1
|
Correia LVB, de Moraes TT, Pereira AMRDS, de Aguiar GC, Viana MDB, Ribeiro DA, da Silva RCB. Tributyltin induces apoptosis in mammalian cells in vivo: a scoping review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0152. [PMID: 39101219 DOI: 10.1515/reveh-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 08/06/2024]
Abstract
The present review aimed to evaluate the apoptotic effect of tributyltin (TBT) exposure on mammalian tissues and cells in vivo. A search was conducted in specialized literature databases including Embase, Medline, Pubmed, Scholar Google, and Scopus for all manuscripts using the following keywords: "tributyltin", "apoptosis", "mammals", "mammalian cells', "eukaryotic cells", 'rodents', "rats", "mice" and "in vivo" for all data published until September 2023. A total of 16 studies were included. The studies have demonstrated that TBT exposure induces apoptosis in cells from various mammalian organs or tissues in vivo. TBT is capable to increase apoptotic cells, to activate proapoptotic proteins such as calpain, caspases, bax and beclin-1 and to inhibit antiapoptotic protein bcl-2. Additionally, TBT alters the ratio of bcl-2/bax which favor apoptosis. Therefore, the activation of enzymes such as calpain induces apoptosis mediated by ERS and caspases through the intrinsic apoptosis pathway. This review has demonstrated that TBT exposure induces apoptosis in mammalian tissues and cells in vivo.
Collapse
Affiliation(s)
- Lucas Vilas Bôas Correia
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| | - Talita Trindade de Moraes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| | | | - Gabriel Carvalhal de Aguiar
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| | - Regina Cláudia Barbosa da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, 28105 UNIFESP , Santos, SP, Brazil
| |
Collapse
|
2
|
Beg MA, Beg MA, Zargar UR, Sheikh IA, Bajouh OS, Abuzenadah AM, Rehan M. Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights. TOXICS 2022; 11:toxics11010025. [PMID: 36668751 PMCID: PMC9864748 DOI: 10.3390/toxics11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50-100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling.
Collapse
Affiliation(s)
- Mohd A. Beg
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md A. Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Ummer R. Zargar
- Department of Zoology, Government Degree College, Anantnag 192101, India
| | - Ishfaq A. Sheikh
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Adel M. Abuzenadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Kurowska P, Mlyczyńska E, Dawid M, Respekta N, Pich K, Serra L, Dupont J, Rak A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022; 78:205-218. [PMID: 35476178 DOI: 10.1007/s12020-022-03061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Barbosa KL, Dettogni RS, Costa CS, Gastal EL, Raetzman LT, Flaws JA, Graceli JB. Tributyltin and the female hypothalamic-pituitary-gonadal disruption. Toxicol Sci 2021; 186:179-189. [PMID: 34850235 DOI: 10.1093/toxsci/kfab141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/mL) and in vivo (10 ng-20 mg/Kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.
Collapse
Affiliation(s)
- Kayke L Barbosa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | | | - Charles S Costa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lori T Raetzman
- Dept of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Dept. of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
5
|
Fross S, Mansel C, McCormick M, Vohra BPS. Tributyltin Alters Calcium Levels, Mitochondrial Dynamics, and Activates Calpains Within Dorsal Root Ganglion Neurons. Toxicol Sci 2021; 180:342-355. [PMID: 33481012 DOI: 10.1093/toxsci/kfaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tributyltin (TBT) remains a global health concern. The primary route of human exposure to TBT is either through ingestion or skin absorption, but TBT's effects on the peripheral nervous system have still not been investigated. Therefore, we exposed in vitro sensory dorsal root ganglion (DRG) neurons to TBT at a concentration of 50-200 nM, which is similar to the observed concentrations of TBT in human blood samples. We observed that TBT causes extensive axon degeneration and neuronal death in the DRG neurons. Furthermore, we discovered that TBT causes an increase in both cytosolic and mitochondrial calcium levels, disrupts mitochondrial dynamics, decreases neuronal ATP levels, and leads to the activation of calpains. Additional experiments demonstrated that inhibition of calpain activation prevented TBT-induced fragmentation of neuronal cytoskeletal proteins and neuronal cell death. Thus, we conclude that calpain activation is the key executioner of TBT-induced peripheral neurodegeneration.
