1
|
Bajaj N, Sharma D. Uncovering metabolic signatures in cancer-derived exosomes: LC-MS/MS and NMR profiling. NANOSCALE 2024; 17:287-303. [PMID: 39565062 DOI: 10.1039/d4nr03454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Understanding the intricate interplay between cancer metabolism and intercellular communication within the tumour microenvironment (TME) is crucial for advancing cancer diagnostics and therapeutics. In this study, we investigate the metabolites present in exosomes derived from three distinct cancer cell lines: pancreatic cancer (MiaPaCa-2), lung cancer (A549), and glioma (C6). Exosomes were isolated using ultrafiltration and characterized using a combination of techniques including nanoparticle tracking analysis (NTA), electron microscopy (EM), western blotting (WB) and Fourier-transform infrared (FTIR) spectroscopy. Leveraging state-of-the-art metabolomics techniques, including untargeted LC-MS/MS and NMR analyses, we elucidated the metabolic signatures encapsulated within cancer-derived exosomes. Notably, our investigation represents the first exploration of exosomal metabolites from pancreatic and glioma cells, addressing a significant gap in current knowledge. Furthermore, our study investigates the correlation between metabolites derived from different cancer cells, shedding light on potential metabolic interactions within the TME. Through comprehensive analyses, this study provides insights into dysregulated metabolic pathways driving cancer progression and offers novel perspectives on the diagnostic and therapeutic utility of exosomal metabolites. Importantly, common metabolites identified among cancer types suggest potential markers detectable by multiple techniques, enhancing their clinical applicability.
Collapse
Affiliation(s)
- Nandini Bajaj
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
3
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, Catela Ivković T, Mᶏdrzyk M, Jugas R, Machackova T, Kotoucek J, Sachlova M, Bohovicova L, Stanek T, Halamkova J, Kiss I, Slaby O. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024; 62:157-167. [PMID: 37505924 DOI: 10.1515/cclm-2023-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Collapse
Affiliation(s)
| | - Sara Vilmanova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucie Pifkova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivković
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mᶏdrzyk
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Milana Sachlova
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Teodor Stanek
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
McFaul M, Ventura C, Evans S, Dundar H, Rumpler MJ, McCloskey C, Lowe D, Vlassov AV. Urine exosome mRNA-based test for monitoring kidney allograft rejection: Effects of sample transportation and storage, and interference substances. World J Methodol 2023; 13:492-501. [PMID: 38229935 PMCID: PMC10789111 DOI: 10.5662/wjm.v13.i5.492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Exosomes are 30-150 nm nanovesicles with sophisticated nucleic acids cargo, actively secreted by all cells within human body, and found in abundance in all body fluids, including urine. These extracellular vesicles have tremendous potential for next generation diagnostics, theoretically enabling noninvasive assessment of organ and tissue function via liquid biopsy analysis. AIM Recently, feasibility of an exosomal molecular test was demonstrated for post-organ transplant monitoring: Analysis of urine-derived exosomal mRNA cargo allowed early detection of kidney allograft rejection. Here, we further studied urine-derived exosomes and their mRNA content as a highly promising diagnostic modality. This included stability studies of urine samples and exosomal mRNA upon transportation from the point of collection to a centralized testing facility, short-term storage of urine at different conditions upon receipt till the point molecular assay is performed, and effects of various potentially interfering substances on the downstream quantitative polymerase chain reaction (qPCR) assay. METHODS The urine specimens were stored at various conditions and pre-processed in different ways. Next, samples were passed through the columns to capture all extracellular vesicles, the vesicles were lysed to release their content and the exosomal RNA was purified on the mini-columns, reverse transcription was performed, next pre-amplification, followed by a qPCR analysis for a panel of mRNA markers. RESULTS To ensure exosomal RNA integrity, the harvested urine specimens should be shipped refrigerated, by overnight delivery. Urine can next be stored at the test site for up to 1 wk at 4 °C, and long term should be frozen at -80 °C. Urine specimens must be centrifuge at low G-force to deplete cells and debris, to ensure consistent top results in downstream molecular assays. All commonly used medications (tacrolimus, cyclosporin A, mycophenolic acid, everolimus, sirolimus, ascomycin, teriflunomide) were tested and confirmed that they do not cause assay interference. CONCLUSION mRNA from urine-derived exosomes was shown to be stable across a broad range of conditions and produced accurate results when analyzed via qPCR assay for detection of kidney allograft rejection. We identified the most optimal conditions for every step of the process, ensuring pre-analytical sample integrity and robust qPCR results.
