1
|
Xia F, Wei W, Wang J, Duan Y, Wang K, Zhang C. Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics. BMC Med Imaging 2024; 24:221. [PMID: 39164667 PMCID: PMC11334577 DOI: 10.1186/s12880-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Non-Alcoholic Steatohepatitis (NASH) is a crucial stage in the progression of Non-Alcoholic Fatty Liver Disease(NAFLD). The purpose of this study is to explore the clinical value of ultrasound features and radiological analysis in predicting the diagnosis of Non-Alcoholic Steatohepatitis. METHOD An SD rat model of hepatic steatosis was established through a high-fat diet and subcutaneous injection of CCl4. Liver ultrasound images and elastography were acquired, along with serum data and histopathological results of rat livers.The Pyradiomics software was used to extract radiomic features from 2D ultrasound images of rat livers. The rats were then randomly divided into a training set and a validation set, and feature selection was performed through dimensionality reduction. Various machine learning (ML) algorithms were employed to build clinical diagnostic models, radiomic models, and combined diagnostic models. The efficiency of each diagnostic model for diagnosing NASH was evaluated using Receiver Operating Characteristic (ROC) curves, Clinical Decision Curve Analysis (DCA), and calibration curves. RESULTS In the machine learning radiomic model for predicting the diagnosis of NASH, the Area Under the Curve (AUC) of ROC curve for the clinical radiomic model in the training set and validation set were 0.989 and 0.885, respectively. The Decision Curve Analysis revealed that the clinical radiomic model had the highest net benefit within the probability threshold range of > 65%. The calibration curve in the validation set demonstrated that the clinical combined radiomic model is the optimal method for diagnosing Non-Alcoholic Steatohepatitis. CONCLUSION The combined diagnostic model constructed using machine learning algorithms based on ultrasound image radiomics has a high clinical predictive performance in diagnosing Non-Alcoholic Steatohepatitis.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
2
|
Zheng C, Zheng Y, Chen X, Zhong X, Zheng X, Yang S, Zheng Z. α-NETA down-regulates CMKLR1 mRNA expression in ileum and prevents body weight gains collaborating with ERK inhibitor PD98059 in turn to alleviate hepatic steatosis in HFD-induced obese mice but no impact on ileal mucosal integrity and steatohepatitis progression. BMC Endocr Disord 2023; 23:9. [PMID: 36624417 PMCID: PMC9830776 DOI: 10.1186/s12902-023-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Studies on chemerin/chemokine-like receptor-1 have mainly focused on adipose and liver with the intestinal tissues largely overlooked. In this study conducted on obese mice, we have explored: 1) CMKLR1 expression in the ileums; 2) CMKLR1 inhibitor α-NETA on body weight and intestinal mucosa integrity hence the impact on hepatic steatosis and pathway involved. METHODS Nineteen male C57BL/6 mice were randomly divided into five groups: normal diet group (ND), high-fat diet group (HFD), HFD + α-NETA group (NETA), HFD + PD98059 group (PD) and HFD + α-NETA + PD98059 group (NETA + PD). Mice were fed either with a chow diet or HFD for 12 weeks. At 12th week, mice of ND were put on the diet as before; mice of NETA received daily treatments of α-NETA (30 mg/kg) via gavage; mice of PD received daily treatment of PD98059 via tail vein injection; mice of NETA + PD received daily treatment of α-NETA + PD98059, all for another 4 weeks. At the time intervention ended, mice were sacrificed. The body weight, the liver pathologies were assessed. Ileal CMKLR1 mRNA was evaluated by rtPCR; ZO-1, ERK1/2 protein expression of ileal tissues by western blotting; liver TNF-α and serum endotoxin by Elisa. RESULTS More weight gains in mice of HFD than ND (37.90 ± 3.00 g) vs (24.47 ± 0.50 g), P = 0.002; α-NETA reduced the body weight (33.22 ± 1.90 g) vs (37.90 ± 3.00 g), P = 0.033; and further reduced by NETA + PD98059: (31.20 ± 1.74 g) vs (37.30 ± 4.05 g), P = 0.032. CMKLR1 mRNA expression was up-regulated in ileum in group HFD compared with ND and down-regulated by α-NETA. Steatosis was only alleviated in group PD + NETA with less weight gain. No impact of α-NETA on ileal ZO-1 or pERK with western blotting, and no endotoxin level changes were detected. TNF-α was higher in group HFD than in group ND, while no significant difference between other groups. CONCLUSIONS CMKLR1 mRNA was up-regulated in the ileum of obese mice and down-regulated by α-NETA along with a body weight control collaborating with ERK inhibitor PD98059. Steatosis was alleviated in a weight dependent way. α-NETA has no influence on intestinal mucosal integrity and no impact on steatohepatitis progression.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Yongping Zheng
- Department of Gastroenterology, Shantou Central Hospital, 114 Waima Road, Shantou, 515031, Guangdong, China.
