1
|
Paguirigan JAG, Jeong E, Kang KB, Hur JS, Kim W. Investigation of Antimicrobial Compounds Produced by Endolichenic Fungi in Different Culture Media. THE PLANT PATHOLOGY JOURNAL 2024; 40:559-567. [PMID: 39397309 PMCID: PMC11471934 DOI: 10.5423/ppj.nt.06.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Continuous use of synthetic fungicides has led to explosive emergence of fungicide-resistant microbes. Therefore, there are urgent needs for environmentally friendly antimicrobial agents with novel modes of action. This study investigated endolichenic fungi (ELF) as a source of antimicrobial compounds against various plant pathogens. We utilized an One Strain MAny Compounds (OSMAC) approach to enhance the chemical diversity of fourteen ELF. This involved cultivation of ELF in four growth media and subsequently assessing antimicrobial activities of culture extracts. Nearly half of the culture extracts exhibited antimicrobial activity against a Gram-positive bacterium, but showed minimal activity against Gram-negative bacteria tested. Notably, culture extracts from two ELF, Chaetomium globosum and Nodulisporium sp., demonstrated significant inhibitory effects against plant pathogenic fungi. LC-MS/MS-based metabolome profiling confirmed the presence of known bioactive compounds like cyclic dipeptides and chaetoglobosins. These findings highlight the effectiveness of combining OSMAC and metabolomics for identifying antimicrobial agents for agricultural use.
Collapse
Affiliation(s)
- Jaycee Augusto G. Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Eunah Jeong
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyo Bin Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
2
|
Chen HW, Wu XY, Zhao ZY, Huang ZQ, Lei XS, Yang GX, Li J, Xiong J, Hu JF. Terricoxanthones A-E, unprecedented dihydropyran-containing dimeric xanthones from the endophytic fungus Neurospora terricola HDF-Br-2 associated with the vulnerable conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2024; 219:113963. [PMID: 38171409 DOI: 10.1016/j.phytochem.2023.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 μg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 μg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 μg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xi-Ying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zi-Qi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin-Sheng Lei
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Rakotondraibe HLR, Spjut RW, Addo EM. Chemical Constituents Isolated from the Lichen Biome of Selected Species Native to North America. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:185-233. [PMID: 39101985 DOI: 10.1007/978-3-031-59567-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A lichen is a symbiotic association composed of a primary mycobionts and one or more photobionts living mutualistically together, forming a distinct morphological entity beneficial to their partnership and to other associated fungi, photobionts, and bacteria that collectively make up the lichen biome. The taxonomic identification of a lichen species often requires determination of the primary mycobiont's secondary metabolites, the key morphological characteristics of the thallus, and how it relates to other lichen species as seen in DNA phylogeny. This chapter covers lichens and their bionts, taxonomic identification, and their chemical constituents as exemplified by what is found in lichen biomes, especially those endemic to North America. Extraction and isolation, as well as updates on dereplication methods using mass spectrometric GNPS and NMR spectroscopic spin network fingerprint procedures, and marker-based techniques to identify lichens are discussed. The isolation and structure elucidation of secondary metabolites of an endolichenic Penicillium species that produces bioactive compounds will be described in detail.
Collapse
Affiliation(s)
| | | | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Wang M, Luo M, Ding X, Chang S, He N, Hong B, Xie Y. (±) Pestalactone D and pestapyrone F, two new isocoumarins from an endolichenic Pestalotiopsis rhododendri. J Antibiot (Tokyo) 2023; 76:678-681. [PMID: 37612463 DOI: 10.1038/s41429-023-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Three isocoumarins, including two new compounds, (±) pestalactone D (1) and pestapyrone F (2), as well as one known compound, pestapyrone D (3), were isolated from the culture of the endolichenic Pestalotiopsis rhododendri LF-19-12. The planar structures of all compounds were elucidated by NMR and MS spectra. And the absolute configurations of 1 were confirmed by single crystal X-ray diffraction analysis, indicative of it as a racemate of 4S/12S and 4R/12R enantiomers. Compound 1 exhibited weak anti-coronaviral activity against human coronavirus HCoV-229E with an EC50 of 77.61 μM. Based on the bioinformatics analysis, the biosynthetic pathway of 1 has been proposed.