Collapse
Affiliation(s)
- Matt McFaul
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Chris Ventura
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Sean Evans
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Halil Dundar
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Marc J Rumpler
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Christopher McCloskey
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Dave Lowe
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| | - Alexandre V Vlassov
- Department of Research and Development, Thermo Fisher Scientific, West Hills, CA 91304, United States
| |
Collapse
|
7
|
Hadvina R, Lotfy Khaled M, Akoto T, Zhi W, Karamichos D, Liu Y. Exosomes and their miRNA/protein profile in keratoconus-derived corneal stromal cells. Exp Eye Res 2023; 236:109642. [PMID: 37714423 PMCID: PMC10842962 DOI: 10.1016/j.exer.2023.109642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Keratoconus (KC) is a corneal thinning disorder and a leading cause of corneal transplantation worldwide. Exosomes are small, secreted extracellular vesicles (30-150 nm) that mediate cellular communication via their protein, lipid, and nucleic acid content. We aimed to characterize the exosomes secreted by primary corneal fibroblasts from subjects with or without KC. Using human keratoconus stromal fibroblast cells (HKC, n = 4) and healthy stromal fibroblasts (HCF, n = 4), we collected and isolated exosomes using serial ultracentrifugation. Using nanoparticle tracking analysis (NTA) with ZetaView®, we compared the size and concentration of isolated exosomes. Different exosomal markers were identified and quantified using a transmission electron microscope (TEM) (CD81) and Western blot (CD9 and CD63). Exosomal miRNA profiles were determined by qRT-PCR using Exiqon Human panel I miRNA assays of 368 pre-selected miRNAs. Proteomic profiles were determined using a label-free spectral counting method with mass spectrometry. Differential expression analysis for miRNAs and proteins was done using student's t-test with a significance cutoff of p-value ≤0.05. We successfully characterized exosomes isolated from HCFs using several complementary techniques. We found no significant differences in the size, quantity, or morphology between exosomes secreted by HCFs with or without KC. Expression of CD81 was confirmed by immuno-EM, and expression of CD63 and CD9 with western blots in all exosome samples. We detected the expression of 72-144 miRNAs (threshold cycle Ct < 36) in all exosome samples. In HKC-derived exosome samples, miR-328-3p, miR-532-5p, miR-345-5p, and miR-424-5p showed unique expression, while let-7c-5p and miR-665 have increased expression. Protein profiling identified 157 proteins in at least half of the exosome samples, with 38 known exosomal proteins. We identified 12 up- and 2 down-regulated proteins in HKC-derived exosomes. The proteins are involved in membrane-bounded vesicles, cytoskeletal, calcium binding, and nucleotide binding. These proteins are predicted to be regulated by NRF2, miR-205, and TGF-β1, which are involved in KC pathogenesis. We successfully characterized the HKC-derived exosomes and profiled their miRNA and protein contents, suggesting their potential role in KC development. Further studies are necessary to determine if and how these exosomes with differential protein/miRNA profiles contribute to the pathogenesis of KC.
Collapse
Affiliation(s)
- Rachel Hadvina
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mariam Lotfy Khaled
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Department of Biochemistry, Cairo University, Egypt
| | - Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Hadisurya M, Li L, Kuwaranancharoen K, Wu X, Lee ZC, Alcalay RN, Padmanabhan S, Tao WA, Iliuk A. Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define putative diagnostic biosignatures for Parkinson's disease. COMMUNICATIONS MEDICINE 2023; 3:64. [PMID: 37165152 PMCID: PMC10172329 DOI: 10.1038/s43856-023-00294-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been recognized as genetic risk factors for Parkinson's disease (PD). However, compared to cancer, fewer genetic mutations contribute to the cause of PD, propelling the search for protein biomarkers for early detection of the disease. METHODS Utilizing 138 urine samples from four groups, healthy individuals (control), healthy individuals with G2019S mutation in the LRRK2 gene (non-manifesting carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S mutation (LRRK2 PD), we applied a proteomics strategy to determine potential diagnostic biomarkers for PD from urinary extracellular vesicles (EVs). RESULTS After efficient isolation of urinary EVs through chemical affinity followed by mass spectrometric analyses of EV peptides and enriched phosphopeptides, we identify and quantify 4476 unique proteins and 2680 unique phosphoproteins. We detect multiple proteins and phosphoproteins elevated in PD EVs that are known to be involved in important PD pathways, in particular the autophagy pathway, as well as neuronal cell death, neuroinflammation, and formation of amyloid fibrils. We establish a panel of proteins and phosphoproteins as novel candidates for disease biomarkers and substantiate the biomarkers using machine learning, ROC, clinical correlation, and in-depth network analysis. Several putative disease biomarkers are further partially validated in patients with PD using parallel reaction monitoring (PRM) and immunoassay for targeted quantitation. CONCLUSIONS These findings demonstrate a general strategy of utilizing biofluid EV proteome/phosphoproteome as an outstanding and non-invasive source for a wide range of disease exploration.
Collapse
Affiliation(s)
- Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Li
- Tymora Analytical Operations, West Lafayette, IN, 47906, USA
| | | | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zheng-Chi Lee
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- West Lafayette Junior/Senior High School, West Lafayette, IN, 47906, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, New York City, NY, 10163, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Tymora Analytical Operations, West Lafayette, IN, 47906, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Tymora Analytical Operations, West Lafayette, IN, 47906, USA.
| |
Collapse
|
9
|
Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics 2023; 15:pharmaceutics15020598. [PMID: 36839920 PMCID: PMC9964211 DOI: 10.3390/pharmaceutics15020598] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
In the last few decades, RNA-based drugs have emerged as a promising candidate to specifically target and modulate disease-relevant genes to cure genetic defects. The key to applying RNA therapy in clinical trials is developing safe and effective delivery systems. Exosomes have been exploited as a promising vehicle for drug delivery due to their nanoscale size, high stability, high biocompatibility, and low immunogenicity. We reviewed and summarized the progress in the strategy and application of exosome-mediated RNA therapy. The challenges of exosomes as a carrier for RNA drug delivery are also elucidated in this article. RNA molecules can be loaded into exosomes and then delivered to targeted cells or tissues via various biochemical or physical approaches. So far, exosome-mediated RNA therapy has shown potential in the treatment of cancer, central nervous system disorders, COVID-19, and other diseases. To further exploit the potential of exosomes for RNA delivery, more efforts should be made to overcome both technological and logistic problems.
Collapse
|
10
|
Elliot S, Catanuto P, Pereira-simon S, Xia X, Shahzeidi S, Roberts E, Ludlow J, Hamdan S, Daunert S, Parra J, Stone R, Pastar I, Tomic-Canic M, Glassberg MK. Urine-derived exosomes from individuals with IPF carry pro-fibrotic cargo. eLife 2022; 11:e79543. [PMID: 36454035 PMCID: PMC9714968 DOI: 10.7554/elife.79543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).
