1
|
Modugula S, Altenbaugh M, Ivanova M, DuMont T, Arshad H. Sepsis Epidemiology, Definitions, Scoring Systems, and Diagnostic Markers. Crit Care Nurs Q 2025; 48:229-236. [PMID: 40423381 DOI: 10.1097/cnq.0000000000000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infection. It is a major global health concern due to its high morbidity and mortality. This article provides a comprehensive overview of sepsis, focusing on its epidemiology, definitions, scoring systems, and diagnostic markers. The epidemiology section highlights the global burden of sepsis, noting variations in incidence and mortality across different regions and populations. It also discusses the risk factors associated with sepsis, including age, comorbidities, and healthcare-associated exposures. The definitions section traces the evolution of sepsis definitions, emphasizing the current sepsis-3 criteria, which focus on organ dysfunction as a key diagnostic feature. Scoring systems, such as the Sequential Organ Failure Assessment (SOFA) score and the Quick SOFA (qSOFA) score, are discussed in terms of their components, calculation, and interpretation. The diagnostic markers section details the clinical, laboratory, and microbiological parameters used in sepsis diagnosis, highlighting traditional markers and emerging technologies. The conclusion summarizes the key points and emphasizes the importance of early recognition and adherence to evidence-based guidelines for improving sepsis outcomes.
Collapse
Affiliation(s)
- Sujith Modugula
- Author Affiliations: Pulmonary and Critical Care Fellow, PGY-6. Division of Pulmonary and Critical Care Medicine, Allegheny Health Network Medicine Institute, Pittsburgh, Pennsylvania (Dr Modugula); Division of Pulmonary, Critical Care, Sleep Medicine, Allergy Allegheny Health Network Medicine Institute, Pittsburgh, Pennsylvania (Ms Altenbaugh); University of Chicago, Chicago, Illinois (Ms Ivanova); and Division of Pulmonary and Critical Care Medicine, Allegheny Health Network Medicine Institute, Pittsburgh, Pennsylvania (Dr DuMont and Arshad)
| | | | | | | | | |
Collapse
|
2
|
Pi D, Wong JJM, Nay Yaung K, Khoo NKH, Poh SL, Wasser M, Kumar P, Arkachaisri T, Xu F, Tan HL, Mok YH, Yeo JG, Albani S. Clinical and mechanistic relevance of high-dimensionality analysis of the paediatric sepsis immunome. Front Immunol 2025; 16:1569096. [PMID: 40433376 PMCID: PMC12106532 DOI: 10.3389/fimmu.2025.1569096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Background By employing a high-dimensionality approach, this study aims to identify mechanistically relevant cellular immune signatures that predict poor outcomes. Methods This prospective study recruited 39 children with sepsis admitted to the intensive care unit and 19 healthy age-matched children. Peripheral blood mononuclear cells were studied with mass cytometry. Unique cell subsets were identified in the paediatric sepsis immunome and depicted with t-distributed stochastic neighbour embedding (tSNE) plots. Network analysis was performed to quantify interactions between immune subsets. Enriched immune subsets were included in a model for distinguishing sepsis and validated by flow cytometry in an independent cohort. Results The median (interquartile range) age and paediatric sequential organ failure assessment (pSOFA) score in this cohort was 5.6(2.0, 11.3) years and 6.6 (IQR: 2.5, 10.1), respectively. High-dimensionality analyses of the immunome in sepsis revealed a loss of coordinated communication between immune subsets, particularly a loss of regulatory/inhibitory interaction between cell types, fewer interactions between cell subsets, and fewer negatively correlated edges than controls. Four independent immune subsets (CD45RA-CX3CR1+CTLA4+CD4+ T cells, CD45RA-17A+CD4+ T cells CD15+CD14+ monocytes, and Ki67+ B cells) were increased in sepsis and provide a predictive model for diagnosis with area under the receiver operating characteristic curve, AUC 0.90 (95% confidence interval, CI 0.82-0.98) in the discovery cohort and AUC 0.94 (95% CI 0.83-1.00) in the validation cohort. Conclusion The sepsis immunome is deranged with loss of regulatory/inhibitory interactions. Four immune subsets increased in sepsis could be used in a model for diagnosis and prediction of poor outcomes.
