/R DLBCL, the top ten genes with the highest mutation frequencies were TP53 (41%), TTN (36%), BCR (27%), KMT2D (27%), IGLL5 (23%), KMT2C (23%), MYD88 (23%), BTG2 (18%), MUC16 (18%), and SGK1 (18%). Kaplan-Meier survival analysis revealed that patients with ctDNA mutation genes >10 had poorer overall survival (OS) rate (1-year OS rate: 0 vs 73.8%, P<0.001) and progression-free survival (PFS) rate (1-year PFS rate: 0 vs 51.8%, P=0.011) compared with patients with ctDNA mutation genes ≤10. Moreover, patients with MUC16 mutation positivity before treatment had better OS (2-year OS rate: 56.8% vs 26.7%, P=0.046), whereas patients with BTG2 mutation positivity had poorer OS (1-year OS rate: 0 vs 72.5%, P=0.005) . Conclusion: ctDNA detection can serve as a tool for evaluating the efficacy of CAR-T-cell therapy in patients with R/R DLBCL. The pretreatment gene mutation burden, mutations in MUC16 and BTG2 have potential prognostic value.
Collapse
Affiliation(s)
- L H Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Liangzhu Laboratory, Zhejiang University Medical Center; Institute of Hematology, Zhejiang University; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310003, China
| | - Y Q Feng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Liangzhu Laboratory, Zhejiang University Medical Center; Institute of Hematology, Zhejiang University; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310003, China
| | - Y X Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Liangzhu Laboratory, Zhejiang University Medical Center; Institute of Hematology, Zhejiang University; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310003, China
| | - H Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Liangzhu Laboratory, Zhejiang University Medical Center; Institute of Hematology, Zhejiang University; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310003, China
| |
Collapse
|
12
|
Suárez-Calvet X, Fernández-Simón E, Natera D, Jou C, Pinol-Jurado P, Villalobos E, Ortez C, Monceau A, Schiava M, Codina A, Verdu-Díaz J, Clark J, Laidler Z, Mehra P, Gokul-Nath R, Alonso-Perez J, Marini-Bettolo C, Tasca G, Straub V, Guglieri M, Nascimento A, Diaz-Manera J. Decoding the transcriptome of Duchenne muscular dystrophy to the single nuclei level reveals clinical-genetic correlations. Cell Death Dis 2023; 14:596. [PMID: 37673877 PMCID: PMC10482944 DOI: 10.1038/s41419-023-06103-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.
Collapse
Affiliation(s)
- Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Daniel Natera
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Patricia Pinol-Jurado
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Carlos Ortez
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Anna Codina
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - José Verdu-Díaz
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Rasya Gokul-Nath
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jorge Alonso-Perez
- Neuromuscular Disease Unit. Neurology Department. Hospital Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Andrés Nascimento
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain.
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK.
| |
Collapse
|
13
|
Kolabas ZI, Kuemmerle LB, Perneczky R, Förstera B, Ulukaya S, Ali M, Kapoor S, Bartos LM, Büttner M, Caliskan OS, Rong Z, Mai H, Höher L, Jeridi D, Molbay M, Khalin I, Deligiannis IK, Negwer M, Roberts K, Simats A, Carofiglio O, Todorov MI, Horvath I, Ozturk F, Hummel S, Biechele G, Zatcepin A, Unterrainer M, Gnörich J, Roodselaar J, Shrouder J, Khosravani P, Tast B, Richter L, Díaz-Marugán L, Kaltenecker D, Lux L, Chen Y, Zhao S, Rauchmann BS, Sterr M, Kunze I, Stanic K, Kan VWY, Besson-Girard S, Katzdobler S, Palleis C, Schädler J, Paetzold JC, Liebscher S, Hauser AE, Gokce O, Lickert H, Steinke H, Benakis C, Braun C, Martinez-Jimenez CP, Buerger K, Albert NL, Höglinger G, Levin J, Haass C, Kopczak A, Dichgans M, Havla J, Kümpfel T, Kerschensteiner M, Schifferer M, Simons M, Liesz A, Krahmer N, Bayraktar OA, Franzmeier N, Plesnila N, Erener S, Puelles VG, Delbridge C, Bhatia HS, Hellal F, Elsner M, Bechmann I, Ondruschka B, Brendel M, Theis FJ, Erturk A. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 2023; 186:3706-3725.e29. [PMID: 37562402 PMCID: PMC10443631 DOI: 10.1016/j.cell.2023.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.
