1
|
Encapsulated Activated Grape Seed Extract: A Novel Formulation with Anti-Aging, Skin-Brightening, and Hydration Properties. COSMETICS 2021. [DOI: 10.3390/cosmetics9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a master regulatory protein that plays a critical role in oxidative stress signaling. A novel, proprietary grape seed extract called Activated Grape Seed Extract (AGSE), enriched for PP2A-activating flavonoids, was recently developed and demonstrated to have antioxidant and anti-inflammatory activities. AGSE is a purple-colored powder, with limited solubility restricting its use in a broad range of formulations. Our aim was to develop a formulation that reduced the color and increased the solubility of AGSE, allowing its skin-health-enhancing properties to be utilized in a wider array of products, and to test it clinically. Encapsulation was performed utilizing a liposome and hydroxypropyl-β-cyclodextrin, (HPCD)-based approach to produce Encapsulated AGSE (E-AGSE). Human dermal fibroblasts and epidermal keratinocytes were used to determine expression levels of aging and dermal–epidermal junction (DEJ) markers. EpiDerm™ was UVB-irradiated to measure the effects against cytokine release, DNA damage, apoptosis, and skin barrier. Human melanocytes were used to determine melanin production and mushroom tyrosinase was used for inhibitory activity. A 4-week, 31-subject sensitive-skin clinical was performed with 2% E-AGSE Essence to assess its activity on human skin. We demonstrated that E-AGSE inhibits PP2A demethylation, increases key anti-aging (collagen I, III, elastin) and DEJ markers, protects against UVB-induced DNA damage, reduces inflammation, and promotes filaggrin in vitro. Moreover, E-AGSE reduces melanin production via tyrosinase inhibition. Clinical assessment of E-AGSE showed that it reduces the appearance of wrinkles, brightens the skin, and boosts hydration. E-AGSE is a novel grape seed extract formulation enriched for PP2A-activating flavonoids that is clinically effective in sensitive skin, providing several benefits.
Collapse
|
2
|
Huber KL, Fernández JR, Webb C, Rouzard K, Healy J, Tamura M, Stock JB, Stock M, Pérez E. AGSE: A Novel Grape Seed Extract Enriched for PP2A Activating Flavonoids That Combats Oxidative Stress and Promotes Skin Health. Molecules 2021; 26:molecules26216351. [PMID: 34770760 PMCID: PMC8587015 DOI: 10.3390/molecules26216351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022] Open
Abstract
Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer’s Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE’s activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin.
Collapse
Affiliation(s)
- Kristen L. Huber
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - José R. Fernández
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Corey Webb
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Karl Rouzard
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Jason Healy
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Masanori Tamura
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Jeffry B. Stock
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08852, USA
| | - Maxwell Stock
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Eduardo Pérez
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
- Correspondence: ; Tel.: +1-732-329-6344; Fax: +1-732-329-8344
| |
Collapse
|
3
|
Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther 2021; 21:225. [PMID: 34481509 PMCID: PMC8417970 DOI: 10.1186/s12906-021-03398-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cisplatin is an outstanding anticancer drug, but its use has been decreased remarkably due to sever nephrotoxicity. R. vesicarius L. is a leafy vegetable that is evident with anti-angeogenic, anti-inflammatory, anti-proliferative, hepatoprotective, and nephroprotective potential. Therefore, this study was designed to inspect its methanol extract (RVE) for possible nephroprotective effect. METHODS Primarily, in vitro antioxidant activity of RVE was confirmed based on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging aptitude. Thereafter, Swiss Albino male mice were treated with cisplatin (2.5 mg/kg) for 5 successive days to induce nephrotoxicity. Recovery from nephrotoxicity was scrutinized by treating the animals with RVE (25, 50, and 100 mg/kg) intraperitoneally (i.p.) for the next 5 consecutive days. After completion of treatment, mice were sacrificed and kidneys were collected. Part of it was homogenized in sodium phosphate buffer for evaluating malondialdehyde (MDA) level, another part was used to evaluate gene (NQO1, p53, and Bcl-2) expression. Moreover, the hydrogen peroxide (H2O2) neutralizing capacity of RVE was evaluated in HK-2 cells in vitro. Finally, bioactive phytochemicals in RVE were determined using gas chromatography-mass