Collapse
Affiliation(s)
- Sharon Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Simone Pereira-simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | | | - Evan Roberts
- Cancer Modeling Shared Resource Sylvester Comprehensive Cancer Center, University of MiamiMiamiUnited States
| | | | - Suzana Hamdan
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
- Miami Clinical and Translational Science Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Jennifer Parra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | - Rivka Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marilyn K Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
- Department of Medicine, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| |
Collapse
|
11
|
Turner NJ, Quijano LM, Hussey GS, Jiang P, Badylak SF. Matrix Bound Nanovesicles have Tissue Specific Characteristics that Suggest a Regulatory Role. Tissue Eng Part A 2022; 28:879-892. [PMID: 35946072 DOI: 10.1089/ten.tea.2022.0091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies have identified an extracellular vesicle population that is tightly anchored within the extracellular matrix of tissues and organs until released by matrix turnover events. Evidence suggests that these matrix-bound nanovesicles (MBV) are a ubiquitous component of the ECM, raising questions regarding their tissue specific identity and their biologic function(s). The primary objective of this study was to examine MBV isolated from six different tissues and compare their physical and compositional characteristics to determine the common and differentially expressed features. Accordingly, the results of this characterization show that while MBV are a ubiquitous component of the ECM they contain a protein and miRNA cargo that is tissue specific. The results furthermore suggest that MBV have an important role in regulating tissue homeostasis.
Collapse
Affiliation(s)
- Neill J Turner
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania, United States, 15212;
| | - Lina Maria Quijano
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| | - George S Hussey
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr., Pittsburgh, Pennsylvania, United States, 15219;
| | - Peng Jiang
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States;
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| |
Collapse
|
12
|
Li YJ, Xu QW, Xu CH, Li WM. MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m 6A Modification. Mol Neurobiol 2022; 59:5222-5235. [PMID: 35687301 DOI: 10.1007/s12035-022-02833-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury (IIRI) is associated with high prevalence and mortality rate. Recently, mesenchymal stem cell (MSC) therapy attracted more attentions. However, the function and regulatory mechanism of MSC-derived exosomal miRNAs during IIRI remain largely uninvestigated. The in vitro and in vivo IIRI models were established. MSC were characterized by immunofluorescent staining and flow cytometry. Purified exosomes were characterized by transmission electron microscopy (TEM), flow cytometry, and western blot. The expression of key molecules was detected by western blot and qRT-PCR. CCK-8, TUNEL, and transepithelial electrical resistance (TER) assays were employed to assess cell viability, apoptosis, and intestinal integrity, respectively. Pre-miR-34A m6 modification was evaluated by methylated RNA immunoprecipitation (MeRIP)-qPCR. RNA pull-down and RIP were used to validate the direct association between pre-miR-34A and IGF2BP3. MSC-derived exosomal miR-34a-5p alleviated OGD/R-induced injury. In addition, MSC ameliorated OGD/R-induced injury through METTL3 pathway. Mechanistic study revealed that miR-34a-5p was modulated by METTL3/IGF2BP3-mediated m6A modification in MSC. The in vitro and in vivo functional experiments revealed that MSC secreted exosomal miR-34a-5p and ameliorated IIRI through METTL3/IGF2BP3-mediated m6A modification of pre-miR-34A. MSC promoted the secretion of exosomal miR-34a-5p and improved intestinal barrier function through METTL3/IGF2BP3-mediated pre-miR-34A m6A modification.
Collapse
Affiliation(s)
- Yi-Jun Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, No.374, Dianmian Road, Kunming, 650101, Yunnan Province, People's Republic of China
| | - Qing-Wen Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, No.374, Dianmian Road, Kunming, 650101, Yunnan Province, People's Republic of China
| | - Cong-Hui Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, No.374, Dianmian Road, Kunming, 650101, Yunnan Province, People's Republic of China
| | - Wei-Ming Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, No.374, Dianmian Road, Kunming, 650101, Yunnan Province, People's Republic of China.
| |
Collapse
|
13
|
Iha K, Tsurusawa N, Tsai HY, Lin MW, Sonoda H, Watabe S, Yoshimura T, Ito E. Ultrasensitive ELISA detection of proteins in separated lumen and membrane fractions of cancer cell exosomes. Anal Biochem 2022; 654:114831. [DOI: 10.1016/j.ab.2022.114831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/31/2022]
|
14
|
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022; 20:125. [PMID: 35287692 PMCID: PMC8919142 DOI: 10.1186/s12967-022-03325-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Collapse
Affiliation(s)
- Ala Amiri
- Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, Alzahra University, 1993893973, Tehran, Iran.
| |
Collapse
|
15
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Teoh BY, Lim YM, Chong WY, Subramaniam M, Tan ZZ, Misran M, Suk VRE, Lo KW, Lee PF. Isolation of exosome from the culture medium of Nasopharyngeal cancer (NPC) C666-1 cells using inertial based Microfluidic channel. Biomed Microdevices 2022; 24:12. [PMID: 35080702 DOI: 10.1007/s10544-022-00609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Isolation of exosome from culture medium in an effective way is desired for a less time consuming, cost saving technology in running the diagnostic test on cancer. In this study, we aim to develop an inertial microfluidic channel to separate the nano-size exosome from C666-1 cell culture medium as a selective sample. Simulation was carried out to obtain the optimum flow rate for determining the dimension of the channels for the exosome separation from the medium. The optimal dimension was then brought forward for the actual microfluidic channel fabrication, which consisted of the stages of mask printing, SU8 mould fabrication and ended with PDMS microchannel curing process. The prototype was then used to verify the optimum flow rate with polystyrene particles for its capabilities in actual task on particle separation as a control outcome. Next, the microchip was employed to separate the selected samples, exosome from the culture medium and compared the outcome from the conventional exosome extraction kit to study the level of effectiveness of the prototype. The exosome outcome from both the prototype and extraction kits were characterized through zetasizer, western blot and Transmission electron microscopy (TEM). The microfluidic chip designed in this study obtained a successful separation of exosome from the culture medium. Besides, the extra benefit from this microfluidic channels in particle separation brought an evenly distributed exosome upon collection while the exosomes separated through extraction kit was found clustered together. Therefore, this work has shown the microfluidic channel is suitable for continuous separation of exosome from the culture medium for a clinical study in the future.
