1
|
Nonaka K, Akiyama J, Une S. Exercise May Increase Oxidative Stress in the Sciatic Nerve in Streptozotocin-Induced Diabetic Rats. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:480. [PMID: 38541206 PMCID: PMC10972209 DOI: 10.3390/medicina60030480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025]
Abstract
Background and Objectives: Diabetic peripheral neuropathy (DPN) affects approximately half of patients with diabetes mellitus (DM), contributing to falls and fractures. Oxidative stress, which is linked to DM-induced hyperglycemia, has been implicated in the onset of DPN. Although exercise is recommended for patients with DM, its effect on DPN remains unclear. Therefore, this study aimed to investigate the effect of exercise on DPN and the mechanisms involved. Material and Methods: Thirty male Wistar rats were divided into control, streptozotocin (STZ)-induced diabetic (DM), and STZ-induced diabetic/exercise (DM + Ex) groups. Diabetes was induced using STZ injection. Rats in the DM + Ex groups underwent six weeks of treadmill exercise. Sciatic nerve parameters, which included motor nerve conduction velocity (MNCV), antioxidant enzymes (catalase, glutathione peroxidase [GPx], and superoxide dismutase [SOD]), oxidative stress markers (malondialdehyde [MDA] and 4-hydroxy-2-nonenal [4HNE]), and neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]), were examined. Results: Exercise alleviated DM-induced decreases in MNCV in rats. Although exercise did not significantly affect antioxidant enzyme activity, 4HNE levels increased significantly, indicating increased oxidative stress. Additionally, exercise did not significantly affect DM-induced increases in NGF and BDNF levels in rats. Conclusions: Exercise may prevent DPN in rats with DM, possibly through nonantioxidant mechanisms.
Collapse
Affiliation(s)
- Koji Nonaka
- Faculty of Health Sciences, Naragakuen University, Nara 631-8524, Nara, Japan
| | - Junichi Akiyama
- Department of Physical Therapy, School of Health Care and Social Welfare, Kibi International University, Takahashi 716-8505, Okayama, Japan;
| | - Satsuki Une
- Faculty of Education, Kagawa University, Takamatsu 760-8521, Kagawa, Japan;
| |
Collapse
|
2
|
Tamaki T, Muramatsu K, Ikutomo M, Komagata J. Effects of low-intensity exercise on contractile property of skeletal muscle and the number of motor neurons in diabetic rats. Anat Sci Int 2024; 99:106-117. [PMID: 37768514 DOI: 10.1007/s12565-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
The mode of diabetes-induced muscle and motor neuron damage depends on the type of muscle and motor neuron. One of the purposes of exercise therapy for diabetes is to improve blood glucose levels; however, information on the effects of low-intensity exercise on muscle and motor neuron disorders remain unknown. Therefore, this study aimed to examine the effects of low-intensity exercise on diabetes-induced muscle and motor neuron damage in a rat model of type 1 diabetes mellitus. We subjected adult male Wistar rats treated with streptozotocin to develop type 1 diabetes and age-matched rats to low-intensity treadmill exercise for 12 weeks. We recorded electrically evoked maximum twitch tension in leg muscles, and examined the number of motor neurons and cell body sizes. Low-intensity exercise ameliorated the prolonged half-relaxation time and the decreased numbers of the retrograde-labeled motor neurons observed in the soleus muscle of type 1 diabetic rats. However, no effect was observed in the diabetic group, as atrophy was not improved and the twitch force in the medial gastrocnemius muscle was decreased in the diabetic group. In addition, there was no improvement in the blood glucose levels after exercise. These data indicate that low-intensity exercise may relieve the onset of muscle and motor neuron damage in the soleus muscle of type 1 diabetic rats.
Collapse
Affiliation(s)
- Toru Tamaki
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan.
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-Town, Yamanashi, 401-0380, Japan.
| | - Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka-City, Tokyo, 181-8612, Japan
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama-City, Tokyo, 206-0003, Japan
| | - Junya Komagata
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
3
|
Kalkan ÖF, Aktaş O, Sürmeneli YE, Alver A, Özcan M, Şahin Z. Does irisin has neuroprotective effect against diabetes induced neuropathy in male rats? Arch Physiol Biochem 2023; 129:439-448. [PMID: 33141621 DOI: 10.1080/13813455.2020.1835985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We aimed to investigate the contribution of irisin in the neuroprotective process of exercise training in diabetic rats. Serum irisin levels, thermal and mechanical pain thresholds and intracellular calcium ([Ca2+]i) levels in sensory neurons were measured at different time intervals during the eight weeks of exercise sessions for the control, non-exercise diabetics (3 groups) and exercise performing (low and high intensity groups) diabetic rats (n = 7-10 for all groups). Non-exercise diabetic groups were treated with irisin in different doses (1, 10 and 20 µg/kg respectively). Recovered pain thresholds at the end of the exercise sessions (p < .05), higher serum irisin levels that compared to control and diabetics (p < .05) and insignificant mean [Ca2+]i peak amplitudes in sensory neurons (p > .05) obtained from experiments. Furthermore, irisin injection decreased the thermal pain threshold of diabetics only at 60th minutes (p < .05). Irisin may have a role in the neuroprotective effect of exercise training.
