1
|
Zhang MF, Xie WL, Chen C, Li CX, Xu JH. Computational redesign of taxane-10β-hydroxylase for de novo biosynthesis of a key paclitaxel intermediate. Appl Microbiol Biotechnol 2023; 107:7105-7117. [PMID: 37736790 DOI: 10.1007/s00253-023-12784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Paclitaxel (Taxol®) is the most popular anticancer diterpenoid predominantly present in Taxus. The core skeleton of paclitaxel is highly modified, but researches on the cytochrome P450s involved in post-modification process remain exceedingly limited. Herein, the taxane-10β-hydroxylase (T10βH) from Taxus cuspidata, which is the third post-modification enzyme that catalyzes the conversion of taxadiene-5α-yl-acetate (T5OAc) to taxadiene-5α-yl-acetoxy-10β-ol (T10OH), was investigated in Escherichia coli by combining computation-assisted protein engineering and metabolic engineering. The variant of T10βH, M3 (I75F/L226K/S345V), exhibited a remarkable 9.5-fold increase in protein expression, accompanied by respective 1.3-fold and 2.1-fold improvements in turnover frequency (TOF) and total turnover number (TTN). Upon integration into the engineered strain, the variant M3 resulted in a substantial enhancement in T10OH production from 0.97 to 2.23 mg/L. Ultimately, the titer of T10OH reached 3.89 mg/L by fed-batch culture in a 5-L bioreactor, representing the highest level reported so far for the microbial de novo synthesis of this key paclitaxel intermediate. This study can serve as a valuable reference for further investigation of other P450s associated with the artificial biosynthesis of paclitaxel and other terpenoids. KEY POINTS: • The T10βH from T. cuspidata was expressed and engineered in E. coli unprecedentedly. • The expression and activity of T10βH were improved through protein engineering. • De novo biosynthesis of T10OH was achieved in E. coli with a titer of 3.89 mg/L.
Collapse
Affiliation(s)
- Mei-Fang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Liang Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
2
|
Poborsky M, Crocoll C, Motawie MS, Halkier BA. Systematic engineering pinpoints a versatile strategy for the expression of functional cytochrome P450 enzymes in Escherichia coli cell factories. Microb Cell Fact 2023; 22:219. [PMID: 37880718 PMCID: PMC10601251 DOI: 10.1186/s12934-023-02219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Production of plant secondary metabolites in engineered microorganisms provides a scalable and sustainable alternative to their sourcing from nature or through chemical synthesis. However, the biosynthesis of many valuable plant-derived products relies on cytochromes P450 - enzymes notoriously difficult to express in microbes. To improve their expression in Escherichia coli, an arsenal of engineering strategies was developed, often paired with an extensive screening of enzyme variants. Here, attempting to identify a broadly applicable strategy, we systematically evaluated six common cytochrome P450 N-terminal modifications and their effect on in vivo activity of enzymes from the CYP79 and CYP83 families. We found that transmembrane domain truncation was the only modification with a significantly positive effect for all seven tested enzymes, increasing their product titres by 2- to 170-fold. Furthermore, when comparing the changes in the protein titre and product generation, we show that higher protein expression does not directly translate to higher in vivo activity, thus making the protein titre an unreliable screening target in the context of cell factories. We propose the transmembrane domain truncation as a first-line approach that enables the expression of wide range of highly active P450 enzymes in E. coli and circumvents the time-consuming screening process. Our results challenge the notion that the engineering strategy must be tailored for each individual cytochrome P450 enzyme and have the potential to simplify and accelerate the future design of E. coli cell factories.
Collapse
Affiliation(s)
- Michal Poborsky
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, Section for Plant Biochemistry, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Barbara Ann Halkier
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| |
Collapse
|
3
|
Heterologous Expression of Recombinant Human Cytochrome P450 (CYP) in Escherichia coli: N-Terminal Modification, Expression, Isolation, Purification, and Reconstitution. BIOTECH 2023; 12:biotech12010017. [PMID: 36810444 PMCID: PMC9944785 DOI: 10.3390/biotech12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.
Collapse
|
4
|
Hausjell J, Halbwirth H, Spadiut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep 2018; 38:BSR20171290. [PMID: 29436484 PMCID: PMC5835717 DOI: 10.1042/bsr20171290] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (P450s) comprise one of the largest known protein families. They occur in every kingdom of life and catalyze essential reactions, such as carbon source assimilation, synthesis of hormones and secondary metabolites, or degradation of xenobiotics. Due to their outstanding ability of specifically hydroxylating complex hydrocarbons, there is a great demand to use these enzymes for biocatalysis, including applications at an industrial scale. Thus, the recombinant production of these enzymes is intensively investigated. However, especially eukaryotic P450s are difficult to produce. Challenges are faced due to complex cofactor requirements and the availability of a redox-partner (cytochrome P450 reductase, CPR) can be a key element to get active P450s. Additionally, most eukaryotic P450s are membrane bound which complicates the recombinant production. This review describes current strategies for expression of P450s in the microbial cell factories Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris.
