1
|
Coecke S, Ahr H, Blaauboer BJ, Bremer S, Casati S, Castell J, Combes R, Corvi R, Crespi CL, Cunningham ML, Elaut G, Eletti B, Freidig A, Gennari A, Ghersi-Egea JF, Guillouzo A, Hartung T, Hoet P, Ingelman-Sundberg M, Munn S, Janssens W, Ladstetter B, Leahy D, Long A, Meneguz A, Monshouwer M, Morath S, Nagelkerke F, Pelkonen O, Ponti J, Prieto P, Richert L, Sabbioni E, Schaack B, Steiling W, Testai E, Vericat JA, Worth A. Metabolism: A Bottleneck in In Vitro Toxicological Test Development. Altern Lab Anim 2019; 34:49-84. [PMID: 16522150 DOI: 10.1177/026119290603400113] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandra Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ghaemi SR, Delalat B, Harding FJ, Irani YD, Williams KA, Voelcker NH. Identification and In Vitro Expansion of Buccal Epithelial Cells. Cell Transplant 2018; 27:957-966. [PMID: 29860901 PMCID: PMC6050911 DOI: 10.1177/0963689718773330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has
been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME
progenitor cells in ex vivo cultures may improve the outcome of BME cell
transplantation. However, the parameter of cell seeding density in this context has
largely been neglected. This study investigates how varying cell seeding density
influences BME cell proliferation and differentiation on tissue culture polystyrene
(TCPS). The highest cell proliferation activity was seen when cells were seeded at
5×104 cells/cm2. Both below and above this density, the cell
proliferation rate decreased sharply. Differential immunofluorescence analysis of surface
markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the
differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell
seeding density also significantly affected the progenitor cell marker expression profile.
Hence, this study demonstrates that seeding density has a profound effect on the
proliferation and differentiation of BME stem cells in vitro, and this is
relevant to downstream cell therapy applications.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Bahman Delalat
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Frances J Harding
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Yazad D Irani
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Keryn A Williams
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Nicolas H Voelcker
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
3
|
Viviani P, Lifschitz AL, García JP, Maté ML, Quiroga MA, Lanusse CE, Virkel GL. Assessment of liver slices for research on metabolic drug–drug interactions in cattle. Xenobiotica 2017; 47:933-942. [DOI: 10.1080/00498254.2016.1246782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paula Viviani
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Adrián L. Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Jorge P. García
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - María Laura Maté
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Miguel A. Quiroga
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Carlos E. Lanusse
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Guillermo L. Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| |
Collapse
|
4
|
Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015; 308:E1-20. [PMID: 25352434 PMCID: PMC4281685 DOI: 10.1152/ajpendo.00192.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| |
Collapse
|
5
|
Sengupta S, Johnson BP, Swanson SA, Stewart R, Bradfield CA, Thomson JA. Aggregate culture of human embryonic stem cell-derived hepatocytes in suspension are an improved in vitro model for drug metabolism and toxicity testing. Toxicol Sci 2014; 140:236-45. [PMID: 24752503 DOI: 10.1093/toxsci/kfu069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Early phase drug development relies on primary human hepatocytes for studies of drug metabolism, cytotoxicity, and drug-drug interactions. However, primary human hepatocytes rapidly lose metabolic functions ex vivo and are refractory to expansion in culture and thus are limited in quantity. Hepatocytes derived from human pluripotent stem cells (either embryonic stem (ES) or induced pluripotent stem (iPS) cells), have the potential to overcome many of the limitations of primary human hepatocytes, but to date the use of human pluripotent stem cell-derived hepatocytes has been limited by poor enzyme inducibility and immature metabolic function. Here, we present a simple suspension culture of aggregates of ES cell-derived hepatocytes that compared to conventional monolayer adherent culture significantly increases induction of CYP 1A2 by omeprazole and 3A4 by rifampicin. Using liquid chromatography-tandem mass spectrometry, we further show that ES cell-derived hepatocytes in aggregate culture convert omeprazole and rifampicin to their human-specific metabolites. We also show that these cells convert acetaminophen (APAP) to its cytotoxic metabolite (N-acetyl-p-benzoquinone imine (NAPQI)), although they fail to perform APAP glucuronidation. In summary, we show that human pluripotent stem cell-derived hepatocytes in aggregate culture display improved enzymatic inducibility and metabolic function and is a promising step toward a simple, scalable system, but nonetheless will require further improvements to completely replace primary human hepatocytes in drug development.