Collapse
Affiliation(s)
- Ömer Faruk Kalkan
- Faculty of Medicine, Department of Physiology, Karadeniz Technical University, Trabzon, Turkey
| | - Osman Aktaş
- Faculty of Medicine, Department of Physiology, Karadeniz Technical University, Trabzon, Turkey
| | - Yunus Emre Sürmeneli
- Faculty of Medicine, Department of Physiology, University of Health Sciences, Istanbul, Turkey
| | - Ahmet Alver
- Faculty of Medicine, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Mete Özcan
- Faculty of Medicine, Department of Biophysics, Firat University, Elazig, Turkey
| | - Zafer Şahin
- Faculty of Medicine, Department of Physiology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Jiao Y, Zhang YH, Wang CY, Yu Y, Li YZ, Cui W, Li Q, Yu YH. MicroRNA-7a-5p ameliorates diabetic peripheral neuropathy by regulating VDAC1/JNK/c-JUN pathway. Diabet Med 2023; 40:e14890. [PMID: 35616949 DOI: 10.1111/dme.14890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
AIMS The pathogenesis of diabetic peripheral neuropathy (DPN) is complex, and its treatment is extremely challenging. MicroRNA-7a-5p (miR-7a-5p) has been widely reported to alleviate apoptosis and oxidative stress in various diseases. This study aimed to investigate the mechanism of miR-7a-5p in DPN. METHODS DPN cell model was constructed with high-glucose-induced RSC96 cells. Cell apoptosis and viability were detected by flow cytometry analysis and cell counting kit-8 (CCK-8) assay respectively. The apoptosis and Jun N-terminal kinase (JNK)/c-JUN signalling pathway-related proteins expression were detected by Western blotting. The intracellular calcium content and oxidative stress levels were detected by flow cytometry and reagent kits. Mitochondrial membrane potential was evaluated by tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) staining. The targeting relationship between miR-7a-5p and voltage-dependent anion-selective channel protein 1 (VDAC1) was determined by RNA pull-down assay and dual-luciferase reporter gene assay. The streptozotocin (STZ) rat model was constructed to simulate DPN in vivo. The paw withdrawal mechanical threshold (PTW) was measured by Frey capillary line, and the motor nerve conduction velocity (MNCV) was measured by electromyography. RESULTS MiR-7a-5p expression was decreased, while VDAC1 expression was increased in HG-induced RSC96 cells and STZ rats. In HG-induced RSC96 cells, miR-7a-5p overexpression promoted cell proliferation, inhibited apoptosis, down-regulated calcium release, improved mitochondrial membrane potential and repressed oxidative stress response. MiR-7a-5p negatively regulated VDAC1 expression. VDAC1 knockdown improved cell proliferation activity, suppressed cell apoptosis and mitochondrial dysfunction by inhibiting JNK/c-JUN pathway activation. MiR-7a-5p overexpression raised PTW, restored MNCV and reduced oxidative stress levels and nerve cell apoptosis in STZ rats. CONCLUSION MiR-7a-5p overexpression ameliorated mitochondrial dysfunction and inhibited apoptosis in DPN by regulating VDAC1/JNK/c-JUN pathway.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yue-Hua Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Chun-Yan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yong-Hao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
5
|
Kristianto H. Analysis of risk factors responsible for neuropathy in patients with type 2 diabetes mellitus with diabetic foot during the COVID-19 pandemic. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2023; 28:85-91. [DOI: 10.4103/ijnmr.ijnmr_180_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/10/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023]
|
6
|
Wang Y, Pei L, Wang M, Sun S, Wang S, Zhang Q. Effect of peer support on adults with diabetes-related peripheral neuropathy. PATIENT EDUCATION AND COUNSELING 2022; 105:828-834. [PMID: 34373175 DOI: 10.1016/j.pec.2021.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effect of peer support on exercise self-efficacy, physical activity level, and neuropathic symptoms in patients with diabetes-related peripheral neuropathy (DPN). METHODS A total of 60 adults with DPN were assigned to groups. Patients in the control group received routine education (RE), while patients in the intervention group received peer support (PS) combined with routine diabetes education. Data were collected at baseline and after intervention (12 weeks). RESULTS At 12 weeks, better outcomes were found in the PS group compared to the RE group for the following aspects: exercise self-efficacy, steps, total physical activity, fasting blood glucose and 2-hour postprandial blood glucose. Decreases in scores on Toronto Clinical Scoring System occurred between baseline and post-intervention in both groups. CONCLUSION Peer support is an effective way to improve exercise self-efficacy, number of steps, and general physical activity and to reduce blood glucose for patients with DPN. But the effects of peer support on neuropathic symptoms is are obvious. Further research is needed. PRACTICE IMPLICATIONS As a low-cost, effective education approach, peer support strategies should be integrated into our healthcare system to meet the minimum needs of patients with DPN.
