1
|
Ariyoshi R, Matsuzaki T, Sato R, Minamihata K, Hayashi K, Koga T, Orita K, Nishioka R, Wakabayashi R, Goto M, Kamiya N. Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications. Bioconjug Chem 2024; 35:340-350. [PMID: 38421254 DOI: 10.1021/acs.bioconjchem.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.
Collapse
Affiliation(s)
- Ryutaro Ariyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Taisei Koga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kensei Orita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Yin X, Rao S, Zhou J, Du G, Chen J, Liu S. Improved Productivity of Streptomyces mobaraensis Transglutaminase by Regulating Zymogen Activation. Front Bioeng Biotechnol 2022; 10:878795. [PMID: 35497347 PMCID: PMC9047793 DOI: 10.3389/fbioe.2022.878795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Streptomyces mobaraensis transglutaminase (TGase) is extracellularly expressed as a zymogen and then activated by TGase-activating protease (TAP). In this study, we reported the strategy for improving TGase production via the regulation of TAP activity in S. mobaraensis. First, we analyzed the effects of three inorganic nitrogen sources on TGase production. With 30 mM nitrogen content, the time to the peak of TGase activity induced by (NH4)2SO4 or NH4Cl was 72 h, 12 h earlier than that of the fermentation without adding NH4+. SDS-PAGE analysis indicated that NH4+ accelerated the TGase activation in S. mobaraensis. Then, we examined the effect of NH4+ on TAP biosynthesis using a TGase-deficient S. mobaraensis strain. It showed that NH4+ enhanced the TAP activity at the early stage of the fermentation, which was dependent on the concentration and time of NH4+ addition. Last, the yield and productivity of S. mobaraensis TGase were increased by 1.18-fold and 2.1-fold, respectively, when optimal NH4+ addition (60 mM and 12 h) was used. The fermentation period was shortened from 84 to 48 h. The NH4+ addition also increased the storage stability of crude enzyme at room temperature. These findings will benefit the TGase production and its activation mechanism in S. mobaraensis.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Song Liu,
| |
Collapse
|
3
|
Abstract
Global demand for renewable and sustainable energy is increasing, and one of the most common biofuels is ethanol. Most ethanol is produced by Saccharomyces cerevisiae (yeast) fermentation of either crops rich in sucrose (e.g., sugar cane and sugar beet) or starch-rich crops (e.g., corn and starchy grains). Ethanol produced from these sources is termed a first-generation biofuel. Yeast fermentation can yield a range of additional valuable co-products that accumulate during primary fermentation (e.g., protein concentrates, water soluble metabolites, fusel alcohols, and industrial enzymes). Distillers’ solubles is a liquid co-product that can be used in animal feed or as a resource for recovery of valuable materials. In some processes it is preferred that this fraction is modified by a second fermentation with another fermentation organism (e.g., lactic acid bacteria). Such two stage fermentations can produce valuable compounds, such as 1,3-propanediol, organic acids, and bacteriocins. The use of lactic acid bacteria can also lead to the aggregation of stillage proteins and enable protein aggregation into concentrates. Once concentrated, the protein has utility as a high-protein feed ingredient. After separation of protein concentrates the remaining solution is a potential source of several known small molecules. The purpose of this review is to provide policy makers, bioethanol producers, and researchers insight into additional added-value products that can be recovered from ethanol beers. Novel products may be isolated during or after distillation. The ability to isolate and purify these compounds can provide substantial additional revenue for biofuel manufacturers through the development of marketable co-products.
