1
|
Scaramele NF, Troiano JA, Felix JDS, Costa SF, Almeida MC, Florencio de Athayde FR, Soares MF, Lopes MFDS, Furlan ADO, de Lima VMF, Lopes FL. Leishmania infantum infection modulates messenger RNA, microRNA and long non-coding RNA expression in human neutrophils in vitro. PLoS Negl Trop Dis 2024; 18:e0012318. [PMID: 39028711 PMCID: PMC11259272 DOI: 10.1371/journal.pntd.0012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
In the Americas, L. infantum (syn. chagasi) is the main cause of human visceral leishmaniasis. The role of neutrophils as part of the innate response to Leishmania spp. infection is dubious and varies according to the species causing the infection. Global expression of coding RNAs, microRNAs and long non-coding RNAs changes as part of the immune response against pathogens. Changes in mRNA and non-coding RNA expression resulting from infection by Leishmania spp. are widely studied in macrophages, but scarce in neutrophils, the first cell to encounter the trypanosomatid, especially following infection by L. infantum. Herein, we aimed to understand the expression patterns of coding and non-coding transcripts during acute in vitro infection of human neutrophils by L. infantum. We isolated neutrophils from whole blood of healthy male donors (n = 5) and split into groups: 1) infected with L. infantum (MOI = 5:1), and 2) uninfected controls. After 3 hours of exposure of infected group to promastigotes of L. infantum, followed by 17 hours of incubation, total RNA was extracted and total RNA-Seq and miRNA microarray were performed. A total of 212 genes were differentially expressed in neutrophils following RNA-Seq analysis (log2(FC)±0.58, FDR≤0.05). In vitro infection with L. infantum upregulated the expression of 197 and reduced the expression of 92 miRNAs in human neutrophils (FC±2, FDR≤0.01). Lastly, 5 downregulated genes were classified as lncRNA, and of the 10 upregulated genes, there was only 1 lncRNA. Further bioinformatic analysis indicated that changes in the transcriptome and microtranscriptome of neutrophils, following in vitro infection with L. infantum, may impair phagocytosis, apoptosis and decrease nitric oxide production. Our work sheds light on several mechanisms used by L. infantum to control neutrophil-mediated immune response and identifies several targets for future functional studies, aiming at the development of preventive or curative treatments for this prevalent zoonosis.
Collapse
Affiliation(s)
- Natália Francisco Scaramele
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Antonini Troiano
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Juliana de Souza Felix
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Sidnei Ferro Costa
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Mariana Cordeiro Almeida
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
2
|
Zheng L, Rang M, Fuchs C, Keß A, Wunsch M, Hentschel J, Hsiao CC, Kleber C, Osterhoff G, Aust G. The Posttraumatic Increase of the Adhesion GPCR EMR2/ ADGRE2 on Circulating Neutrophils Is Not Related to Injury Severity. Cells 2023; 12:2657. [PMID: 37998392 PMCID: PMC10670733 DOI: 10.3390/cells12222657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circulating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma. Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but not all, patients. Circulating EMR2+ compared to EMR2- neutrophils express less CD62L and more CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase, whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly increased absolute number of neutrophils, especially present in very severely injured patients, together with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear damaged/necrotic cells/DAMPs after trauma.
Collapse
Affiliation(s)
- Leyu Zheng
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Moujie Rang
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Carolin Fuchs
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Annette Keß
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Mandy Wunsch
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Julia Hentschel
- Institute of Human Genetics, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
| | - Christian Kleber
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Georg Osterhoff
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Gabriela Aust
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
- Research Laboratories and Department of Visceral, Transplantation, Vascular and Thoracic Surgery (VTTG), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Vali M, Paydar S, Seif M, Hosseini M, Basiri P, Sabetian G, Ghaem H. Association Between Neutrophil Density and Survival in Trauma Patients Admitted to the Intensive Care Unit; a Retrospective Cohort Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2023; 11:e29. [PMID: 37215242 PMCID: PMC10197906 DOI: 10.22037/aaem.v11i1.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Altered immune responses, in particular neutrophil changes, are perceived to play a key role in immune responses to trauma. This study aimed to evaluate the association of neutrophil changes with patients' survival in severe multiple trauma cases. Methods The current retrospective cohort study was conducted using data from patients admitted in the intensive care unit (ICU) of a trauma center in Shiraz, Iran, between 2016 and 2021. Patients were divided into three groups (i.e., normal, neutropenia, and neutrophilia) based on neutrophil count at the time of ICU admission, and the association of neutrophil count with in-hospital mortality was analyzed. Results 2176 patients with the mean age of 37.90 ± 18.57 years were evaluated (84.04% male). The median trauma severity based on injury severity score (ISS) in this series was 9 (4 -17). Patients were divided in to three groups of neutrophilia (n = 1805), normal (n = 357), and neutropenia (n = 14). There were not any significant differences between groups regarding age distribution (p = 0.634), gender (p = 0.544), and trauma severity (p = 0.197). The median survival times for the normal, neutropenia, and neutrophilia groups were 49 (IQR: 33 -47) days, 51 (IQR: 8- 51) days, and 38 (IQR: 26 - 52) days, respectively (p = 0.346). The log-rank test showed a statistically significant difference between the three groups adjustment for ISS (p ≤ 0.001). For each unit increase in ISS, the hazard ratio increased by 2%. In ISS 9-17, the hazard ratio increased by 11% compared to ISS<4. Also, in ISS>17, the hazard ratio increased by 76% compared to ISS<4 in ICU-hospitalized patients. Conclusions In general, the findings of the present study showed that the survival rate of patients in the normal group after ISS adjustment was higher than the other two groups. Also, the Cox model showed that the mortality risk ratio in the neutropenia group was 15 times higher than the normal group.