Collapse
Affiliation(s)
- Boon Yew Teoh
- Department of Biomedical and Mechatronics Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia.,Centre for Cancer Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Wu Yi Chong
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Zi Zhang Tan
- Department of Biomedical and Mechatronics Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vicit Rizal Eh Suk
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwok-Wai Lo
- Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Poh Foong Lee
- Department of Mechanical Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia.
| |
Collapse
|
17
|
Farr RJ, Godde N, Cowled C, Sundaramoorthy V, Green D, Stewart C, Bingham J, O'Brien CM, Dearnley M. Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons. Front Cell Infect Microbiol 2022; 11:783140. [PMID: 35004351 PMCID: PMC8739477 DOI: 10.3389/fcimb.2021.783140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.
Collapse
Affiliation(s)
- Ryan J Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
18
|
Design and application of hydrophilic bimetallic metal-organic framework magnetic nanoparticles for rapid capture of exosomes. Anal Chim Acta 2021; 1186:339099. [PMID: 34756265 DOI: 10.1016/j.aca.2021.339099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023]
Abstract
Functional materials with good biocompatibility have been widely used in the study of genomics, proteomics and disease diagnosis, which has improved the progress of life science. In this paper, the material not only exhibited a strong affinity to the phosphate groups on the exosomal membrane due to the coexistence of Zr-O clusters and Ti4+, but also owned great hydrophilicity to reduce non-specific adsorption of contaminated proteins, achieving the separation and purification of exosomes from complex biosamples. The model exosomes extracted by ultracentrifugation (UC) were used to evaluate the feasibility of Fe3O4@UiO-66-NH2@PA-Ti4+ capturing exosomes. The process of Fe3O4@UiO-66-NH2@PA-Ti4+ capturing exosomes was simple to operate with a high recovery rate (97.3%) within a short time (5 min). Then Fe3O4@UiO-66-NH2@PA-Ti4+ was further applied to capture exosomes in media and urine followed by the downstream proteomics analysis. 348 and 284 exosomal proteins were identified for cell medium and urine, respectively. This work shows great potential of the material for subsequent function research of disease-related exosomes by separating exosomes rapidly and efficiently.
Collapse
|
19
|
Biadglegne F, Rademacher P, De Sulbaran YGJ, König B, Rodloff AC, Zedler U, Dorhoi A, Sack U. Exosomes in serum‑free cultures of THP‑1 macrophages infected with Mycobacterium tuberculosis. Mol Med Rep 2021; 24:815. [PMID: 34558650 PMCID: PMC8477185 DOI: 10.3892/mmr.2021.12455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
It has been shown from the isolation and characterization of exosomes from cell culture media supplemented with fetal bovine serum that both their quality and purity are affected. The high abundance of serum proteins, including bovine cell derived exosomes, is also a potential source of contaminants, which may result in appreciable yields of impure exosomes, thereby leading to artifacts. Isolation and characterization of exosomes from cells maintained under serum-free conditions should therefore ensure the high quality necessary for medical applications. To meet this end, the present study aimed to characterize exosomes released from THP-1 macrophages cultured in serum-free, ultra-centrifuged medium upon infection with the human pathogen Mycobacterium tuberculosis (Mtb). Macrophages differentiated from the human cell line THP-1 were infected at a multiplicity of infection (MOI) of 5. Macrophages were cultivated in CellGenix® GMP DC serum-free ultra-centrifuged medium for 4, 24 and 48 h at 37°C in a humidified atmosphere with 5% CO2. Total exosome isolation reagent was used to extract the exosomes from the cell culture supernatants of naïve and Mtb-infected THP-1 macrophages. The size and purity of the exosomes isolated were subsequently assessed by various methods, including nanoparticle tracking analysis, flow cytometry, MACSPlex exosome analysis, and western blotting. The serum-free, ultra-centrifuged medium was found to support the proliferation of the THP-1 cells successfully. The nanoparticle tracking analysis data revealed that the majority of the isolated particles were within the size range of exosomes (i.e., 30–150 nM). The MACSPlex exosome analysis confirmed the expression of the exosomal markers, CD9, CD63 and CD81. Furthermore, western blot analysis of the isolated exosomes indicated the presence of CD9, CD63, CD81 and lysosomal associated membrane protein-1 (LAMP-1), and also confirmed the absence of Mtb proteins. Taken together, these data provide evidence that serum-free, ultra-centrifuged CellGenix® GMP DC medium is suitable for application in exosome research, and may significantly advance such studies. Therefore, the use of serum-free medium for exosome isolation purposes could offer considerable advantages, and constitute a significant improvement in the growing field of extracellular vesicle research. The use of more sensitive methods represents an advance that will enable researchers to rule out the presence of Mtb pathogenic proteins in exosomes isolated from infected serum-free cell cultures.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
| | - Phil Rademacher
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| | | | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Arne C Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Ulrike Zedler
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| |
Collapse
|
20
|
Jalilvand T, Salarinia R, Ahmadabad HN, Safdari M. The expression of miR-17 and miR-29a in placenta-derived exosomes in LPS-induced abortion mice model: An experimental study. Int J Reprod Biomed 2021; 19:433-440. [PMID: 34278196 PMCID: PMC8261093 DOI: 10.18502/ijrm.v19i5.9252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The expression pattern of microRNAs in placenta-derived exosomes plays a crucial role in the regulation of immune responses and inflammation at the fetal-maternal interface. OBJECTIVE Considering the immunomodulatory properties of miR-17 and miR-29a, we determined their expression levels in placenta-derived exosomes in a lipopolysaccharide (LPS)-induced abortion mice model. MATERIALS AND METHODS A total of 14 pregnant BALB/c mice, aged 6-8 wk, were randomly divided into two groups (n = 7/each) on the gestational day 11.5. While the mice in the experimental group were treated with LPS, those in the control group were treated with Phosphate buffered saline; 5 hr after the treatment, the placental cells were isolated and cultured for 48 hr. Then, the cell culture supernatants were collected and used for isolation of exosomes. The isolated exosomes were confirmed by western blot and scanning electron microscopy. The miRNAs were then extracted from exosomes, and cDNA synthesized. The expression levels of miR-17 and miR-29a were evaluated by quantitative real-time PCR analysis. RESULTS Our results showed that the expression levels of miR-29a in placenta-derived exosomes obtained from the experimental group increased significantly compared to the control group. Also, the expression levels of miR-17 in the placenta-derived exosomes obtained from the experimental group were found to decrease; however, it did not show significant changes compared with the control group (p > 0.05). CONCLUSION Inflammatory reactions at the fetal-maternal interface can alter miRNAs expression patterns in placenta-derived exosomes, especially miRNAs with immunomodulatory effects such as miR-29a.