Collapse
Affiliation(s)
| | - Brian Patrick Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin 53715
| | - Christopher Alan Bradfield
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - James Alexander Thomson
- Morgridge Institute for Research, Madison, Wisconsin 53715 Department of Cell & Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
6
|
Zwart EP, Schaap MM, van den Dungen MW, Braakhuis HM, White PA, van Steeg H, van Benthem J, Luijten M. Proliferating primary hepatocytes from the pUR288 lacZ plasmid mouse are valuable tools for genotoxicity assessment in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:1-8. [PMID: 22619112 DOI: 10.1002/em.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 06/01/2023]
Abstract
Safety assessments of substances with regard to genotoxicity are generally based on a combination of in vitro and in vivo tests. These tests are performed according to a (tiered) test strategy whereby a positive result in vitro usually triggers further testing in vivo. A low specificity and high frequency of irrelevant positive results associated with most in vitro mammalian cell genotoxicity assays necessitates the design and validation of suitable alternatives. As such, we examined the feasibility of culturing primary hepatocytes from the pUR288 lacZ reporter mouse, and moreover, using established cultures to reliably assess genotoxic activity in vitro. Initial studies characterizing the metabolic capacity of proliferating lacZ primary hepatocytes indicated that these cells retained at least some activities important for xenobiotic metabolism: cytochrome P450 1A1 enzyme activities were markedly increased in the hepatocytes after exposure to benzo[a]pyrene, and also UDP-glucuronosyl transferase and glutathione-S-transferase activities, both Phase II enzymes, were detected. Increasing levels of phosphorylated p53 at residue serine 389 after ultraviolet treatment indicated a properly functioning p53, one of the criteria for an effective new test system. Four genotoxic substances with different mechanisms of genotoxicity, i.e., benzo[a]pyrene, bleomycin, etoposide, and cyclophosphamide, were tested in the lacZ rescue assay. For etoposide and cyclophosphamide, the induction of mutant colonies was rather low. Exposure to benzo[a]pyrene and bleomycin, however, yielded a clear concentration-dependent induction of the lacZ mutant frequency. Based on our preliminary observations, proliferating lacZ primary hepatocytes are a promising new tool for the assessment of genotoxic hazard.
Collapse
Affiliation(s)
- Edwin P Zwart
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yeon JH, Na D, Park JK. Hepatotoxicity assay using human hepatocytes trapped in microholes of a microfluidic device. Electrophoresis 2010; 31:3167-74. [DOI: 10.1002/elps.201000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Abstract
The liver performs a multitude of functions including the regulation of carbohydrate, fat, and protein metabolism, the detoxification of endo- and xenobiotics, and the synthesis and secretion of plasma proteins and bile. Isolated hepatocytes constitute a useful technique for studying liver function in an in vitro setting. Here we describe a method for the isolation of hepatocytes from adult mouse liver. The principle of the method is the two-step collagenase perfusion technique which involves sequential perfusion of the liver with ethylenediaminetetraacetic acid and collagenase. Following isolation, the cells can either be used for short-term studies or, alternatively, maintained in culture for prolonged periods to study long-term changes in gene expression. The protocol for mouse hepatocyte isolation may be applied to both normal and transgenic mice.
Collapse
|
9
|
Martin P, Riley R, Thompson P, Williams D, Back D, Owen A. Effect of prototypical inducers on ligand activated nuclear receptor regulated drug disposition genes in rodent hepatic and intestinal cells. Acta Pharmacol Sin 2010; 31:51-65. [PMID: 20048746 DOI: 10.1038/aps.2009.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM The aim of this study was to investigate the impact on expression of mRNA and protein by paradigm inducers/activators of nuclear receptors and their target genes in rat hepatic and intestinal cells. Furthermore, assess marked inter laboratory conflicting reports regarding species and tissue differences in expression to gain further insight and rationalise previously observed species differences between rodent and human based systems. METHODS Quantitative real time-polymerase chain reaction (QRT-PCR) and immunoblots were used to assess messenger RNA (mRNA) and protein expression for CYP2B2, CYP3A1, CYP3A2, CYP3A9, ABCB1a, ABCB1b, ABCC1, ABCC2, pregnane X receptor (PXR), farnesoid X receptor (FXR) and constituitive androstane receptor (CAR) in rat hepatoma cell line H411E, intestinal cells, Iec-6, and rat primary hepatocytes, in response to exposure for 18 h with prototypical inducers. RESULTS Dexamethasone (DEX) and pregnenolone 16alpha carbonitrile (PCN) significantly induced PXR, CYP3A9, ABCB1a and ABCB1b. However, when co-incubated, DEX appeared to restrict PCN-dependent induction. Chenodeoxycholic acid (CDCA) was the only ligand to induce FXR in all three cell types. Despite previously reported species differences between PCN and rifampicin (RIF), both compounds exhibited a similar profile of induction. CONCLUSION Data presented herein may explain some of the discrepancies previously reported with respect to species differences from different laboratories and have important implications for study design.