Collapse
Affiliation(s)
- Johanna Hausjell
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Heidi Halbwirth
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| |
Collapse
|
5
|
Jeong D, Park HG, Lim YR, Lee Y, Kim V, Cho MA, Kim D. Terfenadine metabolism of human cytochrome P450 2J2 containing genetic variations (G312R, P351L and P115L). Drug Metab Pharmacokinet 2017; 33:61-66. [PMID: 29223463 DOI: 10.1016/j.dmpk.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
The human cytochrome P450 2J2 is involved in several metabolic reactions, including the oxidation of important therapeutics and epoxidation of endogenous arachidonic acid. At least ten genetic variations of P450 2J2 have been identified, but their effects on enzymatic activity have not been clearly characterized. Here, we evaluated the functional effects of three genetic variations of P450 2J2 (G312R, P351L, and P115L). Recombinant enzymes of wild-type and three variant P450 2J2 were heterologously expressed in Escherichia coli and purified. P450 expression levels in the wild-type and two variants (P351L and P115L) were 142-231 nmol per liter culture, while the G312R variant showed no holoenzyme peak in the CO-binding spectra. Substrate binding titrations to terfenadine showed that the wild-type and two variants displayed Kd values of 0.90-2.2 μM, indicating tight substrate binding affinities. Steady-state kinetic analysis for t-butyl methyl hydroxylation of terfenadine indicated that two variant enzymes had similar kcat and Km values to wild-type P450 2J2. The locations of mutations in three-dimensional structural models indicated that the G312R is located in the I-helix region near the formal active site in P450 2J2 and its amino acid change affected the structural stability of the P450 heme environment.
Collapse
Affiliation(s)
- Dabin Jeong
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Yejin Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea.
| |
Collapse
|
6
|
Lim YR, Han S, Kim JH, Park HG, Lee GY, Le TK, Yun CH, Kim D. Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites. Biomol Ther (Seoul) 2017; 25:171-176. [PMID: 27956713 PMCID: PMC5340542 DOI: 10.4062/biomolther.2016.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022] Open
Abstract
Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.
Collapse
Affiliation(s)
- Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Ga-Young Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| |
Collapse
|
7
|
Biochemical analysis of recombinant CYP4A11 allelic variant enzymes: W126R, K276T and S353G. Drug Metab Pharmacokinet 2016; 31:445-450. [DOI: 10.1016/j.dmpk.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
8
|
Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 2016; 7:10390. [PMID: 26847395 PMCID: PMC4748248 DOI: 10.1038/ncomms10390] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accomplished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l(-1) from glycerol, corresponding to a 300-fold increase from recently developed yeast systems. This improvement is presumably due to strong activity of enzymes related to thebaine synthesis from (R)-reticuline in E. coli. Furthermore, by adding two genes to the thebaine production system, we demonstrate the biosynthesis of hydrocodone, a clinically important opioid. Improvements in opiate production in this E. coli system represent a major step towards the development of alternative opiate production systems.
Collapse
|
9
|
Lim YR, Kim IH, Han S, Park HG, Ko MJ, Chun YJ, Yun CH, Kim D. Functional Significance of Cytochrome P450 1A2 Allelic Variants, P450 1A2*8, *15, and *16 (R456H, P42R, and R377Q). Biomol Ther (Seoul) 2015; 23:189-94. [PMID: 25767688 PMCID: PMC4354321 DOI: 10.4062/biomolther.2015.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
P450 1A2 is responsible for the metabolism of clinically important drugs and the metabolic activation of environmental chemicals. Genetic variations of P450 1A2 can influence its ability to perform these functions, and thus, this study aimed to characterize the functional significance of three P450 1A2 allelic variants containing nonsynonymous single nucleotide polymorphisms (P450 1A2*8, R456H; *15, P42R; *16, R377Q). Variants containing these SNPs were constructed and the recombinant enzymes were expressed and purified in Escherichia coli. Only the P42R variant displayed the typical CO-binding spectrum indicating a P450 holoenzyme with an expression level of ∼ 170 nmol per liter culture, but no P450 spectra were observed for the two other variants. Western blot analysis revealed that the level of expression for the P42R variant was lower than that of the wild type, however the expression of variants R456H and R377Q was not detected. Enzyme kinetic analyses indicated that the P42R mutation in P450 1A2 resulted in significant changes in catalytic activities. The P42R variant displayed an increased catalytic turnover numbers (kcat) in both of methoxyresorufin O-demethylation and phenacetin O-deethylation. In the case of phenacetin O-deethylation analysis, the overall catalytic efficiency (kcat/Km) increased up to 2.5 fold with a slight increase of its Km value. This study indicated that the substitution P42R in the N-terminal proline-rich region of P450 contributed to the improvement of catalytic activity albeit the reduction of P450 structural stability or the decrease of substrate affinity. Characterization of these polymorphisms should be carefully examined in terms of the metabolism of many clinical drugs and environmental chemicals.
Collapse
Affiliation(s)
- Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - In-Hyeok Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mi-Jung Ko
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|