Collapse
Affiliation(s)
- Tahereh Jalilvand
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmadabad
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Immam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
21
|
Zhou J, Wu Z, Hu J, Yang D, Chen X, Wang Q, Liu J, Dou M, Peng W, Wu Y, Wang W, Xie C, Wang M, Song Y, Zeng H, Bai C. High-throughput single-EV liquid biopsy: Rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. SCIENCE ADVANCES 2020; 6:eabc1204. [PMID: 33219024 PMCID: PMC7679165 DOI: 10.1126/sciadv.abc1204] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/30/2020] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs), mRNA, and proteins in/on extracellular vesicles (EVs) represent potential cancer biomarkers. Concurrent detection of multiple biomarkers at a single-EV level would greatly improve prognosis and/or diagnosis and understanding of EV phenotypes, biogenesis, and functions. Here, we introduced a High-throughput Nano-bio Chip Integrated System for Liquid Biopsy (HNCIB) system for simultaneous detection of proteins and mRNA/miRNA in a single EV. Validated through systematic control experiments, HNCIB showed high reliability, sensitivity, and specificity. In a panel of 34 patients with lung adenocarcinoma (LUAD) and 35 healthy donors, HNCIB detected an up-regulated expression of programmed death-ligand 1 mRNA and protein and miR-21 in EVs derived from patients with LUAD compared to those from healthy donors. HNCIB has low sample requirement (~90 μl), fast assay time (~6 hours), and high throughput (up to 384 samples per assay) and would have great potential in the study of EVs and their clinical applications.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuoren Wu
- Hangzhou Dixiang Co. Ltd., Hangzhou, China
| | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Chen
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin Wang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Maosen Dou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjun Peng
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | - Ming Wang
- Hangzhou Dixiang Co. Ltd., Hangzhou, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Sakai-Kato K, Yoshida K, Takechi-Haraya Y, Izutsu KI. Physicochemical Characterization of Liposomes That Mimic the Lipid Composition of Exosomes for Effective Intracellular Trafficking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12735-12744. [PMID: 33054220 DOI: 10.1021/acs.langmuir.0c02491] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exosomes mediate communication between cells in the body by the incorporation and transfer of biological materials. To design an artificial liposome, which would mimic the lipid composition and physicochemical characteristics of naturally occurring exosomes, we first studied the physicochemical properties of exosomes secreted from HepG2 cells. The exosome stiffness obtained by atomic force microscopy was moderate. Some liposomes were then fabricated to mimic the representative reported lipid composition of exosomes. Their physicochemical properties and cellular internalization efficiencies were investigated to optimize the cellular internalization efficiency of the liposomes. A favorable internalization efficiency was obtained by incubating HeLa cells with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol (Chol)/1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) (40/40/20 mol %) liposomes, which have a similar stiffness and zeta potential to exosomes. A dramatic increase in internalization efficiency was demonstrated by adding DOPS to simple DSPC/Chol liposomes. We found that DOPS had a more desirable effect on cellular internalization than its saturated lipid counterpart, 1,2-distearoyl-sn-glycero-3-phospho-l-serine. Furthermore, it was shown that the phosphatidylserine-binding protein, T-cell immunoglobulin mucin protein 4, was largely involved in the intracellular transfer of DSPC/Chol/DOPS liposomes. Thus, DOPS was a key lipid to provide the appropriate stiffness, zeta potential, and membrane surface affinity of the resulting liposome. Our results may help develop efficient drug carriers aiming to internalize active substances into cells.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Kohki Yoshida
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|
23
|
Jiang Z, Liu G, Li J. Recent Progress on the Isolation and Detection Methods of Exosomes. Chem Asian J 2020; 15:3973-3982. [PMID: 33029906 DOI: 10.1002/asia.202000873] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Exosomes are known as one of extracellular vesicles, which are found in various body fluids and released by cells. As transport carrier, exosomes participate actively in intercellular communication and reflect their characteristics uniquely to the origin cells. Due to their unique biological physical properties and physiological functions, exosomes are considered to be one of best biomarkers of cancer diagnosis. At the same time, exosomes are potential therapeutic targets and drug delivery carriers. Therefore, the characteristics, functions and analytical methods of exosomes have increasingly attracted wide attention among scientists. In this review, the recent research progress on the basic characteristics and functional applications of exosomes are summarized. Furthermore and importantly, this review focuses on the recent advance in the purification and test methods of exosomes in recent years. Finally, issues pertaining to exosome detection are presented. Based on newly discovered characteristic of exosomes, the opportunities and challenges for future research of the purification and quantitative detection methods are outlined.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
24
|