Collapse
Affiliation(s)
- Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Louis B Kuemmerle
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Perneczky
- Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Benjamin Förstera
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ozum Sehnaz Caliskan
- Institute for Diabetes and Obesity, Helmholtz Center Munich and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Luciano Höher
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | | | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Mihail I Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; School of Computation, Information and Technology (CIT), TUM, Boltzmannstr. 3, 85748 Garching, Germany
| | - Furkan Ozturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jay Roodselaar
- Charité - Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pardis Khosravani
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Benjamin Tast
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lisa Richter
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Díaz-Marugán
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Doris Kaltenecker
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Diabetes and Cancer, Helmholtz Munich, Munich, Germany
| | - Laurin Lux
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Ying Chen
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, 80336 Munich, Germany; Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK; Institute of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ines Kunze
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karen Stanic
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes C Paetzold
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Department of Computing, Imperial College London, London, UK
| | - Sabine Liebscher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Anja E Hauser
- Charité - Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christian Braun
- Institute of Legal Medicine, Faculty of Medicine, LMU Munich, Germany
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Suheda Erener
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Claire Delbridge
- Institute of Pathology, Department of Neuropathology, Technical University Munich, TUM School of Medicine, Munich, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technische Universität München, Garching bei München, Germany
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Nguyen DM, Poveda C, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. The impact of vaccine-linked chemotherapy on liver health in a mouse model of chronic Trypanosoma cruzi infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548497. [PMID: 37503013 PMCID: PMC10369866 DOI: 10.1101/2023.07.11.548497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25μg Tc24-C4 protein/5μg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| | - Kathryn M. Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Song J, Xu F, An L, Yin Y, Liu J, Chai J, Yang Y, Li M, Jia Q, Wang Z. BTG2 suppresses the growth and metastasis of cervical squamous cell carcinoma. Pathol Res Pract 2023; 247:154577. [PMID: 37257243 DOI: 10.1016/j.prp.2023.154577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cervical cancer is the fourth most common malignancy in women, of which cervical squamous cell carcinoma (CESC) is the main pathological type of cervical cancer. B-cell translocation gene 2 (BTG2) protein has been recognized as a tumor suppressor in several cancer types. However, BTG2 expression and molecular function in CESC are unknown. METHODS In this study, we first assessed the expression of BTG2 in tumor tissue specimens from CESC patients using immunohistochemical staining and real-time quantitative PCR, and explored the relationship between BTG2 expression status and clinical manifestations. Next, we constructed BTG2 knockdown and overexpression CESC cell lines to observe the effects of BTG2 on CESC proliferation and metastasis at the cellular level. Finally, we employed a nude mouse xenograft tumor model in an in vivo experiment to observe the effect of BTG2 on tumorigenesis in vivo. RESULTS The results showed that the expression of BTG2 protein was lower in CESC tissues than in normal tissues, and high BTG2 expression was associated with better survival in CESC patients versus CESC patients. The results of cellular assays confirm that overexpression of BTG2 inhibits the proliferation, migration and metastasis of CESC cells. Nude mouse xenograft tumor model showed that overexpression of BTG2 inhibited tumor growth in vivo, and conversely knockdown of BTG2 promoted tumor growth. CONCLUSION In summary, our data suggest that BTG2 acts as a tumor suppressor in CESC and inhibits the growth and metastasis of CESC. BTG2 may serve as a potential prognostic marker in CESC and is expected to provide a therapeutic strategy for patients with CESC.