Collapse
Affiliation(s)
- Dandan Pi
- Department of Paediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Judith Ju Ming Wong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Children’s Intensive Care Unit, Department of Pediatric Subspecialties, KK Women’s and Children’s Hospital, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Martin Wasser
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Pavanish Kumar
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Feng Xu
- Department of Paediatric Intensive Care Unit, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Herng Lee Tan
- Respiratory Therapy Service, Division of Allied Health Specialties, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yee Hui Mok
- Children’s Intensive Care Unit, Department of Pediatric Subspecialties, KK Women’s and Children’s Hospital, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Long B, Gottlieb M. Emergency medicine updates: Evaluation and diagnosis of sepsis and septic shock. Am J Emerg Med 2025; 90:169-178. [PMID: 39892181 DOI: 10.1016/j.ajem.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION Sepsis and septic shock are common conditions evaluated and managed in the emergency department (ED), and these conditions are associated with significant morbidity and mortality. There have been several recent updates in the literature, including guidelines, on the evaluation and diagnosis of sepsis and septic shock. OBJECTIVE This is the first paper in a two-part series that provides emergency clinicians with evidence-based updates concerning sepsis and septic shock. This first paper focuses on evaluation and diagnosis of sepsis and septic shock. DISCUSSION The evaluation, diagnosis, and management of sepsis have evolved since the first definition in 1991. Current guidelines emphasize rapid diagnosis to improve patient outcomes. However, scoring systems have conflicting data for diagnosis, and sepsis should be considered in any patient with infection and abnormal vital signs, evidence of systemic inflammation (e.g., elevated white blood cell count or C-reactive protein), or evidence of end-organ dysfunction. The clinician should consider septic shock in any patient with infection and hypotension despite volume resuscitation or who require vasopressors to maintain a mean arterial pressure ≥ 65 mmHg. There are a variety of sources of sepsis but the most common include pulmonary, urinary tract, abdomen, and skin/soft tissue. Examples of other less common etiologies include the central nervous system (e.g., meningitis, encephalitis), spine (e.g., spinal epidural abscess, osteomyelitis), cardiac (e.g., endocarditis), and joints (e.g., septic arthritis). Evaluation may include biomarkers such as procalcitonin, C-reactive protein, and lactate, but these should not be used in isolation to exclude sepsis. Imaging is a key component of evaluation and should be based on the suspected source. CONCLUSION There have been several recent updates in the literature including guidelines concerning sepsis and septic shock; an understanding of these updates can assist emergency clinicians and improve the care of these patients.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
4
|
Reikvam H, Tsykunova G, Sandnes M, Wendelbo Ø. Infectious complications and the utility of serum and cellular markers of infections in the setting of allogeneic hematopoietic stem cell transplantation. Expert Rev Clin Immunol 2025; 21:291-303. [PMID: 39760208 DOI: 10.1080/1744666x.2025.2450014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients are severely immunocompromised and susceptible to bacterial, viral, and fungal infections. Despite improved anti-microbial prophylaxis and preemptive strategies, bacterial bloodstream infections (BSIs) occur frequently in allo-HSCT recipients and are associated with increased morbidity and mortality. Cytomegalovirus (CMV) and Epstein Barr virus (EBV) are the most relevant viruses following allo-HSCT and remain major concerns. Fungal infections, including those caused by Candida and Aspergillus species, are persistent and feared complications. AREAS COVERED We aim to provide clinicians caring for allo-HSCT recipients with a comprehensive overview of the risk factors that predispose patients to common bacterial, fungal, and viral infections during the first years post-transplant. The focus is on the value of noninvasive diagnostic biomarkers and serological assays in enhancing the early detection and management of these infections. EXPERT OPINION Effective management of infectious complications following allo-HSCT relies on continuous immune recovery monitoring and the implementation of advanced diagnostic methods. Utilizing noninvasive diagnostic methods is crucial for early detection and different intervention strategies. The development and integration of reliable microbiological markers into clinical practice is essential for enhancing patient outcomes and mitigating infection-related risks. Emphasizing diagnostic innovation will be pivotal in advancing patient care post-allo-HSCT.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hemato- oncology, Østfold Hospital, Grålum, Norway