Jafari D, Malih S, Eini M, Jafari R, Gholipourmalekabadi M, Sadeghizadeh M, Samadikuchaksaraei A. Improvement, scaling-up, and downstream analysis of exosome production. Crit Rev Biotechnol 2020; 40:1098-1112. [PMID: 32772758 DOI: 10.1080/07388551.2020.1805406] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are the most researched extracellular vesicles. In many biological, physiological, and pathological studies, they have been identified as suitable candidates for treatment and diagnosis of diseases by acting as the carriers of both drugs and genes. Considerable success has been achieved regarding the use of exosomes for tissue regeneration, cancer diagnosis, and targeted drug/gene delivery to specific tissues. While major progress has been made in exosome extraction and purification, extraction of large quantities of exosomes is still a major challenge. This issue limits the scope of both exosome-based research and therapeutic development. In this review, we have aimed to summarize experimental studies focused at increasing the number of exosomes. Biotechnological studies aimed at identifying the pathways of exosome biogenesis to manipulate some genes in order to increase the production of exosomes. Generally, two major strategies are employed to increase the production of exosomes. First, oogenesis pathways are genetically manipulated to overexpress activator genes of exosome biogenesis and downregulate the genes involved in exosome recycling pathways. Second, manipulation of the cell culture medium, treatment with specific drugs, and limiting certain conditions can force the cell to produce more exosomes. In this study, we have reviewed and categorized these strategies. It is hoped that the information presented in this review will provide a better understanding for expanding biotechnological approaches in exosome-based therapeutic development.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Eini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, Zhang J, Wang X. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 2020; 40:767-784. [PMID: 31853695 PMCID: PMC11448788 DOI: 10.1007/s10571-019-00771-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Exosomes contain plenty of bioactive information, playing an important role in intercellular communication by transfer their bioactive molecular contents to recipient cells. Glioblastoma stem cells (GSCs) and non-GSC glioma cells coexist in GBM microenvironment; GSC-released exosomes contain intracellular signaling molecules, which may affect the biological phenotypes of recipient cells. However, whether GSC exosomes could affect the biological phenotype of non-GSC glioma cells has not yet been defined. To explore whether GSC exosomes could reprogramme non-GSC glioma cells into GSCs and its possible mechanism involved, non-GSC glioma cells were treated with GSCs released exosomes; the potential mechanisms of action were studied with RNA interference, Notch inhibitors and Western blot analysis. The proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells were increased significantly after GSC exosome treatment; Notch1 signaling pathway was activated in GSCs; Notch1 protein was highly enriched in GSC exosomes; Notch1 signaling pathway and stemness-related protein expressions were increased in GSC exosome treated non-GSC glioma cells and these cell generated tumor tissues; Notch1 protein expression in GSCs and their exosomes, and the neurosphere formation of GSCs were decreased by Notch1 RNA interference; Notch1 signaling pathway protein and stemness protein expressions were decreased in GSC exosome treated non-GSC glioma cells by Notch1 RNA interference and Notch inhibitors. The findings in this study indicated that GSC exosomes act as information carriers, mediated non-GSC glioma cell dedifferentiation into GSCs by delivering Notch1 protein through Notch1 signaling activation, and enhanced stemness and tumorigenicity of non-GSC glioma cells.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Yueling Zhou
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Lihua Dong
- Human Anatomy Department, School of Preclinical and Forensic Medcine, Sichuan University, Chengdu, 610041, China
| | - Weichao Ma
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Lv
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China.
| |
Collapse
|
26
|
Plasma Extracellular Vesicle-Derived TIMP-1 mRNA as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma: A Pilot Study. Int J Mol Sci 2020; 21:ijms21134624. [PMID: 32610589 PMCID: PMC7370073 DOI: 10.3390/ijms21134624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment has gained a lot of attention from the scientific community since it has a proven impact in the development of tumor progression and metastasis. Extracellular vesicles (EVs) are now considered one of the key players of tumor microenvironment modulation. Clear cell renal cell carcinoma (ccRCC) is the most lethal urological neoplasia and presents a high metastatic potential, which reinforces the need for the development of more effective predictive biomarkers. Our goal was to evaluate the applicability of EV-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as prognostic biomarkers for ccRCC. To do so, we studied the plasma EV content of 32 patients with localized ccRCC and 29 patients with metastatic ccRCC. We observed that patients with localized disease and tumors larger than 7 cm presented higher levels of plasma EV-derived TIMP-1 mRNA when compared with patients presenting smaller tumors (p = 0.020). Moreover, patients with metastatic disease presented higher levels of EV-derived TIMP-1 mRNA when compared with patients with localized disease (p = 0.002) and when we stratified those patients in high and low levels of TIMP-1 EV-derived mRNA, the ones presenting higher levels had a lower overall survival (p = 0.030). EV-derived TIMP-1 mRNA may be a good prognostic biomarker candidate for ccRCC.