Collapse
Affiliation(s)
- Mengyuan Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Mengna Luo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Shanshan Chang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China.
| |
Collapse
|
5
|
Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY, Ma HB, Yang XW. Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 2023; 21:md21040234. [PMID: 37103373 PMCID: PMC10144380 DOI: 10.3390/md21040234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126 along with 34 known compounds (3-36). The structures of the new compounds were established by spectroscopic data. The absolute configuration of 1 was validated by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 and 3.5 μM, respectively, whereas 26, 28, 33, and 34 significantly inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 μM, respectively.
Collapse
Affiliation(s)
- You-Jia Hao
- College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hao-Yu Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hua-Bin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
6
|
Berry O, Briand E, Bagot A, Chaigné M, Meslet-Cladière L, Wang J, Grovel O, Jansen JJ, Ruiz N, du Pont TR, Pouchus YF, Hess P, Bertrand S. Deciphering interactions between the marine dinoflagellate Prorocentrum lima and the fungus Aspergillus pseudoglaucus. Environ Microbiol 2023; 25:250-267. [PMID: 36333915 PMCID: PMC10100339 DOI: 10.1111/1462-2920.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The comprehension of microbial interactions is one of the key challenges in marine microbial ecology. This study focused on exploring chemical interactions between the toxic dinoflagellate Prorocentrum lima and a filamentous fungal species, Aspergillus pseudoglaucus, which has been isolated from the microalgal culture. Such interspecies interactions are expected to occur even though they were rarely studied. Here, a co-culture system was designed in a dedicated microscale marine-like condition. This system allowed to explore microalgal-fungal physical and metabolic interactions in presence and absence of the bacterial consortium. Microscopic observation showed an unusual physical contact between the fungal mycelium and dinoflagellate cells. To delineate specialized metabolome alterations during microalgal-fungal co-culture metabolomes were monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry. In-depth multivariate statistical analysis using dedicated approaches highlighted (1) the metabolic alterations associated with microalgal-fungal co-culture, and (2) the impact of associated bacteria in microalgal metabolome response to fungal interaction. Unfortunately, only a very low number of highlighted features were fully characterized. However, an up-regulation of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed during co-culture in supernatants. Such results highlight the importance to consider microalgal-fungal interactions in the study of parameters regulating toxin production.
Collapse
Affiliation(s)
- Olivier Berry
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Alizé Bagot
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Maud Chaigné
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Laurence Meslet-Cladière
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Julien Wang
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Jeroen J Jansen
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Nicolas Ruiz
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Thibaut Robiou du Pont
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| |
Collapse
|
7
|
Shakour ZT, Farag MA. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J Adv Res 2022; 39:257-273. [PMID: 35660073 PMCID: PMC9263761 DOI: 10.1016/j.jare.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Yang JH, Oh SY, Kim W, Hur JS. Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum. MYCOBIOLOGY 2022; 50:55-65. [PMID: 35291596 PMCID: PMC8890557 DOI: 10.1080/12298093.2022.2040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 05/31/2023]
Abstract
Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture- and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.
Collapse
Affiliation(s)
- Ji Ho Yang
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
9
|
Zhao Y, Wang M, Xu B. A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104283] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Mohamed AH, Balbool BA, Abdel-Azeem AM. Aspergillus from Different Habitats and Their Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
The Structural Diversity of Marine Microbial Secondary Metabolites Based on Co-Culture Strategy: 2009-2019. Mar Drugs 2020; 18:md18090449. [PMID: 32867339 PMCID: PMC7551240 DOI: 10.3390/md18090449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Marine microorganisms have drawn great attention as novel bioactive natural product sources, particularly in the drug discovery area. Using different strategies, marine microbes have the ability to produce a wide variety of molecules. One of these strategies is the co-culturing of marine microbes; if two or more microorganisms are aseptically cultured together in a solid or liquid medium in a certain environment, their competition or synergetic relationship can activate the silent biosynthetic genes to produce cryptic natural products which do not exist in monocultures of the partner microbes. In recent years, the co-cultivation strategy of marine microbes has made more novel natural products with various biological activities. This review focuses on the significant and excellent examples covering sources, types, structures and bioactivities of secondary metabolites based on co-cultures of marine-derived microorganisms from 2009 to 2019. A detailed discussion on future prospects and current challenges in the field of co-culture is also provided on behalf of the authors’ own views of development tendencies.