Collapse
Affiliation(s)
- Shaneann Fross
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Clayton Mansel
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Madison McCormick
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | | |
Collapse
|
6
|
Merlo E, Schereider IRG, Simões MR, Vassallo DV, Graceli JB. Mercury leads to features of polycystic ovary syndrome in rats. Toxicol Lett 2019; 312:45-54. [PMID: 31071422 DOI: 10.1016/j.toxlet.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/05/2019] [Indexed: 01/28/2023]
Abstract
Mercury (Hg) is a heavy metal and Hg exposure is associated with various neural, immune, and cardiovascular abnormalities. However, few studies have evaluated Hg's toxicologic effect on reproductive and metabolic functions. In this study, we assessed whether Hg exposure results in reproductive and metabolic abnormalities. Hg was administered to adult female Wistar rats, mimicking the Hg levels found in exposed human blood, and their reproductive and metabolic function was assessed. Rats exposed to Hg displayed abnormal estrous cyclicity and ovarian follicular development, with a reduction in ovarian antral follicles and an increase in atretic and cystic ovarian follicles. Uterine atrophy with the presence of inflammatory cells was observed in Hg-exposed rats. The presence of abnormal ovarian fat accumulation, as well as increased ovarian lipid drops accumulation, was observed in Hg-exposed rats. Ovarian oxidative stress was also present in the Hg-exposed rats. High fasting glucose levels, glucose, and insulin intolerance were observed in Hg-exposed rats. Thus, these data suggest that Hg exposure led to abnormal reproductive and metabolic features similar to those found in the polycystic ovary syndrome (PCOS) rat models.
Collapse
Affiliation(s)
- Eduardo Merlo
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | | | - Maylla R Simões
- Dept of Physiology, Federal University of Espírito Santo, Brazil
| | | | - Jones B Graceli
- Dept of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
7
|
Multispecies study: low-dose tributyltin impairs ovarian theca cell cholesterol homeostasis through the RXR pathway in five mammalian species including humans. Arch Toxicol 2019; 93:1665-1677. [PMID: 31006824 DOI: 10.1007/s00204-019-02449-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Tributyltin (TBT), an organotin chemical used as a catalyst and biocide, can stimulate cholesterol efflux in non-steroidogenic cells. Since cholesterol is the first limiting step for sex hormone production, we hypothesized that TBT disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. We investigated TBT's effect on cholesterol trafficking, luteinization, and steroidogenesis in theca cells of five species (human, sheep, cow, pig, and mice). Primary theca cells were exposed to an environmentally relevant dose of TBT (1 or 10 ng/ml) and/or retinoid X receptor (RXR) antagonist. The expression of RXRα in sheep theca cells was knocked down using shRNA. Steroidogenic enzymes, cholesterol transport factors, and nuclear receptors were measured by RT-qPCR and Western blotting, and intracellular cholesterol, progesterone, and testosterone secretion by ELISA. TBT upregulated StAR and ABCA1 in ovine cells, and SREBF1 mRNA in theca cells. TBT also reduced intracellular cholesterol and upregulated ABCA1 protein expression but did not alter testosterone or progesterone production. RXR antagonist and RXRα knockdown demonstrates that TBT's effect is partially through RXR. TBT's effect on ABCA1 and StAR expression was recapitulated in all five species. TBT, at an environmentally relevant dose, stimulates theca cell cholesterol extracellular efflux via the RXR pathway, triggers a compensatory upregulation of StAR that regulates cholesterol transfer into the mitochondria and SREBF1 for de novo cholesterol synthesis. Similar results were obtained in all five species evaluated (human, sheep, cow, pig, and mice) and are supportive of TBT's conserved mechanism of action across mammalian species.