Collapse
|
27
|
Dias F, Teixeira AL, Nogueira I, Morais M, Maia J, Bodo C, Ferreira M, Silva A, Vilhena M, Lobo J, Sequeira JP, Maurício J, Oliveira J, Kok K, Costa-Silva B, Medeiros R. Extracellular Vesicles Enriched in hsa-miR-301a-3p and hsa-miR-1293 Dynamics in Clear Cell Renal Cell Carcinoma Patients: Potential Biomarkers of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12061450. [PMID: 32498409 PMCID: PMC7352268 DOI: 10.3390/cancers12061450] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of kidney cancer and up to 40% of patients submitted to surgery with a curative intent will relapse. Thus, the aim of this study was to analyze the applicability of an Extracellular vesicle (EV) derived miRNA profile as potential prognosis biomarkers in ccRCC patients. We analyzed a nine-miRNA profile in plasma EVs from 32 ccRCC patients with localized disease (before and after surgery) and in 37 patients with metastatic disease. We observed that the levels of EV-derived hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p decreased after surgery, whereas hsa-miR-1293 EV-levels increased. Furthermore, metastatic patients presented higher levels of hsa-miR-301a-3p and lower levels of hsa-miR-1293 when compared to patients with localized disease after surgery. Functional enrichment analysis of the targets of the four miRNAs that decreased after surgery resulted in an enrichment of terms related to cell cycle, proliferation, and metabolism, suggesting that EV-miRNA enrichment in the presence of the tumor could represent an epigenetic mechanism to sustain tumor development. Taken together, these results suggest that EVs content varies depending on the presence or absence of the disease and that an increase of EV-derived hsa-miR-301a-3p, and decrease of EV-derived hsa-miR-1293, may be potential biomarkers of metastatic ccRCC.
Collapse
Affiliation(s)
- Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Correspondence: ; Tel.: +351-225084000 (ext. 5410)
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-135 Porto, Portugal
| | - Cristian Bodo
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Marta Ferreira
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Alexandra Silva
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Manuela Vilhena
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Klaas Kok
- Department of Genetics, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
28
|
Xu L, Gimple RC, Lau WB, Lau B, Fei F, Shen Q, Liao X, Li Y, Wang W, He Y, Feng M, Bu H, Wang W, Zhou S. THE PRESENT AND FUTURE OF THE MASS SPECTROMETRY-BASED INVESTIGATION OF THE EXOSOME LANDSCAPE. MASS SPECTROMETRY REVIEWS 2020; 39:745-762. [PMID: 32469100 DOI: 10.1002/mas.21635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Bonnie Lau
- Department of Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA
| | - Fan Fei
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiuhong Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,School of Biological Sciences, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Xiaolin Liao
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hong Bu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Iliuk A, Wu X, Li L, Sun J, Hadisurya M, Boris RS, Tao WA. Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification. J Proteome Res 2020; 19:2563-2574. [PMID: 32396726 DOI: 10.1021/acs.jproteome.0c00151] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The invasive nature and the pain caused to patients inhibit the routine use of tissue biopsy-based procedures for cancer diagnosis and surveillance. The analysis of extracellular vesicles (EVs) from biofluids has recently gained significant traction in the liquid biopsy field. EVs offer an essential "snapshot" of their precursor cells in real time and contain an information-rich collection of nucleic acids, proteins, lipids, and so on. The analysis of protein phosphorylation, as a direct marker of cellular signaling and disease progression could be an important stepping stone to successful liquid biopsy applications. Here we introduce a rapid EV isolation method based on chemical affinity called EVtrap (extracellular vesicle total recovery and purification) for the EV phosphoproteomics analysis of human plasma. By incorporating EVtrap with high-performance mass spectrometry (MS), we were able to identify over 16 000 unique peptides representing 2238 unique EV proteins from just 5 μL of plasma sample, including most known EV markers, with substantially higher recovery levels compared with ultracentrifugation. Most importantly, more than 5500 unique phosphopeptides representing almost 1600 phosphoproteins in EVs were identified using only 1 mL of plasma. Finally, we carried out a quantitative EV phosphoproteomics analysis of plasma samples from patients diagnosed with chronic kidney disease or kidney cancer, identifying dozens of phosphoproteins capable of distinguishing disease states from healthy controls. The study demonstrates the potential feasibility of our robust analytical pipeline for cancer signaling monitoring by tracking plasma EV phosphorylation.
Collapse
Affiliation(s)
- Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Jie Sun
- College of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ronald S Boris
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Tymora Analytical Operations, West Lafayette, Indiana 47906, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,College of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
RNA cargos in extracellular vesicles derived from blood serum in pancreas associated conditions. Sci Rep 2020; 10:2800. [PMID: 32071328 PMCID: PMC7028741 DOI: 10.1038/s41598-020-59523-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles which are released from healthy and tumor cells into blood circulation. Unique biomolecular cargos such as RNA and protein are loaded in these vesicles. These molecules may have biological functions such as signaling, cell communications and have the potential to be analyzed as biomarkers. In this initial study, we describe the analysis of exosomes in the serum of healthy subjects, intraductal papillary mucosal neoplasms and pancreatic ductal adenocarcinoma including the characterization of their RNA cargos by next generation sequencing (EXO-NGS). Results indicate the presence of a wide variety of RNAs including mRNA, miRNA, lincRNA, tRNA and piRNA in these vesicles. Based on the differential mRNA expression observed upon EXO-NGS analysis, we independently evaluated two protein coding genes, matrix metalloproteinase-8 (MMP-8) and transcription factor T-Box 3 (TBX3) by qRT-PCR for selective expression in the serum samples. Results indicate a variable expression pattern of these genes across serum samples between different study groups. Further, qRT-PCR analysis with the same serum exosomes processed for EXO-NGS, we observed two long non-coding RNAs, malat-1 and CRNDE to be variably expressed. Overall, our observations emphasize the potential value of different exosome components in distinguishing between healthy, premalignant and malignant conditions related to the pancreas.