Collapse
|
4
|
Fatima SW, Khare SK. Effect of key regulators in augmenting transcriptional expression of Transglutaminase in Streptomyces mobaraensis. BIORESOURCE TECHNOLOGY 2021; 340:125627. [PMID: 34330004 DOI: 10.1016/j.biortech.2021.125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminase forms isopeptide bonds in proteins which are helpful in various industrial applications. However, low productivity and high cost are the major bottlenecks for industrial Transglutaminase production. The present study describes the regulatory mechanism of microbial Transglutaminase (MTGase) biosynthesis from Streptomyces mobaraensis and the effect of key regulators to maximize production. The transcriptional responses under the effect of various key modulators of MTGasebiosynthesis were evaluated. Productivity of MTGase with novel biosynthesis approach by regulators augmentation was correlated by transcriptional profiling. The optimization by key modulators by combinational supplementation led to 2-fold rise in activity. The functional attributes, the copy number of MTGase gene and relative changes were assessed by Real-Time quantitative PCR. Protease, MgCl2, CTAB induced upregulation, whereas PMSF, NaF and bleomycin sulphate showed inhibitory action on MTGase production and activity. The optimization by combinational supplementation of key modulators led to 4.27-fold increase (6.11 IU/mL) in production.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
Duarte LS, Matte CR, Dall Cortivo PR, Nunes JES, Barsé LQ, Bizarro CV, Ayub MAZ. Expression of Bacillus amyloliquefaciens transglutaminase in recombinant E. coli under the control of a bicistronic plasmid system in DO-stat fed-batch bioreactor cultivations. Braz J Microbiol 2021; 52:1225-1233. [PMID: 34008152 DOI: 10.1007/s42770-021-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.
Collapse
Affiliation(s)
- Lovaine Silva Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Paulo Roberto Dall Cortivo
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - José Eduardo Sacconi Nunes
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Laisa Quadros Barsé
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil.
| |
Collapse
|
6
|
Zhang N, Zhang S, He Y, Chen X, Zhang Y, Dong Z. Intein-mediated intracellular production of active microbial transglutaminase in Corynebacterium glutamicum. Enzyme Microb Technol 2020; 142:109680. [PMID: 33220868 DOI: 10.1016/j.enzmictec.2020.109680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
The microbial transglutaminase (mTGase) from Streptomyces mobaraense is widely used in the food industry. However, recombinant production of mTGase is challenging because the mTGase is synthesized as an inactive zymogen, and needs to be activated by proteolytic processing. In this study, self-cleaving intein Ssp DnaB was applied to activate the mTGase in Corynebacterium glutamicum. Premature cleavage of intein Ssp DnaB also occurred, but instead of suppressing premature cleavage, this phenomenon was used to produce active mTGase in C. glutamicum. Both SDS-PAGE analysis and mTGase activity assays indicated that the premature cleavage of intein Ssp DnaB activated the mTGase intracellularly in C. glutamicum. The subsequent N-terminal amino acid sequencing and site-directed mutagenesis studies further showed that the premature cleavage activated the mTGase intracellularly, in a highly specific manner. Moreover, the growth performance of C. glutamicum was not noticeably affected by the intracellular expression of active mTGase. Finally, the mTGase was produced in a 2 L bioreactor, with activity up to 49 U/mL, the highest intracellular mTGase activity ever reported. Using premature cleavage of intein Ssp DnaB to activate mTGase in C. glutamicum, we produced high levels of intracellular active mTGase. Moreover, this approach did not require any further processing steps, such as protease treatment or lengthy incubation, greatly simplifying the production of active mTGase. This efficient and simple approach has great potential for the large-scale industrial production of active mTGase.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shan Zhang
- SHENZHEN SIYOMICRO BIO-Tech CO., LTD, Shenzhen, 518116, People's Republic of China.
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
7
|
Ceresino EB, Kuktaite R, Hedenqvist MS, Sato HH, Johansson E. Processing conditions and transglutaminase sources to “drive” the wheat gluten dough quality. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Isleroglu H, Turker I. Evaluation of Process Conditions for Ultrasonic Spray Freeze Drying of Transglutaminase. Food Technol Biotechnol 2020; 58:38-48. [PMID: 32684786 PMCID: PMC7365335 DOI: 10.17113/ftb.58.01.20.6544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 11/12/2022] Open
Abstract
In this study, a commercial transglutaminase enzyme was dried using an ultrasonic spray freeze drying method and the effects of the process conditions were optimized to maximize the final transglutaminase activity. Accordingly, process parameters affecting enzyme activity were selected, such as nozzle frequency (48 and 120 kHz), flow rate (2, 5 and 8 mL/min) and plate temperature for secondary drying (25, 35 and 45 °C). Moreover, the effects of different pH values (pH=2.0 and pH=9.0) and high temperature (80 °C) on enzyme activity, physical properties and particle morphology of transglutaminase were discussed. According to the results, transglutaminase preserved its activity despite ultrasonic spray freeze drying. Sonication enhanced the enzyme activity. Using the desirability function method, the optimum process conditions were determined to be flow rate 3.10 mL/min, plate temperature 45 °C and nozzle frequency 120 kHz. The predicted activity ratio was 1.17, and experimentally obtained ratio was 1.14±0.02. Furthermore, enzyme produced by ultrasonic spray freeze drying had low moisture values (2.92-4.36%) at 8 h of drying. When the morphological structure of the transglutaminase particles produced by ultrasonic spray freeze drying under the optimum conditions was examined, spherical particles with pores on their surfaces were observed. In addition, flow properties of the transglutaminase powders were considered as fair under most conditions according to the Carr index.