Collapse
Affiliation(s)
- Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Seif
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Basiri
- Department of Computer Science and Engineering and IT School of Electrical Engineering and Computer, Shiraz University, Shiraz, Iran
| | - Golnar Sabetian
- Anesthesiology and Critical Care Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Ghaem
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Schaid TR, LaCroix I, Hansen KC, D'Alessandro A, Moore EE, Sauaia A, Dzieciatkowska M, DeBot M, Cralley AL, Thielen O, Hallas W, Erickson C, Mitra S, Banerjee A, Jones K, Silliman CC, Cohen MJ. A proteomic analysis of NETosis in trauma: Emergence of serpinB1 as a key player. J Trauma Acute Care Surg 2023; 94:361-370. [PMID: 36730076 PMCID: PMC9974543 DOI: 10.1097/ta.0000000000003849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Release of neutrophil extracellular traps (NETosis) may mediate postinjury organ dysfunction, but mechanisms remain unclear. The intracellular serine protease inhibitor (serpin) B1 is vital to neutrophil function and has been shown to restrict NETosis in inflammatory settings. In this study, we used discovery proteomics to identify the proteomic signature of trauma-induced NETosis. We hypothesized that serpinB1 would be a major component of this NET protein profile and associated with adverse outcomes. METHODS This was a post hoc analysis of data collected as part of the COMBAT randomized clinical trial. Blood was collected from injured patients at a single Level I Trauma Center. Proteomic analyses were performed through targeted liquid chromatography coupled with mass spectrometry. Abundances of serpinB1 and known NETosis markers were analyzed with patient and injury characteristics, clinical data, and outcomes. RESULTS SerpinB1 levels on emergency department (ED) arrival were significantly correlated with proteomic markers of NETosis, including core histones, transketolase, and S100A8/A9 proteins. More severely injured patients had elevated serpinB1 and NETosis markers on ED arrival. Levels of serpinB1 and top NETosis markers were significantly elevated on ED arrival in nonsurvivors and patients with fewer ventilator- and ICU-free days. In proteome-wide receiver operating characteristic analysis, serpinB1 was consistently among the top proteins associated with adverse outcomes. Among NETosis markers, levels of serpinB1 early in the patient's course exhibited the greatest separation between patients with fewer and greater ventilator- and ICU-free days. Gene Ontology analysis of top predictors of adverse outcomes further supports NETosis as a potential mediator of postinjury organ dysfunction. CONCLUSION We have identified a proteomic signature of trauma-induced NETosis, and NETosis is an early process following severe injury that may mediate organ dysfunction. In addition, serpinB1 is a major component of this NET protein profile that may serve as an early marker of excessive NETosis after injury.
Collapse
Affiliation(s)
- Terry R Schaid
- From the Department of Surgery/Trauma Research Center (T.R.S.Jr, E.E.M., A.S., M.D.B., O.T., W.H., S.M., A.B., K.J., C.C.S., M.J.C.), Department of Biochemistry and Molecular Genetics (I.L.C., K.C.H., A.D'A., M.D., C.E.), University of Colorado Denver, School of Medicine, Aurora; Department of Surgery (E.E.M., A.L.C.), Denver Health Medical Center, Denver; Department of Health Systems, Management, and Policy (A.S.), University of Colorado Denver, School of Medicine, Aurora; Vitalant Research Institute (C.C.S.), Denver; and Department of Pediatrics (C.C.S.), University of Colorado Denver, School of Medicine, Aurora, CO
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Riça IG, Joughin BA, Teke ME, Emmons TR, Griffith A, Cahill LA, Banner-Goodspeed V, Robson SC, Hernandez JM, Segal BH, Otterbein LE, Hauser CJ, Lederer JA, Yaffe MB. Neutrophil heterogeneity and emergence of a distinct population of CD11b/CD18-activated low-density neutrophils after trauma. J Trauma Acute Care Surg 2023; 94:187-196. [PMID: 36694330 PMCID: PMC9881754 DOI: 10.1097/ta.0000000000003823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Multiple large clinical trauma trials have documented an increased susceptibility to infection after injury. Although neutrophils (polymorphonuclear leukocytes [PMNs]) were historically considered a homogeneous cell type, we hypothesized that injury could alter neutrophil heterogeneity and predispose to dysfunction. To explore whether trauma modifies PMN heterogeneity, we performed an observational mass-spectrometry-based cytometry study on total leukocytes and low-density PMNs found in the peripheral blood mononuclear cell fraction of leukocytes from healthy controls and trauma patients. METHODS A total of 74 samples from 12 trauma patients, each sampled at 1 or more time points, and matched controls were fractionated and profiled by mass-spectrometry-based cytometry using a panel of 44 distinct markers. After deconvolution and conservative gating on neutrophils, data were analyzed using Seurat, followed by clustering of principal components. RESULTS Eleven distinct neutrophil populations were resolved in control and trauma neutrophils based on differential protein surface marker expression. Trauma markedly