1
|
Tejero Pérez A, Kapravelou G, Porres Foulquie JM, López Jurado Romero de la Cruz M, Martínez Martínez R. Potential benefits of microalgae intake against metabolic diseases: beyond spirulina-a systematic review of animal studies. Nutr Rev 2023:nuad098. [PMID: 37643736 DOI: 10.1093/nutrit/nuad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
CONTEXT Microalgae are a diverse source of bioactive molecules, such as polyphenols, carotenoids, and omega-3 fatty acids, with beneficial properties in biomarkers of metabolic diseases. Unlike the rest of the microalgae genera, Arthrospira sp., commonly called spirulina, has been widely studied. OBJECTIVE This review aims to describe the current knowledge about microalgae, besides spirulina, focusing on their beneficial properties against metabolic diseases. DATA SOURCES A systematic research of MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2012. In vivo animal studies including microalgae consumption, except for spirulina, that significantly improved altered biomarkers related to metabolic diseases were included. These biomarkers included body weight/composition, glucose metabolism, lipid metabolism, oxidative damage, inflammation markers, and gut microbiota. DATA EXTRACTION After the literature search and the implementation of inclusion and exclusion criteria, 37 studies were included in the revision out of the 132 results originally obtained after the application of the equation on the different databases. DATA ANALYSIS Data containing 15 microalgae genera were included reporting on a wide range of beneficial results at different levels, including a decrease in body weight and changes in plasma levels of glucose and lipoproteins due to molecular alterations such as those related to gene expression regulation. The most reported beneficial effects were related to gut microbiota and inflammation followed by lipid and glucose metabolism and body weight/composition. CONCLUSIONS Microalgae intake improved different altered biomarkers due to metabolic diseases and seem to have potential in the design of enriched foodstuffs or novel nutraceuticals. Nevertheless, to advance to clinical trials, more thorough/detailed studies should be performed on some of the microalgae genera included in this review to collect more information on their molecular mechanisms of action.
Collapse
Affiliation(s)
- Adrian Tejero Pérez
- Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Faculty of Medicine, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Jesús María Porres Foulquie
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - María López Jurado Romero de la Cruz
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
Research progress in lipid metabolic regulation of bioactive peptides. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractHyperlipidemia poses a serious threat to human health and evaluating the ability of natural active substances to regulate disorders of lipid metabolism is the focus of food functionality research in recent years. Bioactive peptides are distinguished by their broad range of sources, high nutritional content, ease of absorption and use by the body, and ease of determining their sequences. Bioactive peptides have a wide range of potential applications in the area of medicines and food. The regulation of lipid metabolism disorder caused by bioactive peptides from different sources provides a reference for the development and research of bioactive peptides for lipid reduction.
Graphical Abstract
Collapse
|
3
|
Ameliorating Effects of Bioactive Peptides Extracted from Litopenaeus vannamei Wastes on Oxidative Stress, Glucose Regulation, and Autophagy Gene Expression in Nonalcoholic Fatty Liver-Induced Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2679634. [PMID: 36062167 PMCID: PMC9436606 DOI: 10.1155/2022/2679634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of bioactive peptides from Litopenaeus vannamei on oxidative stress, glucose regulation, and autophagy gene expression in the induced nonalcoholic fatty liver rats. Bioactive peptides used in the current study were extracted in a progressive rise in temperature (40–60°C) (GP). For this purpose, twenty-four healthy male rats (initial weight, 230.1 ± 22 g) were divided in four experimental groups including control (standard diet), HFD (high-fat diet), HFD + GP20, and 300 (high-fat diet + 20, 300 mg peptides/kg body weight). After 70 days, the results indicated that experimental treatments did not affect the body and liver weight (P > 0.05), although the higher liver weight was seen in HFD treatment. Based on these results, the use of GP peptides improved antioxidant enzymes and decreased MDA concentration, and a significant difference was observed between peptide treatments and HFD (P < 0.05). In comparison to the HFD group, significantly lower liver enzymes (ALT and AST) were seen in peptide treatments (P < 0.05). Also, the results indicated that the lowest amylase, alkaline phosphatase, glucose, insulin, HOMA-IR, and inflammation cytokines (TNF-ɑ and IL-6) were seen in peptide groups. The autophagy gene expression was measured in the liver cells, and the results showed that, unlike HFD treatment, the use of GP peptides decreased Beclin 1, Atg7, and P62 expression in male rat's livers. Overall, the results of the current study demonstrated that the use of GP peptides at low concentration shows significant hypoglycemia and antioxidant properties in nonalcoholic fatty liver-induced rats.