Collapse
Affiliation(s)
- Hilal Isleroglu
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture
- Food Engineering Department, Tasliciftlik Campus, 60150 Tokat, Turkey
| | - Izzet Turker
- Tokat Gaziosmanpasa University, Faculty of Engineering and Architecture
- Food Engineering Department, Tasliciftlik Campus, 60150 Tokat, Turkey
| |
Collapse
|
9
|
Lerner A, Matthias T. Processed Food Additive Microbial Transglutaminase and Its Cross-Linked Gliadin Complexes Are Potential Public Health Concerns in Celiac Disease. Int J Mol Sci 2020; 21:E1127. [PMID: 32046248 PMCID: PMC7037116 DOI: 10.3390/ijms21031127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Microbial transglutaminase (mTG) is a survival factor for microbes, but yeasts, fungi, and plants also produce transglutaminase. mTG is a cross-linker that is heavily consumed as a protein glue in multiple processed food industries. According to the manufacturers' claims, microbial transglutaminase and its cross-linked products are safe, i.e., nonallergenic, nonimmunogenic, and nonpathogenic. The regulatory authorities declare it as "generally recognized as safe" for public users. However, scientific observations are accumulating concerning its undesirable effects on human health. Functionally, mTG imitates its family member, tissue transglutaminase, which is the autoantigen of celiac disease. Both these transglutaminases mediate cross-linked complexes, which are immunogenic in celiac patients. The enzyme enhances intestinal permeability, suppresses mechanical (mucus) and immunological (anti phagocytic) enteric protective barriers, stimulates luminal bacterial growth, and augments the uptake of gliadin peptide. mTG and gliadin molecules are cotranscytosed through the enterocytes and deposited subepithelially. Moreover, mucosal dendritic cell surface transglutaminase induces gliadin endocytosis, and the enzyme-treated wheat products are immunoreactive in CD patients. The present review summarizes and updates the potentially detrimental effects of mTG, aiming to stimulate scientific and regulatory debates on its safety, to protect the public from the enzyme's unwanted effects.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany;
| | | |
Collapse
|
10
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
11
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
12
|
Isleroglu H, Turker I, Koc B, Tokatli M. Microencapsulation of Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02353-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fatima SW, Tiwari R, Khare SK. Utilization of agro-industrial waste for production of Transglutaminase from Streptomyces mobaraensis. BIORESOURCE TECHNOLOGY 2019; 287:121391. [PMID: 31076295 DOI: 10.1016/j.biortech.2019.121391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This work studied the production of Transglutaminase (TGase) using wheat bran as carbon source. The medium components and culture conditions were optimized by statistical Box-Behnken response surface methodology. The release of active Transglutaminase was enhanced by adding (i) protease to remove pro-region to make inactive enzyme to active form, (ii) Cetyl trimethyl ammonium bromide (CTAB) which facilitated more secretion. Under finally optimized conditions viz. 5 g wheat bran, protease: 39.14 U, magnesium chloride (MgCl2): 0.10 M, CTAB: 0.08% and inoculation size: 2% led to 4-fold (12.949 ± 0.061 IU/g) increased TGase production over that of un-optimized conditions. The application of TGase was shown to be useful in effective casein cross-linking.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rameshwar Tiwari
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
14
|
Hopkins EJ, Hucl P, Scanlon MG, Nickerson MT. Effect of enzymatic crosslinking on the handling properties of dough as a function of NaCl levels for CWRS varieties, Pembina and Harvest. J Texture Stud 2019; 50:350-358. [PMID: 30861117 DOI: 10.1111/jtxs.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
The effects of transglutaminase (TG) and glucose oxidase (GO) on the handling properties of model bread dough were examined at both normal (2% wt. by flour) and reduced (1% wt.) sodium chloride (NaCl) levels using two Canada Western Red Spring (CWRS) cultivars; Pembina and Harvest. The reduction of NaCl level had negative effects on dough rheology and stickiness, however, the inclusion of GO (0.001 and 0.01% by flour weight) or TG (only at the 0.5% by flour weight inclusion) was able to improve dough strength and reduce stickiness. GO appeared to be more effective than TG (at 0.01%) at equivalent concentrations for improving dough-handling properties. Flour cultivar had significant effects; Harvest flour (weaker) was more impacted by salt reduction and enzyme inclusion compared to Pembina flour (stronger). Crosslinking assays showed significant differences in glutenin macropolymer (GMP) content in dough prepared with GO, and dough prepared with different flours. Additionally, significantly fewer free thiol groups were found in dough produced with GO compared to dough without any enzymes and those with TG. GO appears to have potential for use as a bread improver to reduce stickiness and improve the strength of bread dough produced at lower salt concentrations, especially for dough prepared with weaker flour cultivars.
