1
|
Shoghli M, Lokki AI, Lääperi M, Sinisalo J, Lokki ML, Hilvo M, Jylhä A, Tuomilehto J, Laaksonen R. The Novel Ceramide- and Phosphatidylcholine-Based Risk Score for the Prediction of New-Onset of Hypertension. J Clin Med 2023; 12:7524. [PMID: 38137595 PMCID: PMC10743541 DOI: 10.3390/jcm12247524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Ceramides and other sphingolipids are implicated in vascular dysfunction and inflammation. They have been suggested as potential biomarkers for hypertension. However, their specific association with hypertension prevalence and onset requires further investigation. This study aimed to identify specific ceramide and phosphatidylcholine species associated with hypertension prevalence and onset. The 2002 FINRISK (Finnish non-communicable risk factor survey) study investigated the association between coronary event risk scores (CERT1 and CERT2) and hypertension using prevalent and new-onset hypertension groups, both consisting of 7722 participants, over a span of 10 years. Ceramide and phosphatidylcholine levels were measured using tandem liquid chromatography-mass spectrometry. Ceramide and phosphatidylcholine ratios, including ceramide (d18:1/18:0), ceramide (d18:1/24:1), phosphatidylcholine (16:0/16:0), and the ratio of ceramide (d18:1/18:0)/(d18:1/16:0), are consistently associated with both prevalence and new-onset hypertension. Ceramide (d18:1/24:0) was also linked to both hypertension measures. Adjusting for covariates, CERT1 and CERT2 showed no-longer-significant associations with hypertension prevalence, but only CERT2 predicted new-onset hypertension. Plasma ceramides and phosphatidylcholines are crucial biomarkers for hypertension, with imbalances potentially contributing to its development. Further research is needed to understand the underlying mechanisms by which ceramides will contribute to the development of hypertension.
Collapse
Affiliation(s)
- Mohammadreza Shoghli
- Department of Population Health, University of Helsinki, 00014 Helsinki, Finland;
| | - A. Inkeri Lokki
- Heart and Lung Center, Helsinki University Hospital, 00014 Helsinki, Finland; (A.I.L.); (J.S.)
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland;
| | - Mitja Lääperi
- Lääperi Statistical Consulting, 02770 Espoo, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital, 00014 Helsinki, Finland; (A.I.L.); (J.S.)
| | - Marja-Liisa Lokki
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland;
| | - Mika Hilvo
- VTT Technical Research Centre of Finland, 02044 Espoo, Finland;
| | - Antti Jylhä
- Zora Biosciences Oy, 02620 Espoo, Finland (R.L.)
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Reijo Laaksonen
- Zora Biosciences Oy, 02620 Espoo, Finland (R.L.)
- Finnish Cardiovascular Research Center, Tampere University Hospital, University of Tampere, 33521 Tampere, Finland
| |
Collapse
|
2
|
Li Q, Dibus M, Casey A, Yee CSK, Vargas SO, Luo S, Rosen SM, Madden JA, Genetti CA, Brabek J, Brownstein CA, Kazerounian S, Raby BA, Schmitz-Abe K, Kennedy JC, Fishman MP, Mullen MP, Taylor JM, Rosel D, Agrawal PB. A homozygous stop-gain variant in ARHGAP42 is associated with childhood interstitial lung disease, systemic hypertension, and immunological findings. PLoS Genet 2021; 17:e1009639. [PMID: 34232960 PMCID: PMC8289122 DOI: 10.1371/journal.pgen.1009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michal Dibus
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christina S. K. Yee
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha M. Rosen
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jill A. Madden
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Casie A. Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan Brabek
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John C. Kennedy
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha P. Fishman
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan M. Taylor
- Dept. Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet 2019; 27:1296-1303. [PMID: 30903111 PMCID: PMC6777610 DOI: 10.1038/s41431-019-0382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Family studies have established that the heritability of blood pressure is significant and genome-wide association studies (GWAS) have identified numerous susceptibility loci, including one within the non-coding part of Rho GTPase-activating protein 42 gene (ARHGAP42) on chromosome 11q22.1. Arhgap42-deficient mice have significantly elevated blood pressure, but the phenotypic effects of human variants in the coding part of the gene are unknown. In a Danish cohort of carriers with apparently balanced chromosomal rearrangements, we identified a family where a reciprocal translocation t(11;18)(q22.1;q12.2) segregated with hypertension and obesity. Clinical re-examination revealed that four carriers (age 50-77 years) have had hypertension for several years along with an increased body mass index (34-43 kg/m2). A younger carrier (age 23 years) had normal blood pressure and body mass index. Mapping of the chromosomal breakpoints with mate-pair and Sanger sequencing revealed truncation of ARHGAP42. A decreased expression level of ARHGAP42 mRNA in the blood was found in the translocation carriers relative to controls and allele-specific expression analysis showed monoallelic expression in the translocation carriers, confirming that the truncated allele of ARHGAP42 was not expressed. These findings support that haploinsufficiency of ARHGAP42 leads to an age-dependent hypertension. The other breakpoint truncated a regulatory domain of the CUGBP Elav-like family member 4 (CELF4) gene on chromosome 18q12.2 that harbours several GWAS signals for obesity. We thereby provide additional support for an obesity locus in the CELF4 domain.
Collapse
Affiliation(s)
- Amanda S Fjorder
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Malene B Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Claus Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark.
| |
Collapse
|