| | - Xi Chen
- Department of Clinical Medicine Research Center, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xianyang Zhong
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaobin Zheng
- Department of Gastroenterology, Shantou Central Hospital, 114 Waima Road, Shantou, 515031, Guangdong, China
| | - Shuhui Yang
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| | - Zihui Zheng
- Department of Endocrine and Metabolic Diseases, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
3
|
Panzarini E, Leporatti S, Tenuzzo BA, Quarta A, Hanafy NAN, Giannelli G, Moliterni C, Vardanyan D, Sbarigia C, Fidaleo M, Tacconi S, Dini L. Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl 4-Induced Liver Fibrosis in Rats. J Pers Med 2022; 12:jpm12111812. [PMID: 36579532 PMCID: PMC9692463 DOI: 10.3390/jpm12111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatic fibrosis (HF) is a major cause of liver-related disorders and together with cancer-associated fibroblasts can favor liver cancer development by modulating the tumor microenvironment. Advanced HF, characterized by an excess of extracellular matrix (ECM), is mediated by TGF- β1, that activates hepatic stellate cells (HSCs) and fibroblasts. A TGF-β1 receptor inhibitor, LY2157299 or Galunisertib (GLY), has shown promising results against chronic liver progression in animal models, and we show that it can be further improved by enhancing GLYs bioavailability through encapsulation in polymeric polygalacturonic-polyacrylic acid nanomicelles (GLY-NMs). GLY-NMs reduced HF in an in vivo rat model of liver fibrosis induced by intraperitoneal injection of CCl4 as shown by the morphological, biochemical, and molecular biology parameters of normal and fibrotic livers. Moreover, GLY-NM was able to induce recovery from HF better than free GLY. Indeed, the encapsulated drug reduces collagen deposition, hepatic stellate cells (HSCs) activation, prevents fatty degeneration and restores the correct lobular architecture of the liver as well as normalizes the serum parameters and expression of the genes involved in the onset of HF. In summary, GLY-NM improved the pharmacological activity of the free TGF- β1 inhibitor in the in vivo HF treatment and thus is a candidate as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (B.A.T.); (D.V.)
| | - Stefano Leporatti
- Consiglio Nazionale delle Ricerche (CNR) NANOTEC istituto di Nanotecnologia-Istituto di Nanotecnologia, 73100 Lecce, Italy; (S.L.); (A.Q.)
| | - Bernardetta Anna Tenuzzo
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (B.A.T.); (D.V.)
| | - Alessandra Quarta
- Consiglio Nazionale delle Ricerche (CNR) NANOTEC istituto di Nanotecnologia-Istituto di Nanotecnologia, 73100 Lecce, Italy; (S.L.); (A.Q.)
| | - Nemany A. N. Hanafy
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El Sheikh 6860404, Egypt;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Camilla Moliterni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (C.M.); (C.S.)
| | - Diana Vardanyan
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (B.A.T.); (D.V.)
| | - Carolina Sbarigia
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (C.M.); (C.S.)
| | - Marco Fidaleo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (C.M.); (C.S.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (M.F.); (S.T.); (L.D.)
| | - Stefano Tacconi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (C.M.); (C.S.)
- Correspondence: (M.F.); (S.T.); (L.D.)
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (C.M.); (C.S.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (M.F.); (S.T.); (L.D.)