Collapse
|
12
|
Staples R, LaDuca RL, Roze LV, Laivenieks M, Linz JE, Beaudry R, Fryday A, Schilmiller AL, Koptina AV, Smith B, Trail F. Structure and Chemical Analysis of Major Specialized Metabolites Produced by the Lichen Evernia prunastri. Chem Biodivers 2020; 17:e1900465. [PMID: 31701649 DOI: 10.1002/cbdv.201900465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar-Ola collection only. The crystalline structure of evernic acid (2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)oxy]-6-methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge-sharing {Na2 O8 }n sodium-oxygen chains connected the hmb anions into the full three-dimensional crystal structure of the title compound. The crystal used for single-crystal X-ray diffraction exhibited non-merohedral twinning. The data suggest the importance of the acetyl-polymalonyl pathway products to processes of maintaining integrity of the lichen holobiont community.
Collapse
Affiliation(s)
- Richard Staples
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L LaDuca
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ludmila V Roze
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 342, East Lansing, MI 48824, USA
| | - Maris Laivenieks
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 342, East Lansing, MI 48824, USA
| | - John E Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Randolph Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Alan Fryday
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 342, East Lansing, MI 48824, USA
| | - Anthony L Schilmiller
- RTSF Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824, USA
| | - Anna V Koptina
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, 75123, Sweden
| | - Benjamin Smith
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 342, East Lansing, MI 48824, USA
| | - Frances Trail
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 342, East Lansing, MI 48824, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
New Diketopiperazines from a Marine-Derived Fungus Strain Aspergillus versicolor MF180151. Mar Drugs 2019; 17:md17050262. [PMID: 31052556 PMCID: PMC6562876 DOI: 10.3390/md17050262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Six new diketopiperazines, (±)-7,8-epoxy-brevianamide Q ((±)-1), (±)-8-hydroxy-brevianamide R ((±)-2), and (±)-8-epihydroxy-brevianamide R ((±)-3), together with four known compounds, (±)-brevianamide R ((±)-4), versicolorin B (5) and averufin (6), were isolated from a marine-derived fungus strain Aspergillus versicolor MF180151, which was recovered from a sediment sample collected from the Bohai Sea, China. The chemical structures were established by 1D- and 2D-NMR spectra and HR-ESI-MS. 1 is the first sample of brevianamides with an epoxy moiety. Their bioactivities were evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, and Bacillus Calmette-Guérin. Compounds 1–4 showed no activities against the pathogens, and compounds 5 and 6 showed moderate activities against S. aureus and methicillin-resistant S. aureus.
Collapse
|
14
|
Xing CP, Wu J, Xia JM, Fan SQ, Yang XW. Steroids and anthraquinones from the deep-sea-derived fungus Aspergillus nidulans MCCC 3A00050. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Lagarde A, Jargeat P, Roy M, Girardot M, Imbert C, Millot M, Mambu L. Fungal communities associated with Evernia prunastri, Ramalina fastigiata and Pleurosticta acetabulum: Three epiphytic lichens potentially active against Candida biofilms. Microbiol Res 2018; 211:1-12. [PMID: 29705201 DOI: 10.1016/j.micres.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 03/17/2018] [Indexed: 11/26/2022]
Abstract
Fungal communities associated to three epiphytic lichens active against Candida, were investigated using culture-based methods We hypothetized that associated fungi would contribute to lichens activities. The ability of specific fungi to grow inside or outside lichens was investigated. To detect biogenesis pathways involved in the production of secondary metabolites, genes coding for nonribosomal peptide synthetase (NRPS) and polyketide synthase I (PKS I) were screened by PCR from fungal DNA extracts. Both endo and epilichenic communities were isolated from two fructicose (Evernia prunastri and Ramalina fastigiata) and one foliose (Pleurosticta acetabulum) lichens. A total of 86 endolichenic and 114 epilichenic isolates were obtained, corresponding to 18 and 24 phylogenetic groups respectively suggesting a wide diversity of fungi. The communities and the species richness were distinct between the three lichens which hosted potentially new fungal species. Additionally, the endo- and epilichenic communities differed in their composition: Sordariomycetes were particularly abundant among endolichenic fungi and Dothideomycetes among epilichenic fungi. Only a few fungi colonized both habitats, such as S. fimicola, Cladosporium sp1 and Botrytis cinerea. Interestingly, Nemania serpens (with several genotypes) was the most abundant endolichenic fungus (53% of isolates) and was shared by the three lichens. Finally, 12 out of 36 phylogenetic groups revealed the presence of genes coding for nonribosomal peptide synthetase (NRPs) and polyketide synthase I (PKS I). This study shows that common lichens are reservoirs of diverse fungal communities, which could potentially contribute to global activity of the lichen and, therefore, deserve to be isolated for further chemical studies.