Collapse
Affiliation(s)
- Erin J Hopkins
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pierre Hucl
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin G Scanlon
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Ceresino EB, Kuktaite R, Sato HH, Hedenqvist MS, Johansson E. Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sorde KL, Ananthanarayan L. Isolation, screening, and optimization of bacterial strains for novel transglutaminase production. Prep Biochem Biotechnol 2019; 49:64-73. [DOI: 10.1080/10826068.2018.1536986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Karuna L. Sorde
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Laxmi Ananthanarayan
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
17
|
Abstract
Microbial transglutaminase is heavily used in the food processing industries to improve food qualities. Being a protein's glue, by cross-linking it creates neoepitope complexes that are immunogenic and potentially pathogenic in celiac disease. Despite low sequence identity, it imitates functionally its family member, the endogenous tissue transglutaminase, which is the autoantigen of celiac disease. The present comprehensive review highlights the enzyme characteristics, endogenous and exogenous intestinal sources, its cross-talks with gluten and gliadin, its immunogenicity and potential pathogenicity and risks for the gluten induced conditions. If substantiated, it might represent a new environmental inducer of celiac disease. The present findings might affect nutritional product labeling, processed food additive policies and consumer health education.
Collapse
Affiliation(s)
- Lerner Aaron
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; AESKU.KIPP Institute, Wendelsheim, Germany.
| | | |
Collapse
|
18
|
Wang L, Yu B, Wang R, Xie J. Biotechnological routes for transglutaminase production: Recent achievements, perspectives and limits. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Isleroglu H, Turker I, Tokatli M, Koc B. Ultrasonic spray-freeze drying of partially purified microbial transglutaminase. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Wan W, He D, Xue Z, Zhang Z. Specific mutation of transglutaminase gene from Streptomyces hygroscopicus H197 and characterization of microbial transglutaminase. J Biosci 2018; 42:537-546. [PMID: 29229872 DOI: 10.1007/s12038-017-9707-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial transglutaminase (MTG) gene (mtg) from Streptomyces hygroscopicus H197 strain was cloned by PCR and mutated by deleting a specific 84 bp fragment using overlapping extension PCR. The mutant MTG and the wild MTG genes expressed by recombinant plasmid pET32a+- mutant mtg and pET32a+ -mtg, respectively, and were harvested by alternating freeze-thaw steps and purified by Ni column. The purified mutant MTG and the wild MTG exhibited 0.22 U/mg and 0.16 U/mg activity, respectively, and 0.69 U/mg and 0.54 U/mg activity, respectively, after activated by trypsin. The molecular weight of mutant MTG was estimated as 67 kDa by SDS-PAGE. Both MTGs showed optimum activity at pH 6-8 for hydroxamate formation from N-CBZ-Gln-Gly and hydroxylamine, and exhibited higher stability at 40°C and 1-3% salinity. The two types of MTG were not stable in the presence of Zn(II), Cu(II), Hg(II), Pb(II), Fe(III), and Ag(I), suggesting that they could possess a thiol group. In addition, the mutant MTG and the wild MTG were strongly affected by ethanol. Furthermore, the mutant MTG was obviously (P less than 0.05 or P less than 0.01) more stable than the wild MTG at 50°C and 60°C, at pH 4, 5, and 9, at 7 % and 9 % salinity, 30 % and 35 % ethanol concentration, and in the presence of Li(I) and Ag(I). The polyhydroxy compounds as protein stabilizers could elevate MTG stability.