Collapse
|
8
|
Merlo E, Silva IV, Cardoso RC, Graceli JB. The obesogen tributyltin induces features of polycystic ovary syndrome (PCOS): a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:181-206. [PMID: 30015594 DOI: 10.1080/10937404.2018.1496214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome characterized by abnormal reproductive cycles, irregular ovulation, and hyperandrogenism. This complex disorder has its origins both within and outside the hypothalamic-pituitary-ovarian axis. Cardio-metabolic factors, such as obesity and insulin resistance, contribute to the manifestation of the PCOS phenotype. Polycystic ovary syndrome is one of the most common endocrine disorders among women of reproductive age. Growing evidence suggested an association between reproductive and metabolic features of PCOS and exposure to endocrine-disrupting chemicals (EDC), such as bisphenol A. Further, the environmental obesogen tributyltin (TBT) was shown to induce reproductive, metabolic and cardiovascular abnormalities resembling those found in women and animal models of PCOS. However, the causal link between TBT exposure and PCOS development remains unclear. The objective of this review was to summarize the most recent research findings on the potential association between TBT exposure and development of PCOS-like features in animal models and humans.
Collapse
Affiliation(s)
- Eduardo Merlo
- a Department of Morphology , Federal University of Espirito Santo , Vitoria, Brazil
| | - Ian V Silva
- a Department of Morphology , Federal University of Espirito Santo , Vitoria, Brazil
| | - Rodolfo C Cardoso
- b Department of Animal Science , Texas A&M University , College Station, TX, USA
| | - Jones B Graceli
- a Department of Morphology , Federal University of Espirito Santo , Vitoria, Brazil
| |
Collapse
|
9
|
de Araújo JFP, Podratz PL, Sena GC, Merlo E, Freitas-Lima LC, Ayub JGM, Pereira AFZ, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. The obesogen tributyltin induces abnormal ovarian adipogenesis in adult female rats. Toxicol Lett 2018; 295:99-114. [PMID: 29908848 DOI: 10.1016/j.toxlet.2018.06.1068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Tributyltin chloride (TBT) is an obesogen associated with various metabolic and reproductive dysfunctions after in utero exposure. However, few studies have evaluated TBT's obesogenic effect on adult ovaries. In this study, we assessed whether TBT's obesogenic effects resulted in adult ovarian adipogenesis and other reproductive abnormalities. TBT was administered to adult female Wistar rats, and their reproductive tract morphophysiology was assessed. We further assessed the ovarian mRNA/protein expression of genes that regulate adipogenesis. Rats exposed to TBT displayed abnormal estrous cyclicity, ovarian sex hormone levels, ovarian follicular development and ovarian steroidogenic enzyme regulation. Rats exposed to TBT also demonstrated abnormal ovarian adipogenesis with increased cholesterol levels, lipid accumulation, and PPARγ, C/EBP-β and Lipin-1 expression. A negative correlation between the ovarian PPARγ expression and aromatase expression was observed in the TBT rats. Furthermore, TBT exposure resulted in reproductive tract atrophy, inflammation, oxidative stress and fibrosis. Ovarian dysfunctions also co-occurred with the uterine irregularities. Abnormal ovarian adipogenic markers occurring after TBT exposure may be associated with uterine irregularities. A positive correlation between the ovarian cholesterol levels and uterine inflammation was observed in the TBT rats. These findings suggest that TBT leads to ovarian obesogenic effects directly by abnormal adipogenesis and/or indirectly through adult reproductive tract irregularities.
