1
|
Lai X, Liu S, Miao J, Shen R, Wang Z, Zhang Z, Gong H, Li M, Pan Y, Wang Q. Eubacterium siraeum suppresses fat deposition via decreasing the tyrosine-mediated PI3K/AKT signaling pathway in high-fat diet-induced obesity. MICROBIOME 2024; 12:223. [PMID: 39478562 PMCID: PMC11526712 DOI: 10.1186/s40168-024-01944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Obesity in humans can lead to chronic diseases such as diabetes and cardiovascular disease. Similarly, subcutaneous fat (SCF) in pigs affects feed utilization, and excessive SCF can reduce the feed efficiency of pigs. Therefore, identifying factors that suppress fat deposition is particularly important. Numerous studies have implicated the gut microbiome in pigs' fat deposition, but research into its suppression remains scarce. The Lulai black pig (LL) is a hybrid breed derived from the Laiwu pig (LW) and the Yorkshire pig, with lower levels of SCF compared to the LW. In this study, we focused on these breeds to identify microbiota that regulate fat deposition. The key questions were: Which microbial populations reduce fat in LL pigs compared to LW pigs, and what is the underlying regulatory mechanism? RESULTS In this study, we identified four different microbial strains, Eubacterium siraeum, Treponema bryantii, Clostridium sp. CAG:413, and Jeotgalibaca dankookensis, prevalent in both LW and LL pigs. Blood metabolome analysis revealed 49 differential metabolites, including tanshinone IIA and royal jelly acid, known for their anti-adipogenic properties. E. siraeum was strongly correlated with these metabolites, and its genes and metabolites were enriched in pathways linked to fatty acid degradation, glycerophospholipid, and glycerolipid metabolism. In vivo mouse experiments confirmed that E. siraeum metabolites curb weight gain, reduce SCF adipocyte size, increase the number of brown adipocytes, and regulate leptin, IL-6, and insulin secretion. Finally, we found that one important pathway through which E. siraeum inhibits fat deposition is by suppressing the phosphorylation of key proteins in the PI3K/AKT signaling pathway through the reduction of tyrosine. CONCLUSIONS We compared LW and LL pigs using fecal metagenomics, metabolomics, and blood metabolomics, identifying E. siraeum as a strain linked to fat deposition. Oral administration experiments in mice demonstrated that E. siraeum effectively inhibits fat accumulation, primarily through the suppression of the PI3K/AKT signaling pathway, a critical regulator of lipid metabolism. These findings provide a valuable theoretical basis for improving pork quality and offer insights relevant to the study of human obesity and related chronic metabolic diseases. Video Abstract.
Collapse
Affiliation(s)
- Xueshuang Lai
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Shuang Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Jian Miao
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Ran Shen
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhen Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Huanfa Gong
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Meng Li
- Jinan Laiwu Pig Industry Technology Research Institute Co., Ltd, Jinan, 271100, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| |
Collapse
|
2
|
Zhao Z, Chen J, Jiang Y, Ci F, Liu T, Li L, Sun Y, Zhang J, Yuwen W. Antheraxanthin: Insights delving from biosynthesis to processing effects. Food Res Int 2024; 194:114879. [PMID: 39232517 DOI: 10.1016/j.foodres.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Antheraxanthin (C40H56O3) is one of fat-soluble carotenoids belonging to natural pigments. Its chemical structure is based on the unsaturated polyene chain skeleton, with a hydroxy-β-ionone ring and an epoxy-β-ionone ring on each side of the skeleton. It is found in a wide range of plants and photosynthetic bacteria, and external stimuli (high temperature, drought, ozone treatment, etc.) can significantly affect its synthesis. It also, like other carotenoids, exhibits a diverse potential pharmacological profile as well as nutraceutical values. However, it is worth noting that various food processing methods (extrusion, puffing, baking, etc.) and storage conditions for fruits and vegetables have distinct impacts on the bioaccessibility and retention of antheraxanthin. This compilation of antheraxanthin includes sources, biosynthesis, chemical analysis, and processing effects.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Jing Chen
- College of Environment and Food Engineering, Liuzhou Vocational and Technical University, Liuzhou 545006, China.
| | - Yingxue Jiang
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Fangfang Ci
- Weihai Institute for Food and Drug Control, Weihai 264200, China
| | - Taishan Liu
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Lei Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yingying Sun
- Eastex Industrial Science and Technology Co., Ltd., Langfang 065001, China
| | - Jiangrui Zhang
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| | - Weigang Yuwen
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| |
Collapse
|
3
|
Lin C, Song D, Wang S, Chu Y, Chi C, Jia S, Lin M, He C, Jiang C, Gong F, Chen Q. Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice. Front Pharmacol 2024; 15:1424328. [PMID: 38898924 PMCID: PMC11185953 DOI: 10.3389/fphar.2024.1424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects.