Collapse
|
4
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
5
|
Huang TH, Liu PY, Lin YL, Tsai JS. Hypoglycemic peptide-enriched hydrolysates of Corbicula fluminea and Chlorella sorokiniana possess synergistic hypoglycemic activity through inhibiting α-glucosidase and dipeptidyl peptidase-4 activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:716-723. [PMID: 34171123 DOI: 10.1002/jsfa.11402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The prevalence of diabetes mellitus worldwide has increased in recent decades. Maintaining the level of blood glucose is the most basic and important issue for diabetics. This study aimed to investigate the hypoglycemic activity of a combination of hypoglycemic peptide-enriched hydrolysates of Corbicula fluminea (ACH) and Chlorella sorokiniana (PCH). RESULTS Combined supplementation of ACH and PCH synergistically inhibited α-glucosidase and DPP4 activities in vitro. After 4 weeks of treatment with ACH and/or PCH, the plasma glucose concentration and insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR), total cholesterol (TC) and triglyceride (TG) levels significantly decreased. The hypoglycemic peptides in ACH and PCH were purified and assayed for α-glucosidase and DPP4 activity. The hypoglycemic peptides in ACH and PCH effectively decreased α-glucosidase and DPP4 activities. In silico assays showed that these two peptide types have different docking poses, which determined their inhibitory effect against α-glucosidase and DPP4 activity. CONCLUSION Combined treatment with hypoglycemic peptide-enriched ACH and PCH could modulate blood glucose by synergistically inhibiting α-glucosidase and DPP4 activities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pi-Yu Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jenn-Shou Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
6
|
Xiong K, Liu J, Wang X, Sun B, Zhang Y, Zhao Z, Pei P, Li X. Engineering a carboxypeptidase from Aspergillus niger M00988 by mutation to increase its ability in high Fischer ratio oligopeptide preparation. J Biotechnol 2021; 330:1-8. [PMID: 33647354 DOI: 10.1016/j.jbiotec.2021.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
High Fischer ratio oligopeptides have better conditioning effects on chronic diseases caused by long-term sub-health. At present, the enzymatic method for producing high Fischer ratio oligopeptides has a low yield, complicated purification, and a high cost. The use of exopeptidases with specific catalytic activity for aromatic amino acids in the preparation of high Fischer ratio oligopeptides is an important means to solve this problem. The carboxypeptidase from Aspergillus niger M00988 was cloned, which has good specificity for hydrophobic amino acids. Mutations at important substrate binding sites 135, 160, and 206 were performed to study important factors affecting the enzyme-specific recognition of aromatic groups. The results showed that the steric hindrance of amino acid residues at position 135 and the effects of positions 160 and 206 on the binding force of the enzyme to the substrate have important effects on the specific recognition of aromatic groups by the enzyme. Therefore, the S135 G, Y160S, and Y206S mutant enzymes have good application prospects in the preparation of high Fischer ratio oligopeptides with Chlorella powder. The obtained oligopeptides' Fischer ratio reached 31.45, 38.42, and 36.54, respectively. Compared with the original enzyme, the Fischer ratio increased by 2.58 %, 25.31 %, and 19.18 %, respectively.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Jiayun Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Xiaoyi Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yuyu Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zhiyao Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Penggang Pei
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Xiuyuan Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
7
|
XIONG K, LIU JY, WANG XY, SUN BG, ZHAO ZY, PEI PG, LI XY. Preparation of high fischer ratio oligopeptide of chlorella powder using specific enzymatic hydrolysis. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.42220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ke XIONG
- Beijing Technology & Business University, China; Beijing Technology & Business University, China
| | - Jia-yun LIU
- Beijing Technology & Business University, China; Beijing Technology & Business University, China