Collapse
Affiliation(s)
- Aurélie Lagarde
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Patricia Jargeat
- UMR5174 UPS-CNRS-IRD Laboratoire Evolution et Diversité Biologique, EDB, Université Toulouse, 3, Bât 4R1, 118 route de Narbonne, 31062 Toulouse, France
| | - Mélanie Roy
- UMR5174 UPS-CNRS-IRD Laboratoire Evolution et Diversité Biologique, EDB, Université Toulouse, 3, Bât 4R1, 118 route de Narbonne, 31062 Toulouse, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France
| | - Marion Millot
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Lengo Mambu
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
17
|
Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot (Tokyo) 2018; 71:753-756. [DOI: 10.1038/s41429-018-0058-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
|
18
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
Kim TY, Jang JY, Yu NH, Chi WJ, Bae CH, Yeo JH, Park AR, Hur JS, Park HW, Park JY, Park JH, Lee SK, Kim JC. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. PEST MANAGEMENT SCIENCE 2018; 74:384-391. [PMID: 28851010 DOI: 10.1002/ps.4717] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND The endolichenic fungus Xylaria grammica KCTC 13121BP showed strong nematicidal activity against Meloidogyne incognita. This study aimed to identify the nematicidal metabolites and to evaluate the efficacy of the strain as a biocontrol agent under pot and field conditions. RESULTS Bioassay-guided fractionation and instrumental analyses led to grammicin being identified as the nematicidal metabolite. Because patulin is a mycotoxic isomer of grammicin and is known to have strong antibacterial and cytotoxic activities, several biological activities of the two compounds were compared. Grammicin showed strong second-stage juvenile killing and egg-hatching inhibitory effects, with a 50% effective concentration at 72 h (EC50/72 h ) of 15.9 µg/mL and a 50% effective concentration at 14 days (EC50/14 days ) of 5.87 µg/mL, respectively, whereas patulin was virtually inactive in both respects. Patulin was strongly active toward various phytopathogenic bacteria in vitro, whereas grammicin was weakly so. Patulin at the concentration range of 0.1-10 µg/mL also showed dose-dependent cytotoxicity toward the human first-trimester trophoblast cell line SW.71, whereas grammicin was not toxic toward this cell line. In pot and field experiments, a wettable powder-type formulation and fermentation broth filtrate of X. grammica KCTC 13121BP effectively suppressed the development of root-knot nematode disease on tomato and melon plants. CONCLUSION The results suggest that X. grammica and grammicin may have potential applications for control of root-knot nematode disease of various crops. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Ja Yeong Jang
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Nan Hee Yu
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Won Jae Chi
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Chang-Hwan Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Joo Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Ae Ran Park
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Seon Hur
- Korean Lichen Research Institute, Suncheon National University, Suncheon, Republic of Korea
| | - Hae Woong Park
- R&D Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji-Yeon Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Suryanarayanan TS, Thirunavukkarasu N. Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 2017; 8:189-196. [PMID: 30123639 PMCID: PMC6059131 DOI: 10.1080/21501203.2017.1352048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Lichens are the result of a stable mutualism between a fungal and a photosynthesising partner (alga or cyanobacterium). In addition to the fungal partner in this mutualism, lichens are associated with endolichenic fungi which reside inside their thalli. The endolichenic fungi appear to have evolved with the lichen and many of them are a source of novel metabolites vested with unique bioactivities. There is very little information on the biology of endolichenic fungi and their interactions with the other components of a lichen microbiome. There is an urgent need to understand these aspects of endolichenic fungi such that their ecology and economic potential are known more completely. The current knowledge on endolichenic fungi is reviewed here.