Collapse
Affiliation(s)
- Wenjie Wan
- South-Central University for Nationalities, Wuhan 430070, People's Republic of China
| | | | | | | |
Collapse
|
21
|
R L Morlighem JÉ, Huang C, Liao Q, Braga Gomes P, Daniel Pérez C, de Brandão Prieto-da-Silva ÁR, Ming-Yuen Lee S, Rádis-Baptista G. The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry, Industrial and Pharmaceutical Biotechnology. Mar Drugs 2018; 16:E207. [PMID: 29899267 PMCID: PMC6025448 DOI: 10.3390/md16060207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis, looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Qiwen Liao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Paula Braga Gomes
- Department of Biology, Federal Rural University of Pernambuco, Recife 52171-900, Brazil.
| | - Carlos Daniel Pérez
- Academic Center in Vitória, Federal University of Pernambuco, Vitória de Santo Antão 50670-901, Pernambuco, Brazil.
| | | | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Gandhi Rádis-Baptista
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| |
Collapse
|
22
|
Oteng-Pabi SK, Clouthier CM, Keillor JW. Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase. PLoS One 2018; 13:e0197956. [PMID: 29847605 PMCID: PMC5976192 DOI: 10.1371/journal.pone.0197956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.
Collapse
Affiliation(s)
- Samuel K. Oteng-Pabi
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Christopher M. Clouthier
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol 2018; 43:127-133. [PMID: 29414531 DOI: 10.1016/j.cbpa.2018.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
Abstract
Nature has developed a robust toolbox for the formation of amide bonds, enabling a variety of disconnections applicable to small molecule synthesis. In spite of this, the exploitation of biocatalytic techniques for industrial synthesis remains limited to a few very important cases. This review discusses previously demonstrated techniques for the biocatalytic synthesis of amide bonds, reviews examples of industrial scale-up of these techniques, and identifies a number of limitations to the scalability within the current state of the art.
Collapse
Affiliation(s)
- Brent M Dorr
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, United States
| | - Douglas E Fuerst
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, United States.
| |
Collapse
|
24
|
Ceresino EB, de Melo RR, Kuktaite R, Hedenqvist MS, Zucchi TD, Johansson E, Sato HH. Transglutaminase from newly isolated Streptomyces sp. CBMAI 1617: Production optimization, characterization and evaluation in wheat protein and dough systems. Food Chem 2017; 241:403-410. [PMID: 28958547 DOI: 10.1016/j.foodchem.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/25/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
Abstract
The popularity of transglutaminase (TG) by the food industry and the variation in functionality of this enzyme from different origins, prompted us to isolate and evaluate a high-yielding TG strain. Through the statistical approaches, Plackett-Burman and response surface methodology, a low cost fermentation media was obtained to produce 6.074±0.019UmL-1 of TG from a novel source; Streptomyces sp. CBMAI 1617 (SB6). Its potential exploitation was compared to commonly used TG, from Streptomyces mobaraensis. Biochemical and FT-IR studies indicated differences between SB6 and commercial TG (Biobond™ TG-M). Additions of TG to wheat protein and flour based doughs revealed that the dough stretching depended on the wheat protein fraction, TG amount and its origin. A higher degree of cross-linking of glutenins and of inclusion of gliadin in the polymers was seen for SB6 as compared to commercial TG. Thus, our results support the potential of SB6 to tailor wheat protein properties within various food applications.
Collapse
Affiliation(s)
- Elaine B Ceresino
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| | - Ricardo R de Melo
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 104, SE-23053 Alnarp, Sweden.
| | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Chemical and Engineering, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden.
| | - Tiago D Zucchi
- Department of Research & Development, Agrivalle, 13329-600 Salto, SP, Brazil.