| | - Xiao-yi WANG
- Beijing Technology & Business University, China; Beijing Technology & Business University, China
| | - Bao-guo SUN
- Beijing Technology & Business University, China; Beijing Technology and Business University, China
| | - Zhi-yao ZHAO
- Beijing Technology & Business University, China; Beijing Technology & Business University, China
| | - Peng-gang PEI
- Beijing Technology & Business University, China; Beijing Technology and Business University, China
| | - Xiu-yuan LI
- Beijing Technology & Business University, China; Beijing Technology & Business University, China
| |
Collapse
|
8
|
Liu H, Li S, Zhong Y, Liu J, Liu H, Cheng J, Ma L, Huang Y, Cai X, Liu H, Zheng J, Su Z, Wang Q. Quantitative Structure-Activity Relationship Model to Predict Antioxidant Effects of the Peptide Fraction Extracted from a Co-Culture System of Chlorella pyrenoidosa and Yarrowia lipolytica. Mar Drugs 2019; 17:E633. [PMID: 31717355 PMCID: PMC6891513 DOI: 10.3390/md17110633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 01/11/2023] Open
Abstract
In this study, the antioxidant components in co-culture of Chlorella pyrenoidosa and Yarrowia lipolytica (3:1 ratio) were confirmed as trypsin-hydrolyzed peptides (EHPs). The EHPs were composed of 836 different peptides with molecular weights ranging from 639 to 3531 Da and were mainly composed of hydrophobic amino acids (48.1%). These peptides showed remarkable protective effects against oxidative stress in HepG2, which may be attributed to their structures. Furthermore, the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly lower in the peptide-treated group than in the control group, suggesting that the antioxidant enzyme-coding genes were not activated. The EC50 value of three peptides in the EHPs were in the order of AGYSPIGFVR (0.04 ± 0.002 mg/mL) > VLDELTLAR (0.09 ± 0.001 mg/mL) > LFDPVYLFDQG (0.41 ± 0.03 mg/mL); these results agreed with the prediction of the model (R2 > 0.9, Q2 > 0.5). Thus, EHPs show potential as potent new antioxidant agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qin Wang
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; (H.L.); (L.M.); (Z.S.)
| |
Collapse
|
9
|
Egg white hydrolysate enhances insulin sensitivity in high-fat diet-induced insulin-resistant rats via Akt activation. Br J Nutr 2019; 122:14-24. [PMID: 30982477 DOI: 10.1017/s0007114519000837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Agents that block the renin-angiotensin system (RAS) improve glucoregulation in the metabolic syndrome disorder. We evaluated the effects of egg white hydrolysate (EWH), previously shown to modulate the protein abundance of RAS component in vivo, on glucose homeostasis in diet-induced insulin-resistant rats. Sprague-Dawley rats were fed a high-fat diet (HFD) for 6 weeks to induce insulin resistance. They were then randomly divided into four groups receiving HFD or HFD supplemented with different concentrations of EWH (1, 2 and 4 %) for another 6 weeks in the first trial. In the second trial, insulin-resistant rats were divided into two groups receiving only HFD or HFD+4 % EWH for 6 weeks. Glucose homeostasis was assessed by oral glucose tolerance and insulin tolerance tests. Insulin signalling and protein abundance of RAS components, gluconeogenesis enzymes and PPARγ were evaluated in muscle, fat and liver. Adipocyte morphology and inflammatory markers were evaluated. In vivo administration of EWH increased insulin sensitivity, improved oral glucose tolerance (P < 0·0001) and reduced systemic inflammation (P < 0·05). EWH potentiated insulin-induced Akt phosphorylation in muscle (P = 0·0341) and adipose tissue (P = 0·0276), but minimal differences in the protein abundance of tissue RAS components between the EWH and control groups were observed. EWH treatment also reduced adipocyte size (P = 0·0383) and increased PPARγ2 protein abundance (P = 0·0237). EWH treatment yielded positive effects on the inflammatory profile, glucose tolerance, insulin sensitivity and adipocyte differentiation in HFD-induced insulin resistance rats. The involvement of local RAS activity requires further investigation.
Collapse
|
10
|
Purification and identification of adipogenic-differentiating peptides from egg white hydrolysate. Food Chem 2018; 259:25-30. [DOI: 10.1016/j.foodchem.2018.03.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
|