Collapse
|
21
|
Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol 2017; 120:1458-1467. [PMID: 27742099 DOI: 10.1016/j.funbio.2016.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022]
Abstract
Aspergillus section Versicolores includes species of clinical relevance and many others that have been poorly studied but are occasionally found in clinical samples. The aim of this study was to investigate, using a multilocus phylogenetic approach, the spectrum of species of the section Versicolores and to determine their in vitro antifungal susceptibility. The study was based on a set of 77 clinical isolates from different USA medical centres, which had been previously identified as belonging to this section. The genetic markers used were internal transcribed spacer (ITS), β-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2), and the drugs tested, following the CLSI guidelines, were amphotericin B (AMB), itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, micafungin, terbinafine (TBF), and flucytosine (5FC). The most frequent species were Aspergillus sydowii (26 %), Aspergillus creber (22 %), and Aspergillus amoenus (18.2 %), followed by Aspergillus protuberus (13 %), Aspergillus jensenii (10.4 %), and Aspergillus tabacinus (5.2 %); while Aspergillus cvjetkovicii, Aspergillus fructus, Aspergillus puulaauensis, and Aspergillus versicolor were represented by only one isolate each (1.3 %). This is the first time that A. jensenii and A. puulaauensis have been reported from clinical samples. Considering the high number of isolates identified as belonging to this fungal group in this study, its clinical relevance should not be overlooked. Aspergillus versicolor, traditionally considered one of the most common species in this section in a clinical setting, was only rarely recovered in our study. The in vitro antifungal results showed that echinocandins and TBF were the most potent drugs, the azoles showed variable results, AMB was poorly active, and 5FC was the less active.
Collapse
|
22
|
Muggia L, Kopun T, Grube M. Effects of Growth Media on the Diversity of Culturable Fungi from Lichens. Molecules 2017; 22:E824. [PMID: 28513562 PMCID: PMC6154544 DOI: 10.3390/molecules22050824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy.
| | - Theodora Kopun
- Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria.
| | - Martin Grube
- Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
23
|
Polyketide-Terpene Hybrid Metabolites from an Endolichenic Fungus Pestalotiopsis sp. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6961928. [PMID: 28593175 PMCID: PMC5448061 DOI: 10.1155/2017/6961928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 04/02/2017] [Indexed: 11/18/2022]
Abstract
Five new polyketide-terpene hybrid metabolites (1–5) with highly functionalized groups, together with six known derivatives (6–11), were isolated from the endolichenic fungus Pestalotiopsis sp. Their structures were elucidated by extensive NMR experiments including 1H, 13C, HMQC, COSY, and HMBC. The relative configurations of the new compounds were determined by analysis of coupling constants and ROESY correlations. The absolute configurations especially the secondary alcohol at C-15 in 1 and secondary alcohol at C-14 in 5 were established via the CD experiments of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivatives. These compounds were tested for their inhibition activity against six plant pathogens. Compounds 1 and 5 exhibited pronounced efficiency against Fusarium oxysporum, and compounds 5 and 6 potently inhibited Fusarium gramineum with MIC value of 8 µg/mL, which revealed the plausible ecological role of endolichenic fungus in providing chemical protection for its host lichen in the fungus-plant relationship. The biosynthetic pathway of compounds 1–11 was postulated for the first time, which paved the way for its further biosynthesis research.
Collapse
|
24
|
Wang H, Umeokoli BO, Eze P, Heering C, Janiak C, Müller WE, Orfali RS, Hartmann R, Dai H, Lin W, Liu Z, Proksch P. Secondary metabolites of the lichen-associated fungus Apiospora montagnei. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|