| | - Miriam Sandnes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Wendelbo
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Faculty of Health, VID Specialized University, Bergen, Norway
| |
Collapse
|
5
|
Yu X, Gao J, Zhang C. Sepsis-induced cardiac dysfunction: mitochondria and energy metabolism. Intensive Care Med Exp 2025; 13:20. [PMID: 39966268 PMCID: PMC11836259 DOI: 10.1186/s40635-025-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by dysregulated host response to infection, posing a significant global healthcare challenge. Sepsis-induced myocardial dysfunction (SIMD) is a common complication of sepsis, significantly increasing mortality due to its high energy demands and low compensatory reserves. The substantial mitochondrial damage rather than cell apoptosis in SIMD suggests disrupted cardiac energy metabolism as a crucial pathophysiological mechanism. Therefore, we systematically reviewed the mechanisms underlying energy metabolism dysfunction in SIMD, including alterations in myocardial cell energy metabolism substrates, excitation-contraction coupling processes, mitochondrial dysfunction, and mitochondrial autophagy and biogenesis, summarizing potential therapeutic targets within them.
Collapse
Affiliation(s)
- Xueting Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- FACC, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Garvey M. Hospital Acquired Sepsis, Disease Prevalence, and Recent Advances in Sepsis Mitigation. Pathogens 2024; 13:461. [PMID: 38921759 PMCID: PMC11206921 DOI: 10.3390/pathogens13060461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, commonly associated with nosocomial transmission. Gram-negative bacterial species are particularly problematic due to the release of the lipopolysaccharide toxins upon cell death. The lipopolysaccharide toxin of E. coli has a greater immunogenic potential than that of other Gram-negative bacteria. The resultant dysregulation of the immune system is associated with organ failure and mortality, with pregnant women, ICU patients, and neonates being particularly vulnerable. Additionally, sepsis recovery patients have an increased risk of re-hospitalisation, chronic illness, co-morbidities, organ damage/failure, and a reduced life expectancy. The emergence and increasing prevalence of antimicrobial resistance in bacterial and fungal species has impacted the treatment of sepsis patients, leading to increasing mortality rates. Multidrug resistant pathogens including vancomycin-resistant Enterococcus, beta lactam-resistant Klebsiella, and carbapenem-resistant Acinetobacter species are associated with an increased risk of mortality. To improve the prognosis of sepsis patients, predominantly high-risk neonates, advances must be made in the early diagnosis, triage, and control of sepsis. The identification of suitable biomarkers and biomarker combinations, coupled with machine learning and artificial intelligence, show promise in early detection protocols. Rapid diagnosis of sepsis in patients is essential to inform on clinical treatment, especially with resistant infectious agents. This timely review aims to discuss sepsis prevalence, aetiology, and recent advances towards disease mitigation and control.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-0719-305-529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
7
|
Kourbeti I, Kamiliou A, Samarkos M. Antibiotic Stewardship in Surgical Departments. Antibiotics (Basel) 2024; 13:329. [PMID: 38667005 PMCID: PMC11047567 DOI: 10.3390/antibiotics13040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as one of the leading public health threats of the 21st century. New evidence underscores its significance in patients' morbidity and mortality, length of stay, as well as healthcare costs. Globally, the factors that contribute to antimicrobial resistance include social and economic determinants, healthcare governance, and environmental interactions with impact on humans, plants, and animals. Antimicrobial stewardship (AS) programs have historically overlooked surgical teams as they considered them more difficult to engage. This review aims to summarize the evolution and significance of AS in surgical wards, including the surgical intensive care unit (SICU) and the role of diagnostic stewardship (DS). The contribution of AS team members is presented. The new diagnostic modalities and the new technologies including artificial intelligence (AI) are also reviewed.
Collapse
Affiliation(s)
- Irene Kourbeti
- Department of Internal Medicine, School of Medicine, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (A.K.); (M.S.)
| | | | | |
Collapse
|