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 104, SE-23053 Alnarp, Sweden.
| | - Helia H Sato
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| |
Collapse
|
25
|
Javitt G, Ben-Barak-Zelas Z, Jerabek-Willemsen M, Fishman A. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant. BMC Biotechnol 2017; 17:23. [PMID: 28245818 PMCID: PMC5331659 DOI: 10.1186/s12896-017-0339-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/11/2023] Open
Abstract
Background Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. Results A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (Tm) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. Conclusions A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested thermostability and stability of mTG in organic solvents was evaluated, which can pave the way for use of the enzyme in novel applications and processes.
Collapse
Affiliation(s)
- Gabe Javitt
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zohar Ben-Barak-Zelas
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
26
|
Liu S, Wang M, Du G, Chen J. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization. BMC Biotechnol 2016; 16:75. [PMID: 27793152 PMCID: PMC5084433 DOI: 10.1186/s12896-016-0304-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Background Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. Results A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from −693 to −48. We also identified a negative element (−198 to −148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. Conclusions We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Kim MJ, Kim SS. Determination of the optimum mixture of transglutaminase, l-ascorbic acid and xylanase for the quality and consumer acceptability of bread using response surface methodology. Food Sci Biotechnol 2016; 25:77-84. [PMID: 30263489 DOI: 10.1007/s10068-016-0101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022] Open
Abstract
The optimum levels of transglutaminase (TGase), l-ascorbic acid (l-AA), and xylanase (Xyl) were determined using response surface methodology to improve quality and consumer acceptability of bread made with wheat flour. A Box-Behnken design with three independent variables (TGase, l-AA, and Xyl) and three levels was used to develop models for the different responses (peak time, mixing tolerance, extensibility, resistance, specific volume, hardness, and consumer acceptability). Overall, l-AA and Xyl improved dough and bread properties, whereas the addition of TGase positively affected to texture and overall acceptability by consumer test. The optimal formulation for dough and bread properties and consumer acceptability were identified and the optimal value was 0.36 g/100 g TGase, 0.026 g/100 g Xyl, and 0.005 g/100 g l-AA. The results demonstrate that the addition of optimum amounts of TGase, Xyl, and l-AA improves the baking quality of the flour by enhancing dough properties and increase the consumer acceptability of the bread.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Division of Functional Food Research, Research Group of Cognition and Sensory Perception, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Sang Sook Kim
- Division of Functional Food Research, Research Group of Cognition and Sensory Perception, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| |
Collapse
|
28
|
Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A. Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci 2015; 25:442-55. [PMID: 26481561 DOI: 10.1002/pro.2833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro-domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine-scan of the mTGase pro-domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro-domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro-domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30-75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site-specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis.
Collapse
Affiliation(s)
- Mathias Rickert
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Pavel Strop
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Victor Lui
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Jody Melton-Witt
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Santiago Esteban Farias
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Davide Foletti
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | | | - Jaume Pons
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| |
Collapse
|
29
|
Guan C, Cui W, He X, Hu X, Xu J, Du G, Chen J, Zhou Z. Construction and development of a novel expression system of Streptomyces. Protein Expr Purif 2015; 113:17-22. [DOI: 10.1016/j.pep.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
|
30
|
Narancic T, Davis R, Nikodinovic-Runic J, O’ Connor KE. Recent developments in biocatalysis beyond the laboratory. Biotechnol Lett 2015; 37:943-54. [DOI: 10.1007/s10529-014-1762-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/16/2014] [Indexed: 11/27/2022]
|
31
|
Bagagli MP, Jazaeri S, Bock JE, Seetharaman K, Sato HH. Effect of Transglutaminase, Citrate Buffer, and Temperature on a Soft Wheat Flour Dough System. Cereal Chem 2014. [DOI: 10.1094/cchem-09-13-0176-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marcela P. Bagagli
- Department of Food Science, University of Campinas, Rua Monteiro Lobato, 80, P.O. Box 6121, CEP 13083-862, Campinas-SP, Brazil
- Corresponding author. Phone: +55 1935212175