Collapse
Affiliation(s)
- Yan Wang
- Nursing Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Pei
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meifeng Wang
- Nursing Department, YanTai Stomatological Hospital, Shandong Province, China
| | - Shiquan Sun
- Acupuncture and Tuina Department, Tianjin Beichen North Gate Hospital, Tianjin, China
| | - Shuling Wang
- Nursing Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Zhang
- Tianjin Medical University, School of Nursing, Tianjin, China.
| |
Collapse
|
7
|
Monza L, Fumagalli G, Chiorazzi A, Alberti P. Translating morphology from bench side to bed side via neurophysiology: 8-min protocol for peripheral neuropathy research. J Neurosci Methods 2021; 363:109323. [PMID: 34391792 DOI: 10.1016/j.jneumeth.2021.109323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Peripheral neuropathy treatment is not always satisfactory. To fill this gap, inferences from bench side are warranted, where morphological and pathogenetic determinations can be performed. Nerve conduction studies (NCS) are ideal to translate results from preclinical to clinical setting. NEW METHODS We propose a comprehensive 8-minute protocol for sensory-motor neurophysiological assessment, similar to routine clinical practice: sensory proximal and distal caudal nerves, motor caudal nerve, and sensory digital nerve recordings were used and tested in 2 different experimental settings. In Experiment 1 we compared control (CTRL) animals to a severe sensory-motor polyneuropathy (animals treated with vincristine [VCR]), and in Experiment 2 CTRL animals were compared to a mild sensory polyneuropathy (animals treated with oxaliplatin [OHP]). NCS were performed after 1-month of chemotherapy and matched with confirmatory neuropathological analyses. RESULTS VCR treated animals showed, at NCS, a relevant sensory-motor polyneuropathy ensued at the end of treatment; whereas, OHP animals showed a mild distal sensory neuropathy. These patterns were confirmed by neuropathological analysis. COMPARISON WITH EXISTING METHODS In literature, the majority of proposed neurophysiological protocols relies mainly on a single nerve testing, rather than a combination of them, and only a few studies tested both caudal and sciatic nerve branches, nevertheless not aiming at fully reproduce clinical protocols (e.g., seeking for length-dependency); to provide evidence of appropriateness of our protocol we applied a gold standard: neuropathology. CONCLUSION The simple and rapid protocol here presented can be suggested as a good translation outcome measure in preclinical setting.
Collapse
Affiliation(s)
- Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|
8
|
Kim ST, Chung YY, Hwang HI, Shin HK, Choi R, Jun YH. Differential Expression of BDNF and BIM in Streptozotocin-induced Diabetic Rat Retina After Fluoxetine Injection. In Vivo 2021; 35:1461-1466. [PMID: 33910823 DOI: 10.21873/invivo.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diabetic retinopathy (DR) is a diabetic complication that causes blindness. Brain-derived neurotrophic factor (BDNF) expression is induced by fluoxetine. We observed the effects of fluoxetine on a streptozotocin (STZ)-induced diabetic rat model in this study. MATERIALS AND METHODS Rats were divided into three groups: Control, diabetic (65 mg/kg STZ injection), and diabetic with fluoxetine injection (20 mg/kg/week, six times). Western blotting was performed using anti-BDNF and anti-hexaribonucleotide-binding protein-3. Expression of BCL2 apoptosis regulator-like protein 11 (BIM) was analysed using a reverse transcription-polymerase chain reaction. RESULTS BDNF levels were significantly higher in the diabetic group treated with fluoxetine than in the untreated diabetic group. BIM expression was higher in the diabetic group than in the control group. BIM gene expression was lower in fluoxetine-treated diabetic group than in the untreated diabetic group. CONCLUSION Fluoxetine had an anti-apoptotic effect with upregulation of BDNF expression in retina of rats with STZ-induced diabetes.
Collapse
Affiliation(s)
- Seong Taeck Kim
- Department of Ophthalmology, Chosun University Hospital, Gwangju, Republic of Korea
| | - Yoon Young Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hyo-In Hwang
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hye-Kyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Ranju Choi
- School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Yong Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea;
| |
Collapse
|