Collapse
|
10
|
Mathijs K, Kienhuis AS, Brauers KJJ, Jennen DGJ, Lahoz A, Kleinjans JCS, van Delft JHM. Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes. Drug Metab Dispos 2009; 37:1305-11. [PMID: 19251822 DOI: 10.1124/dmd.108.025775] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary human and rat hepatocyte cultures are well established in vitro systems used in toxicological studies. However, whereas transgenic mouse models provide an opportunity for studying mechanisms of toxicity, mouse primary hepatocyte cultures are less well described. The potential usefulness of a mouse hepatocyte-based in vitro model was assessed in this study by investigating time-dependent competence for xenobiotic metabolism and gene expression profiles. Primary mouse hepatocytes, isolated using two-step collagenase perfusion, were cultured in a collagen sandwich configuration. Gene expression profiles and the activities of various cytochrome P450 (P450) enzymes were determined after 0, 42, and 90 h in culture. Principal component analysis of gene expression profiles shows that replicates per time point are similar. Gene expression levels of most phase I biotransformation enzymes decrease to approximately 69 and 57% of the original levels at 42 and 90 h, respectively, whereas enzyme activities for most of the studied P450s decrease to 59 and 34%. The decrease for phase II gene expression is only to 96 and 92% of the original levels at 42 and 90 h, respectively. Pathway analysis reveals initial effects at the level of proteins, external signaling pathways, and energy production. Later effects are observed for transcription, translation, membranes, and cell cycle-related gene sets. These results indicate that the sandwich-cultured primary mouse hepatocyte system is robust and seems to maintain its metabolic competence better than that of the rat hepatocyte system.
Collapse
Affiliation(s)
- Karen Mathijs
- Department of Health Risk Analyses and Toxicology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Bitar M, Brown RA, Salih V, Kidane AG, Knowles JC, Nazhat SN. Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds. Biomacromolecules 2007; 9:129-35. [DOI: 10.1021/bm701112w] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Malak Bitar
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Robert A. Brown
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Vehid Salih
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Asmeret G. Kidane
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Showan N. Nazhat
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| |
Collapse
|
12
|
Rypka M, Cervenková K, Uherková L, Poczatková H, Florschutz AV, Veselý J. A novel simplified ultra-rapid freezing technique for cryopreservation of tissue slices. Cryobiology 2006; 52:193-9. [PMID: 16338229 DOI: 10.1016/j.cryobiol.2005.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/27/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
Cryopreservation offers the potential to maximize the use and availability of biological materials that have a limited supply. This study demonstrates an enhanced technique for the parallel cryopreservation of a series of liver tissue slices using a tray modeled from aluminium foil and low concentrations of a cryoprotectant. Cooling and warming rates of approximately 2000 and 3900 degrees C min(-1), respectively, were achieved as the thermal capacity of the foil-tray was significantly reduced compared to the aluminium sandwich device introduced by Day et al. [S.H. Day, D.A. Nicoll-Griffith, J.M. Silva, Cryopreservation of rat and human liver slices by rapid freezing, Cryobiology 38 (1999) 154-159]. Additionally, the two critical steps involved in the sandwich approach, i.e., clamping the plates and complete filling of the entire space between the plates with liquid, can be omitted using the foil tray. The viability of the slices was verified by measuring tetrazolium salt reduction capacity, cytosolic enzyme lactate dehydrogenase leakage, and ethoxycoumarin metabolism.
Collapse
Affiliation(s)
- Miroslav Rypka
- Department of Pathological Physiology, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
13
|
Vermeir M, Annaert P, Mamidi RNVS, Roymans D, Meuldermans W, Mannens G. Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 2005; 1:75-90. [PMID: 16922654 DOI: 10.1517/17425255.1.1.75] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell-based in vitro models are invaluable tools in elucidating the pharmacokinetic profile of a drug candidate during its drug discovery and development process. As biotransformation is one of the key determinants of a drug's disposition in the body, many in vitro models to study drug metabolism have been established, and others are still being developed and validated. This review is aimed at providing the reader with a concise overview of the characteristics and optimal application of established and emerging in vitro cell-based models to study human drug metabolism and induction of drug metabolising enzymes in the liver. The strengths and weaknesses of liver-derived models, such as primary hepatocytes, either freshly isolated or cryopreserved, and from adult or fetal donors, precision-cut liver slices, and cell lines, including immortalised cells, reporter cell lines, hepatocarcinoma-derived cell lines and recombinant cell lines, are discussed. Relevant cell culture configuration aspects as well as other models such as stem cell-derived hepatocyte-like cells and humanised animal models are also reviewed. The status of model development, their acceptance by health authorities and recommendations for the most appropriate use of the models are presented.
Collapse
Affiliation(s)
- Marc Vermeir
- Johnson & Johnson Pharmaceutical Research & Development, Preclinical Pharmacokinetics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Richard J Levy
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|