Collapse
Affiliation(s)
- Chaoyou Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dawei Song
- Mount Jiuhuashan Sealwort Research Institute, Chizhou, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yunfei Chu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Changxing Chi
- China Department of Endocrinology, Yanbian University Hospital, Yanji, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chenbei He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhen Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
4
|
Xing S, Zhu H, Zhou Y, Xue L, Wei Z, Wang Y, He S, Zhang H, Gao S, Zhao N, Zhai H, Liu Q. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111233. [PMID: 35351305 DOI: 10.1016/j.plantsci.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2-48.0%, 10.5-13.3%, 40.2-136% and 82.4-106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Shah MD, Venmathi Maran BA, Shaleh SRM, Zuldin WH, Gnanaraj C, Yong YS. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar Drugs 2022; 20:101. [PMID: 35200631 PMCID: PMC8879771 DOI: 10.3390/md20020101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Malaysia has a long coastline surrounded by various islands, including North Borneo, that provide a suitable environment for the growth of diverse species of seaweeds. Some of the important North Bornean seaweed species are Kappaphycus alvarezii, Eucheuma denticulatum, Halymenia durvillaei (Rhodophyta), Caulerpa lentillifera, Caulerpa racemosa (Chlorophyta), Dictyota dichotoma and Sargassum polycystum (Ochrophyta). This review aims to highlight the therapeutic potential of North Bornean seaweeds and their nutraceutical profiling. North Bornean seaweeds have demonstrated anti-inflammatory, antioxidant, antimicrobial, anticancer, cardiovascular protective, neuroprotective, renal protective and hepatic protective potentials. The protective roles of the seaweeds might be due to the presence of a wide variety of nutraceuticals, including phthalic anhydride, 3,4-ethylenedioxythiophene, 2-pentylthiophene, furoic acid (K. alvarezii), eicosapentaenoic acid, palmitoleic acid, fucoxanthin, β-carotene (E. denticulatum), eucalyptol, oleic acid, dodecanal, pentadecane (H. durvillaei), canthaxanthin, oleic acid, pentadecanoic acid, eicosane (C. lentillifera), pseudoephedrine, palmitic acid, monocaprin (C. racemosa), dictyohydroperoxide, squalene, fucosterol, saringosterol (D. dichotoma), and lutein, neophytadiene, cholest-4-en-3-one and cis-vaccenic acid (S. polycystum). Extensive studies on the seaweed isolates are highly recommended to understand their bioactivity and mechanisms of action, while highlighting their commercialization potential.
Collapse
Affiliation(s)
- Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Sitti Raehanah Muhamad Shaleh
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Wahidatul Husna Zuldin
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, University Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Yoong Soon Yong
- Laboratory Center, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
| |
Collapse
|
6
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Bermejo NF, Hoummadi G, Munné-Bosch S. β-Carotene biofortification of chia sprouts with plant growth regulators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:398-409. [PMID: 34715565 DOI: 10.1016/j.plaphy.2021.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chia (Salvia hispanica) is a native plant species from South America that is very appreciated for its oleaginous seeds in the agri-food field. Chia seeds are natural sources of many bioactive compounds which provide benefits to human health. Nevertheless, chia sprouts have better nutritional properties than seeds, such as antioxidants, essential amino acids, and phenolic compounds. Among all these beneficial compounds, β-carotene has not been studied in chia sprouts. β-carotene is a precursor of vitamin A, which contributes to maintaining our health status. In this study, to improve β-carotene content in chia sprouts, some plant growth regulators (abscisic acid, methyl jasmonate and methyl salicylate) were applied exogenously to germinating chia seeds. Gibberellins A4/A7 and cytokinin 6-benzyladenine (Promalin®) were also applied, combined with the other regulators, to antagonize a possible inhibition in the germination. Seeds were grown in darkness for 4 days, then seeds were exposed to a short light stimulus (30') and finally to a continued light stimulus (48h). β-carotene, xanthophylls, chlorophylls, de-epoxidation status of xanthophyll cycle (DPS), germination rate, and sprouts fresh weight were analysed. The results show that sprouts treated with methyl salicylate in-creased 2,35 fold their β-carotene content when they were exposed to light for 30'+48h. Sprouts fresh weight and germination were not affected by methyl salicylate. Although more research is needed before industrial application, it is concluded that methyl salicylate can be used to improve β-carotene contents in chia sprouts.