| | - Sahar Jazaeri
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jayne E. Bock
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Koushik Seetharaman
- Deceased; formerly Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Helia H. Sato
- Department of Food Science, University of Campinas, Rua Monteiro Lobato, 80, P.O. Box 6121, CEP 13083-862, Campinas-SP, Brazil
| |
Collapse
|
32
|
pH-dependent activation of Streptomyces hygroscopicus transglutaminase mediated by intein. Appl Environ Microbiol 2013; 80:723-9. [PMID: 24242235 DOI: 10.1128/aem.02820-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial transglutaminase (MTG) from Streptomyces is naturally secreted as a zymogen (pro-MTG), which is then activated by the removal of its N-terminal proregion by additional proteases. Inteins are protein-intervening sequences that catalyze protein splicing without cofactors. In this study, a pH-dependent Synechocystis sp. strain PCC6803 DnaB mini-intein (SDB) was introduced into pro-MTG to simplify its activation process by controlling pH. The recombinant protein (pro-SDB-MTG) was obtained, and the activation process was determined to take 24 h at pH 7 in vitro. To investigate the effect of the first residue in MTG on the activity and the cleavage time, two variants, pro-SDB-MTG(D1S) and pro-SDB-MTG(ΔD1), were expressed, and the activation time was found to be 6 h and 30 h, respectively. The enzymatic property and secondary structure of the recombinant MTG and two variants were similar to those of the wild type, indicating that the insertion of mini-intein did not affect the function of MTG. This insignificant effect was further illustrated by molecular dynamics simulations. This study revealed a controllable and effective strategy to regulate the activation process of pro-MTG mediated by a mini-intein, and it may have great potential for industrial MTG production.
Collapse
|
33
|
Rachel NM, Pelletier JN. Biotechnological applications of transglutaminases. Biomolecules 2013; 3:870-88. [PMID: 24970194 PMCID: PMC4030973 DOI: 10.3390/biom3040870] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.
Collapse
Affiliation(s)
- Natalie M Rachel
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| | - Joelle N Pelletier
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
34
|
Bagagli MP, Sato HH. Two-staged temperature and agitation strategy for the production of transglutaminase from a Streptomyces sp. isolated from Brazilian soils. Appl Biochem Biotechnol 2013; 170:1057-65. [PMID: 23640262 DOI: 10.1007/s12010-013-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/21/2013] [Indexed: 11/24/2022]
Abstract
Transglutaminase catalyzes the cross-linking reaction between a glutamine residue and a free amine residue of proteins leading to the formation of protein aggregates. In this research, the effects of temperature, agitation, and aeration on the production of transglutaminase in a bench reactor by a newly isolated Streptomyces sp. from Brazilian soils were investigated using a factorial experimental design. The parameters evaluated influenced the enzyme production, and the data showed that the best conditions to enhance cell growth were different from those leading to enhanced transglutaminase production. Thus, a temperature and agitation shift strategy was adopted to increase transglutaminase productivity. The temperature and agitation were first set at 34 °C and 350 rpm, respectively, and after 24 h decreasing to 26 °C and 150 rpm until the end of fermentation. The transglutaminase activity obtained was 2.18 U/mL after 42 h of fermentation, which was twice than that obtained using a constant temperature and agitation fermentation strategy.
Collapse
Affiliation(s)
- Marcela Pavan Bagagli
- Food Science Department, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6121, CEP 13083-862 Campinas, SP, Brazil.
| | | |
Collapse
|
35
|
Noda S, Miyazaki T, Tanaka T, Chiaki O, Kondo A. High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Altered secretary efficiency of Streptomyces hygroscopicus transglutaminase in Escherichia coli by the pro-peptide modification. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 2012; 30:1102-7. [DOI: 10.1016/j.biotechadv.2011.09.013] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/07/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
|
38
|
Liu S, Zhang D, Wang M, Cui W, Chen K, Du G, Chen J, Zhou Z. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide. Microb Cell Fact 2011; 10:112. [PMID: 22196373 PMCID: PMC3286405 DOI: 10.1186/1475-2859-10-112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptomyces transglutaminase (TGase) is naturally synthesized as zymogen (pro-TGase), which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+). Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu S, Zhang D, Wang M, Cui W, Chen K, Liu Y, Du G, Chen J, Zhou Z. The pro-region of Streptomyces hygroscopicus transglutaminase affects its secretion by Escherichia coli. FEMS Microbiol Lett 2011; 324:98-105. [DOI: 10.1111/j.1574-6968.2011.02387.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/23/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Dongxu Zhang
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | | | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Kangkang Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Yi Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| |
Collapse
|