Collapse
Affiliation(s)
- Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fangcheng Xu
- Department of Military Medicine and Special Subject, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Lingbo An
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Yuxin Yin
- Department of Urology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Jusoh AR, Al-Astani Bin Tengku Din TAD, Abdullah-Zawawi MR, Abdul Rahman WFW, Nafi SNM, Romli RC, Hashim EKM, Ab Patar MNA, Yahya MM. Unraveling Roles of miR-27b-3p as a Potential Biomarker for Breast Cancer in Malay Women via Bioinformatics Analysis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:257-274. [PMID: 38751652 PMCID: PMC11092903 DOI: 10.22088/ijmcm.bums.12.3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 05/18/2024]
Abstract
Abnormal miRNA expression has been associated with breast cancer. Knowing miRNA and its target genes gives a better understanding of the biological mechanism behind the development of breast cancer. Here, we evaluated the potential prognostic and predictive values of miRNAs in breast cancer development by analyzing Malay women with breast cancer expression profiles. Seven differentially expressed miRNAs (DEMs) were subjected to miRNA‒target interaction network analysis (MTIN). A comprehensive MTIN was developed by integrating the information on miRNA and target gene interactions from five independent databases, including DIANA-TarBase, miRTarBase, miRNet, miRDB, and DIANA-microT. To understand the role of miRNAs in the progress of breast cancer, functional enrichment analysis of the miRNA target genes was conducted, followed by survival analysis to assess the prognostic values of the miRNAs and their target genes. In total, 1416 interactions were discovered among seven DEMs and 1274 target genes with a confidence score (CS) > 0.8. The overall survival analysis of the three most DEMs revealed a significant association of miR-27b-3p with poor prognosis in the TCGA breast cancer patient cohort. Further functional analysis of 606 miR-27b-3p target genes revealed their involvement in cancer-related processes and pathways, including the progesterone receptor signaling pathway, PI3K-Akt pathway, and EGFR transactivation. Notably, six high-confidence target genes (BTG2, DNAJC13, GRB2, GSK3B, KRAS, and UBR5) were discovered to be associated with worse overall survival in breast cancer patients, underscoring their essential roles in breast cancer development. Thus, we suggest that miR-27b-3p has significant potential as a biomarker for detecting breast cancer and can provide valuable understanding regarding the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Ab. Rashid Jusoh
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Tengku Ahmad Damitri Al-Astani Bin Tengku Din
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Roslaini Che Romli
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Mohd Nor Azim Ab Patar
- 6 Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Health Campus, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| |
Collapse
|
17
|
Zheng HC, Xue H, Zhang CY, Shi KH, Zhang R. The roles of BTG1 mRNA expression in cancers: A bioinformatics analysis. Front Genet 2022; 13:1006636. [PMID: 36339000 PMCID: PMC9633688 DOI: 10.3389/fgene.2022.1006636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
BTG1 (B-cell translocation gene 1) may inhibit proliferation and cell cycle progression, induce differentiation, apoptosis, and anti-inflammatory activity. The goal of this study was to clarify the clinicopathological and prognostic significances of BTG1 mRNA expression and related signal pathways in cancers. Using the Oncomine, TCGA (the cancer genome atlas), xiantao, UALCAN (The University of ALabama at Birmingham Cancer data analysis Portal), and Kaplan-Meier plotter databases, we undertook a bioinformatics study of BTG1 mRNA expression in cancers. BTG1 expression was lower in gastric, lung, breast and ovarian cancer than normal tissue due to its promoter methylation, which was the opposite to BTG1 expression. BTG1 expression was positively correlated with dedifferentiation and histological grading of gastric cancer (p < 0.05), with squamous subtype and young age of lung cancer (p < 0.05), with infrequent lymph node metastasis, low TNM staging, young age, white race, infiltrative lobular subtype, Her2 negativity, favorable molecular subtyping, and no postmenopause status of breast cancer (p < 0.05), and with elder age, venous invasion, lymphatic invasion, and clinicopathological staging of ovarian cancer (p < 0.05). BTG1 expression was negatively correlated with favorable prognosis of gastric, lung or ovarian cancer patients, but the converse was true for breast cancer (p < 0.05). KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that the top signal pathways included cytokine-cytokine receptor interaction, cell adhesion molecules, chemokine, immune cell receptor and NF (nuclear factor)-κB signal pathways in gastric and breast cancer. The top hub genes mainly contained CD (cluster of differentiation) antigens in gastric cancer, FGF (fibroblast growth factor)-FGFR (FGF receptor) in lung cancer, NADH (nicotinamide adenine dinucleotide): ubiquinone oxidoreductase in breast cancer, and ribosomal proteins in ovarian cancer. BTG1 expression might be employed as a potential marker to indicate carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai-hang Shi
- Department of Dermatology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|