spectrometry (GC-MS). RESULTS RVE showed in vitro antioxidant activity in a dose-dependent fashion with 37.39 ± 1.89 μg/mL IC50 value. Treatment with RVE remarkably (p < 0.05) decreased MDA content in kidney tissue. Besides, the expression of NQO, p53, and Bcl-2 genes was significantly (p < 0.05) mitigated in a dose-dependent manner due to the administration of RVE. RVE significantly (p < 0.05) reversed the H2O2 level in HK-2 cells to almost normal. From GC-MS, ten compounds including three known antioxidants "4H-Pyran-4-one, 2, 3-dihydro-3,5-dihydroxy-6-methyl-", "Hexadecanoic acid", and "Squalene" were detected. The extract was rich with an alkaloid "13-Docosenamide". CONCLUSION Overall, RVE possesses a protective effect against cisplatin-induced kidney damage.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Most Sayla Tasmin
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ariful Haque
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
4
|
Mohammadi H, Karimifar M, Heidari Z, Zare M, Amani R. The effects of wheat germ consumption on mental health and brain-derived neurotrophic factor in subjects with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 2021; 25:46-53. [PMID: 33983107 DOI: 10.1080/1028415x.2019.1708032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: Herbals, as bioactive foods, have been one of the most popular alternatives and complementary treatments in preventing and controlling type 2 diabetes mellitus (T2DM). The aim of the present trial was to examine the effects of wheat germ consumption on mental health and brain-derived neurotrophic factor (BDNF) among patients with T2DM.Methods: Eighty participants with T2DM were randomly allocated to receive 20 g wheat germ (n = 40) or placebo (n = 40) in a randomized double-blind clinical trial for 12 weeks. Depression, anxiety, stress scale-21 (DASS-21) questionnaire was used to assess the mental health of study participants. Serum BDNF was assessed at the baseline and end of intervention. Anthropometric indices were measured at the baseline, 6 and 12 weeks during the intervention.Results: A total of 75 subjects completed the trial. Compared with the placebo, wheat germ consumption led to a significant reduction in depression (P = .03) and stress (P = .04) scores. Moreover, a significant increase in serum BDNF concentrations was observed in the wheat germ group (P = .004), while there was no significant difference between the groups. Wheat germ intake had no significant effects on anthropometric indices and anxiety scores between the groups.Conclusion: Our findings showed that wheat germ consumption for 12 weeks could significantly reduce the stress and depression scores but had no significant effects on anxiety scale and anthropometric outcomes in patients with T2DM.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Zare
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Huber KL, Fernández JR, Webb C, Rouzard K, Healy J, Tamura M, Voronkov M, Stock JB, Stock M, Pérez E. HYVIA™: A novel, topical chia seed extract that improves skin hydration. J Cosmet Dermatol 2020; 19:2386-2393. [PMID: 32378329 DOI: 10.1111/jocd.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chia seeds have gained importance as it is the highest known plant source of omega-3 (ω3) polyunsaturated fatty acids. Specifically, chia seeds possess ω3 α-linolenic acid (ALA) and ω6 linoleic acid (LA), together known as Vitamin F, which play an important role in maintaining skin function. Protein phosphatase 2A (PP2A) is a master regulatory protein that plays a critical role in skin barrier function and its activity is modulated by natural lipids. AIMS Obtain a chia seed extract (HYVIA™) with significant higher levels of Vitamin F, determine in vitro PP2A activity and skin hydration markers compared to other commercial chia seed extracts (CCSEs), and evaluate the potential skin hydration benefits clinically in human subjects. METHODS A PP2A demethylation assay was utilized to assess PP2A activity. In vitro studies utilizing normal human epidermal keratinocytes (NHEKs) were treated with HYVIA™ and gene expression of hydration markers (AQP3, HAS2) were measured by quantitative PCR (qPCR). A 16-subject clinical trial was performed with 0.1% HYVIA™ formulated in a cream and applied topically to assess its skin moisturizing potential. RESULTS We demonstrate here that HYVIA™, ALA, and LA inhibit PP2A demethylation, boosting PP2A activity, while most other CCSEs do not. Unlike other CCSEs, HYVIA™ increases keratinocyte hydration factors aquaporin-3 and hyaluronic acid synthase-2 in vitro. Clinical assessment of 0.1% HYVIA™ cream shows that HYVIA™ improves skin hydration. CONCLUSIONS HYVIA™ is a novel chia seed extract, enriched for Vitamin F, that modulates PP2A activity and clinically improves skin hydration and barrier function.