| |
Collapse
|
4
|
Sánchez-Quevedo J, Ocampo-Rodríguez E, Alvarez-Ayala E, Rodríguez-López A, Duarte-Vázquez MA, Rosado JL, Rodríguez-Fragoso L. β-Hydroxyphosphocarnitine modifies fibrosis, steatosis and improves liver function in non-alcoholic steatohepatitis induced in rats. BMC Pharmacol Toxicol 2022; 23:75. [PMID: 36175992 PMCID: PMC9520892 DOI: 10.1186/s40360-022-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a chronic disease characterized by inflammation, steatosis, and liver fibrosis. The liver is particularly affected by alterations in lipid metabolism. Our aim was to evaluate the effect of β-hydroxyphosphocarnitine (β-HPC) on NASH induced in rats. METHODS NASH was produced via the ad libitum daily chronic administration of a fructose solution (400 kcal) for 9 weeks, an oral dose of fat solution (16 kcal) for 7 weeks and a subcutaneous injection of CCl4 (30%) two times a week for 2 weeks to Wistar rats. To evaluate the effect of β-HPC, a dose of 100 mg/kg was administered perorally for 4 weeks and its biochemical and hepatic effects on rats with NASH were analyzed. Serum levels of glucose, triglycerides, cholesterol, and liver enzymes were quantified. Histological changes were evaluated on slices stained with H&E, trichromic and PAS. Glycogen content was measured in liver samples. α-SMA and SREBP-1 immunopositive cells were identified in liver tissue. RESULTS NASH was characterized by elevated triglycerides, elevated liver damage enzymes, and the presence of necrosis, inflammation, steatosis, and fibrosis. Significant amounts of glycogen were found, along with α-SMA positive cells in fibrosis areas. The over-expression of SREBP-1 in cytoplasm and nuclei was evident. Animals with NASH treated with β-HPC showed a significant reduction in inflammation, necrosis, and glycogen content in the liver. A reduction in α-SMA and SREBP-1 immunopositive cells correlated with a significant reduction in the degree of fibrosis and steatosis found in liver tissue. β-HPC reduced the levels of ALP and GGT, and significantly reduced triglyceride levels. Animals treated with β-HPC did not show any alterations in liver enzyme function. CONCLUSIONS Our research shows that β-HPC can improve liver function and morphology in the case of NASH induced in rats, suggesting β-HPC could be potentially used in the treatment of NASH.
Collapse
Affiliation(s)
- Janet Sánchez-Quevedo
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Emmanuel Ocampo-Rodríguez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Elizabeth Alvarez-Ayala
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Anahí Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | | | | | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Yuan X, Lu H, Han M, Han K, Zhang Y, Liang P, Liu S, Cheng J. HCBP6-induced activation of brown adipose tissue and upregulated of BAT cytokines genes. J Therm Biol 2022; 109:103306. [DOI: 10.1016/j.jtherbio.2022.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
|
6
|
Gao L, Zhang Y, Gao X, Xu L, Duan X. Methylation of the HCBP6 promoter is associated with primary biliary cholangitis pathogenesis. Biochem Biophys Res Commun 2022; 610:176-181. [DOI: 10.1016/j.bbrc.2022.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 01/30/2023]
|
7
|
Lu H, Yuan X, Zhang Y, Han M, Liu S, Han K, Liang P, Cheng J. HCBP6 deficiency exacerbates glucose and lipid metabolism disorders in non-alcoholic fatty liver mice. Biomed Pharmacother 2020; 129:110347. [PMID: 32535386 DOI: 10.1016/j.biopha.2020.110347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), which often accompanied by metabolic syndrome, such as obesity, diabetes and dyslipidemia, has become a global health problem. Our previous results show that HCV core protein binding protein 6 (HCBP6) could maintain the triglyceride homeostasis in liver cells. However, the role of HCBP6 in NAFLD and its associated metabolic disorders remains incompletely understood. METHODS Hepatic HCBP6 expression was determined by qRT-PCR, Western blot and immunohistochemistry analysis. HCBP6 knockout (HCBP6-KO) mice were constructed and fed a high-fat diet (HFD) to induce NAFLD. The effects of HCBP6 on glucose and lipid metabolism were measured by HE staining, qRT-PCR, Western blot and GTT. Wild-type and HCBP6-KO mice kept on a HFD were treated with ginsenosides Rh2, and HE staining and GTT were used to study the function of Rh2 in metabolism disorders. RESULTS HCBP6 is reduced in HFD-fed mice. HCBP6 deficiency increased the body weight, aggravated fatty liver and deteriorated lipid homeostasis as well as glucose homeostasis in HFD-induced mouse model of NAFLD. Moreover, HCBP6-KO mice failed to maintain body temperature upon cold challenge. Mechanistically, HCBP6 could regulate lipolysis and fatty acid oxidation via activation of AMKP in vivo. In addition, HCBP6 expression was upregulated by ginsenosides Rh2. Accordingly, ginsenosides Rh2 administrations improved HFD-induced fatty liver and glucose tolerance. CONCLUSIONS These findings indicated that HCBP6 is essential in maintaining lipid and glucose homeostasis and body temperature. HCBP6 augmented by ginsenosides Rh2 may be a promising therapeutic strategy for the treatment of metabolic disorders in NAFLD mice.
Collapse
Affiliation(s)
- Hongping Lu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Xiaoxue Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China.
| | - Yu Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Department of Hepatology Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Kai Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Pu Liang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100191, China.
| |
Collapse
|