altered the basal heterogeneity of neutrophil subgroups seen in the control samples, with loss of a dominant population of resting neutrophils marked by high expression of C3AR and low levels of CD63, CD64, and CD177 (cluster 1), and expansion of two alternative neutrophil populations, one of which is marked by high expression of CD177 with suppression of CD10, CD16, C3AR, CD63, and CD64 (cluster 6). Remarkably, following trauma, a substantially larger percentage of neutrophils sediment in the monocyte fraction. These low-density neutrophils bear markers of functional exhaustion and form a unique trauma-induced population (cluster 9) with markedly upregulated expression of active surface adhesion molecules (activated CD11b/CD18), with suppression of nearly all other surface markers, including receptors for formyl peptides, leukotrienes, chemokines, and complement. CONCLUSION Circulating neutrophils demonstrate considerable evidence of functional heterogeneity that is markedly altered by trauma. Trauma induces evolution of a novel, exhausted, low-density neutrophil population with immunosuppressive features.
Collapse
Affiliation(s)
- Ingred Goretti Riça
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha E. Teke
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany R. Emmons
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Laura A. Cahill
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Simon C. Robson
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brahm H. Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, University of Buffalo School of Medicine, Buffalo, NY14263 USA
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Carl J. Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
6
|
Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne) 2022; 9:995044. [PMID: 36530909 PMCID: PMC9751027 DOI: 10.3389/fmed.2022.995044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) induces instant activation of innate immunity in brain tissue, followed by a systematization of the inflammatory response. The subsequent response, evolved to limit an overwhelming systemic inflammatory response and to induce healing, involves the autonomic nervous system, hormonal systems, and the regulation of immune cells. This physiological response induces an immunosuppression and tolerance state that promotes to the occurrence of secondary infections. This review describes the immunological consequences of TBI and highlights potential novel therapeutic approaches using immune modulation to restore homeostasis between the nervous system and innate immunity.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| |
Collapse
|
7
|
Rau CS, Kuo PJ, Lin HP, Wu CJ, Wu YC, Chien PC, Hsieh TM, Liu HT, Huang CY, Hsieh CH. The Network of miRNA-mRNA Interactions in Circulating T Cells of Patients Following Major Trauma - A Pilot Study. J Inflamm Res 2022; 15:5491-5503. [PMID: 36172547 PMCID: PMC9512539 DOI: 10.2147/jir.s375881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Following major trauma, genes involved in adaptive immunity are downregulated, which accompanies the upregulation of genes involved in systemic inflammatory responses. This study investigated microRNA (miRNA)-mRNA interactome dysregulation in circulating T cells of patients with major trauma. Patients and Methods This study included adult trauma patients who had an injury severity score ≥16 and required ventilator support for more than 48 h in the intensive care unit. Next-generation sequencing was used to profile the miRNAs and mRNAs expressed in CD3+ T cells isolated from patient blood samples collected during the injury and recovery stages. Results In the 26 studied patients, 9 miRNAs (hsa-miR-16-2-3p, hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-192-5p, hsa-miR-197-3p, hsa-miR-23a-3p, hsa-miR-26b-5p, hsa-miR-223-3p, and hsa-miR-485-5p) were significantly upregulated, while 58 mRNAs were significantly downregulated in T cells following major trauma. A network consisting of 8 miRNAs and 22 mRNAs interactions was revealed by miRWalk, with three miRNAs (hsa-miR-185-5p, hsa-miR-197-3p, and hsa-miR-485-5p) acting as hub genes that regulate the network. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that “chemokine signaling pathway” was the predominant pathway. Conclusion The study revealed a miRNA-mRNA interactome consisting of 8 miRNAs and 22 mRNAs that are predominantly involved in chemokine signaling in circulating T cells of patients following major trauma.
Collapse
Affiliation(s)
- Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Neunaber C, Fini M, Cinelli P. Healing after Trauma—New Knowledge and Procedures for the Benefit of Our Patients. Life (Basel) 2022; 12:life12050611. [PMID: 35629279 PMCID: PMC9144455 DOI: 10.3390/life12050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Claudia Neunaber
- Trauma Surgery Department, Experimental Trauma Surgery—Laboratory for Musculoskeletal Trauma and Regenerative Therapies, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Correspondence:
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure Surgical and Technological Sciences, Via di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Paolo Cinelli
- Department of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland;
| |
Collapse
|