Collapse
Affiliation(s)
| | | | - Corey Webb
- Signum Biosciences, Monmouth Junction, New Jersey, USA
| | - Karl Rouzard
- Signum Biosciences, Monmouth Junction, New Jersey, USA
| | - Jason Healy
- Signum Biosciences, Monmouth Junction, New Jersey, USA
| | | | | | - Jeffry B Stock
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Maxwell Stock
- Signum Biosciences, Monmouth Junction, New Jersey, USA
| | - Eduardo Pérez
- Signum Biosciences, Monmouth Junction, New Jersey, USA
| |
Collapse
|
6
|
Hwangbo H, Choi EO, Kim MY, Kwon DH, Ji SY, Lee H, Hong SH, Kim GY, Hwang HJ, Hong SH, Choi YH. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci Trends 2020; 14:23-34. [PMID: 32092745 DOI: 10.5582/bst.2019.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dong-eui University, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
7
|
trans-Fatty acids facilitate DNA damage-induced apoptosis through the mitochondrial JNK-Sab-ROS positive feedback loop. Sci Rep 2020; 10:2743. [PMID: 32066809 PMCID: PMC7026443 DOI: 10.1038/s41598-020-59636-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
trans-Fatty acids (TFAs) are unsaturated fatty acids that contain one or more carbon-carbon double bonds in trans configuration. Epidemiological evidence has linked TFA consumption with various disorders, including cardiovascular diseases. However, the underlying pathological mechanisms are largely unknown. Here, we show a novel toxic mechanism of TFAs triggered by DNA damage. We found that elaidic acid (EA) and linoelaidic acid, major TFAs produced during industrial food manufacturing (so-called as industrial TFAs), but not their corresponding cis isomers, facilitated apoptosis induced by doxorubicin. Consistently, EA enhanced UV-induced embryonic lethality in C. elegans worms. The pro-apoptotic action of EA was blocked by knocking down Sab, a c-Jun N-terminal kinase (JNK)-interacting protein localizing at mitochondrial outer membrane, which mediates mutual amplification of mitochondrial reactive oxygen species (ROS) generation and JNK activation. EA enhanced doxorubicin-induced mitochondrial ROS generation and JNK activation, both of which were suppressed by Sab knockdown and pharmacological inhibition of either mitochondrial ROS generation, JNK, or Src-homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) as a Sab-associated protein. These results demonstrate that in response to DNA damage, TFAs drive the mitochondrial JNK-Sab-ROS positive feedback loop and ultimately apoptosis, which may provide insight into the common pathogenetic mechanisms of diverse TFA-related disorders.
Collapse
|
8
|
Park C, Cha HJ, Choi EO, Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Hong SH, Cheong J, Kim GY, Yun SJ, Hwang HJ, Kim WJ, Choi YH. Isorhamnetin Induces Cell Cycle Arrest and Apoptosis Via Reactive Oxygen Species-Mediated AMP-Activated Protein Kinase Signaling Pathway Activation in Human Bladder Cancer Cells. Cancers (Basel) 2019; 11:cancers11101494. [PMID: 31590241 PMCID: PMC6826535 DOI: 10.3390/cancers11101494] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin is an O-methylated flavonol that is predominantly found in the fruits and leaves of various plants, which have been used for traditional herbal remedies. Although several previous studies have reported that this flavonol has diverse health-promoting effects, evidence is still lacking for the underlying molecular mechanism of its anti-cancer efficacy. In this study, we examined the anti-proliferative effect of isorhamnetin on human bladder cancer cells and found that isorhamnetin triggered the gap 2/ mitosis (G2/M) phase cell arrest and apoptosis. Our data showed that isorhamnetin decreased the expression of Wee1 and cyclin B1, but increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1, and increased p21 was bound to Cdk1. In addition, isorhamnetin-induced apoptosis was associated with the increased expression of the Fas/Fas ligand, reduced ratio of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (Bax) expression, cytosolic release of cytochrome c, and activation of caspases. Moreover, isorhamnetin inactivated the adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway by diminishing the adenosine triphosphate (ATP) production due to impaired mitochondrial function. Furthermore, isorhamnetin stimulated production of intracellular reactive oxygen species (ROS); however, the interruption of ROS generation using a ROS scavenger led to an escape from isorhamnetin-mediated G2/M arrest and apoptosis. Collectively, this is the first report to show that isorhamnetin inhibited the proliferation of human bladder cancer cells by ROS-dependent arrest of the cell cycle at the G2/M phase and induction of apoptosis. Therefore, our results provide an important basis for the interpretation of the anti-cancer mechanism of isorhamnetin in bladder cancer cells and support the rationale for the need to evaluate more precise molecular mechanisms and in vivo anti-cancer properties.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea;
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea;
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwang-Bo
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Chungbuk 8644, Korea;
| | - Hye Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-Eui University, Busan 47340, Korea;
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Chungbuk 8644, Korea;
- Correspondence: (W.-J.K.); (Y.H.C.); Tel.: +82-43-269-6136 (W.-J.K.); +82-51-850-7413 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea; (E.O.C.); (H.L.); (H.H.-B.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: (W.-J.K.); (Y.H.C.); Tel.: +82-43-269-6136 (W.-J.K.); +82-51-850-7413 (Y.H.C.)
| |
Collapse
|