Collapse
Affiliation(s)
| | | | - Gabriela C Sena
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | - Eduardo Merlo
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | | | | | | | - Ana Paula Santos-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil; Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ian V Silva
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
10
|
de Araújo JFP, Podratz PL, Merlo E, Sarmento IV, da Costa CS, Niño OMS, Faria RA, Freitas Lima LC, Graceli JB. Organotin Exposure and Vertebrate Reproduction: A Review. Front Endocrinol (Lausanne) 2018; 9:64. [PMID: 29545775 PMCID: PMC5838000 DOI: 10.3389/fendo.2018.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 11/30/2022] Open
Abstract
Organotin (OTs) compounds are organometallic compounds that are widely used in industry, such as in the manufacture of plastics, pesticides, paints, and others. OTs are released into the environment by anthropogenic actions, leading to contact with aquatic and terrestrial organisms that occur in animal feeding. Although OTs are degraded environmentally, reports have shown the effects of this contamination over the years because it can affect organisms of different trophic levels. OTs act as endocrine-disrupting chemicals (EDCs), which can lead to several abnormalities in organisms. In male animals, OTs decrease the weights of the testis and epididymis and reduce the spermatid count, among other dysfunctions. In female animals, OTs alter the weights of the ovaries and uteri and induce damage to the ovaries. In addition, OTs prevent fetal implantation and reduce mammalian pregnancy rates. OTs cross the placental barrier and accumulate in the placental and fetal tissues. Exposure to OTs in utero leads to the accumulation of lipid droplets in the Sertoli cells and gonocytes of male offspring in addition to inducing early puberty in females. In both genders, this damage is associated with the imbalance of sex hormones and the modulation of the hypothalamic-pituitary-gonadal axis. Here, we report that OTs act as reproductive disruptors in vertebrate studies; among the compounds are tetrabutyltin, tributyltin chloride, tributyltin acetate, triphenyltin chloride, triphenyltin hydroxide, dibutyltin chloride, dibutyltin dichloride, diphenyltin dichloride, monobutyltin, and azocyclotin.
Collapse
Affiliation(s)
| | - Priscila Lang Podratz
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
- *Correspondence: Priscila Lang Podratz,
| | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Rodrigo Alves Faria
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | | |
Collapse
|
11
|
Lutfi E, Riera-Heredia N, Córdoba M, Porte C, Gutiérrez J, Capilla E, Navarro I. Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:148-158. [PMID: 28527383 DOI: 10.1016/j.aquatox.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 05/22/2023]
Abstract
Numerous environmental pollutants have been identified as potential obesogenic compounds affecting endocrine signaling and lipid homeostasis. Among them, well-known organotins such as tributyltin (TBT) and triphenyltin (TPT), can be found in significant concentrations in aquatic environments. The aim of the present study was to investigate in vitro the effects of TBT and TPT on the development and lipid metabolism of rainbow trout (Onchorynchus mykiss) primary cultured adipocytes. Results showed that TBT and TPT induced lipid accumulation and slightly enhanced peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) protein expression when compared to a control, both in the presence or absence of lipid mixture. However, the effects were higher when combined with lipid, and in the absence of it, the organotins did not cause complete mature adipocyte morphology. Regarding gene expression analyses, exposure to TBT and TPT caused an increase in fatty acid synthase (fasn) mRNA levels confirming the pro-adipogenic properties of these compounds. In addition, when added together with lipid, TBT and TPT significantly increased cebpa, tumor necrosis factor alpha (tnfa) and ATP-binding cassette transporter 1 (abca1) mRNA levels suggesting a synergistic effect. Overall, our data highlighted that TBT and TPT activate adipocyte differentiation in rainbow trout supporting an obesogenic role for these compounds, although by themselves they are not able to induce complete adipocyte development and maturation suggesting that these adipocytes might not be properly functional.
Collapse
Affiliation(s)
- Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Marlon Córdoba
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
12
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
13
|
Podratz PL, Merlo E, Sena GC, Morozesk M, Bonomo MM, Matsumoto ST, da Costa MB, Zamprogno GC, Brandão PA, Carneiro MT, Miguel EDC, Miranda-Alves L, Silva IV, Graceli JB. Accumulation of organotins in seafood leads to reproductive tract abnormalities in female rats. Reprod Toxicol 2015; 57:29-42. [DOI: 10.1016/j.reprotox.2015.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
|
14
|
The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway. Toxicol Lett 2014; 225:413-21. [DOI: 10.1016/j.toxlet.2014.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
|