Collapse
Affiliation(s)
- Núria F Bermejo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Ghita Hoummadi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain.
| |
Collapse
|
8
|
Takemura M, Sahara T, Misawa N. Violaxanthin: natural function and occurrence, biosynthesis, and heterologous production. Appl Microbiol Biotechnol 2021; 105:6133-6142. [PMID: 34338805 DOI: 10.1007/s00253-021-11452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Violaxanthin is biosynthesized from zeaxanthin with zeaxanthin epoxidase (ZEP) by way of antheraxanthin only in photosynthetic eukaryotes including higher plants and involved in the xanthophyll cycle to eliminate excessive light energy. Violaxanthin and antheraxanthin have commercially been unavailable, in contrast to commercial production of other carotenoids contained in higher plants, e.g., lycopene, β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and capsanthin. One of the reasons is considered that resource plants or other resource organisms do not exist for enabling efficient supply of the epoxy-carotenoids, which are expected to be produced through (metabolic) pathway engineering with heterologous microbial hosts such as Escherichia coli and Saccharomyces cerevisiae. In this Mini-Review, we show heterologous production of violaxanthin with the two microorganisms that have exhibited significant advances these days. We further describe natural function and occurrence, and biosynthesis involving violaxanthin, antheraxanthin, and their derivatives that include auroxanthin and mutatoxanthin. KEY POINTS: • A comprehensive review on epoxy-carotenoids violaxanthin and antheraxanthin. • Pathway engineering for the epoxy-carotenoids in heterologous microbes. • Our new findings on violaxanthin production with the budding yeast.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba-shi, 305-8566, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan.
| |
Collapse
|
9
|
Takemura M, Kubo A, Higuchi Y, Maoka T, Sahara T, Yaoi K, Ohdan K, Umeno D, Misawa N. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:9393-9399. [PMID: 31673744 DOI: 10.1007/s00253-019-10182-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 11/27/2022]
Abstract
Carotenoids are naturally synthesized in some species of bacteria, archaea, and fungi (including yeasts) as well as all photosynthetic organisms. Escherichia coli has been the most popular bacterial host for the heterologous production of a variety of carotenoids, including even xanthophylls unique to photosynthetic eukaryotes such as lutein, antheraxanthin, and violaxanthin. However, conversion efficiency of these epoxy-xanthophylls (antheraxanthin and violaxanthin) from zeaxanthin remained substantially low. We here examined several factors affecting their productivity in E. coli. Two sorts of plasmids were introduced into the bacterial host, i.e., a plasmid to produce zeaxanthin due to the presence of the Pantoea ananatis crtE, crtB, crtI, crtY, and crtZ genes in addition to the Haematococcus pluvialis IDI gene, and one containing each of zeaxanthin epoxidase (ZEP) genes originated from nine photosynthetic eukaryotes. It was consequently found that paprika (Capsicum annuum) ZEP (CaZEP) showed the highest conversion activity. Next, using the CaZEP gene, we performed optimization experiments in relation to E. coli strains as the production hosts, expression vectors, and ribosome-binding site (RBS) sequences. As a result, the highest productivity of violaxanthin (231 μg/g dry weight) was observed, when the pUC18 vector was used with CaZEP preceded by a RBS sequence of score 5000 in strain JM101(DE3).
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Akiko Kubo
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Yuki Higuchi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takashi Maoka
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
- Division of Food Function and Chemistry, Research Institute for Production Development, Kyoto, 606-0805, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Kohji Ohdan
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, 263-8522, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|