Collapse
|
31
|
Czarnecka KH, Szmyd B, Barańska M, Kaszkowiak M, Kordiak J, Antczak A, Pastuszak-Lewandoska D, Brzeziańska-Lasota E. A Strong Decrease in TIMP3 Expression Mediated by the Presence of miR-17 and 20a Enables Extracellular Matrix Remodeling in the NSCLC Lesion Surroundings. Front Oncol 2019; 9:1372. [PMID: 31921636 PMCID: PMC6923190 DOI: 10.3389/fonc.2019.01372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer is one of the most common causes of death worldwide with a relatively high fatality rate and a mean 5-years survival of about 18%. One of the hallmarks of cancer is the extracellular matrix (ECM) remodeling, which is crucial for metastasis. This process may be regulated by miRs targeting metalloproteinases (MMPs) associated with the ECM breakdown and metastatic process or blocking the action of tissue inhibitors of metalloproteinases (TIMPs). Search for early biomarkers is essential in detecting non-small cell lung cancer (NSCLC) and distinguishing its subtypes: Adenocarcinoma (AC) from Squamous Cell Carcinoma (SCC), enabling targeted chemotherapy. Methods:MiR-17 and miR-20a targeting MMP2 and TIMP3 were selected by TCGA data analysis with further validation using miRTarBase and literature. The study group comprised 47 patients with primary NSCLC (AC and SCC subtypes). RNA was isolated from the tumor and normal-looking neighboring tissue (NLNT) free of cancer cells. MiRs from peripheral blood exosomes were extracted on admission and 5–7 days after surgery. Gene and miRs expression were assessed in qPCR using TaqMan probes. Results: The MMP2 has been expressed on a similar level in NLNT, as in cancer. While, TIMP3 expression was decreased both in cancer tissue and NLNT, with significantly lower expression in cancer. TIMP3 downregulation in NLNT and in SCC subtype correlated negatively with miR-20a. The preoperative miR-17 expression was significantly higher among patients with SCC compared to AC. Receiver operating characteristic (ROC) analysis of miR-17 as AC subtype classifier revealed 90% specificity and 48% sensitivity in optimal cut-off point with area under ROC curve (AUC): 0.71 (95%CI: 0.55–0.87). Within NSCLC subtypes: a strong negative correlation between pack-years (PY) and TIMP3 expression was observed for NLNT in the SCC group. Conclusion: The TIMP3 silencing observed in the NLNT and its negative correlation with presurgical expression of miR-20a (from serum exosomes), suggest that miRs can influence ECM remodeling at a distance from the center of the lesion. The miRs expression pattern in serum obtained before surgery significantly differs between AC and SCC subtypes. Moreover, decreased TIMP3 expression in NLNT (in SCC group) negatively correlates with the amount of tobacco smoked in a lifetime in PY.
Collapse
Affiliation(s)
- Karolina H Czarnecka
- Department of Biomedicine and Genetics, Medical University of Lodz, Łódz, Poland.,Quantitative Genomic Medicine Laboratories, S.L., Esplugues de Llobregat, Barcelona, Spain
| | - Bartosz Szmyd
- Department of Biomedicine and Genetics, Medical University of Lodz, Łódz, Poland
| | - Magda Barańska
- Department of Biomedicine and Genetics, Medical University of Lodz, Łódz, Poland
| | - Marcin Kaszkowiak
- Department of Biomedicine and Genetics, Medical University of Lodz, Łódz, Poland
| | - Jacek Kordiak
- Department of Chest Surgery, General and Oncological Surgery, University Teaching Hospital No. 2, Medical University of Lodz, Łódz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Łódz, Poland
| | | | | |
Collapse
|
32
|
Pallares RM, Thanh NTK, Su X. Sensing of circulating cancer biomarkers with metal nanoparticles. NANOSCALE 2019; 11:22152-22171. [PMID: 31555790 DOI: 10.1039/c9nr03040a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of circulating cancer biomarkers, including cell-free and circulating tumor DNA, circulating tumor cells, microRNA and exosomes, holds promise in revolutionizing cancer diagnosis and prognosis using body fluid analysis, also known as liquid biopsy. To enable clinical application of these biomarkers, new analytical tools capable of detecting them in very low concentrations in complex sample matrixes are needed. Metal nanoparticles have emerged as extraordinary analytical scaffolds because of their unique optoelectronic properties and ease of functionalization. Hence, multiple analytical techniques have been developed based on these nanoparticles and their plasmonic properties. The aim of this review is to summarize and discuss the present development on the use of metal nanoparticles for the analysis of circulating cancer biomarkers. We examine how metal nanoparticles can be used as (1) analytical transducers in various sensing principles, such as aggregation induced colorimetric assays, plasmon resonance energy transfer, surface enhanced Raman spectroscopy, and refractive index sensing, and (2) signal amplification elements in surface plasmon resonance spectroscopy and electrochemical detection. We critically discuss the clinical relevance of each category of circulating biomarkers, followed by a thorough analysis of how these nanoparticle-based designs have overcome some of the main challenges that gold standard analytical techniques currently face, and what new directions the field may take in the future.
Collapse
Affiliation(s)
- Roger M Pallares
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
33
|
Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep 2019; 9:16130. [PMID: 31695092 PMCID: PMC6834614 DOI: 10.1038/s41598-019-52513-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc- downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC-, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.
Collapse
Affiliation(s)
- Jinsen Lu
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| | - Jiazhao Yang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Yongshun Zheng
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Meishan Road No. 81, 230032, Hefei, China
| | - Shiyuan Fang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| |
Collapse
|
34
|
Dong Z, Sun X, Xu J, Han X, Xing Z, Wang D, Ge J, Meng L, Xu X. Serum Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) mRNA Protected by Exosomes as a Potential Biomarker for Gastric Cancer. Med Sci Monit 2019; 25:7770-7783. [PMID: 31619663 PMCID: PMC6820360 DOI: 10.12659/msm.918486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Our previous research revealed that membrane type 1-matrix metalloproteinase (MT1-MMP) is overexpressed and plays a crucial role in gastric cancer (GC) progression. Exosomes are important for GC carcinogenesis, and the exosomal contents are ideal biomarkers. However, the expression of exosomal MT1-MMP mRNA in serum and its potential significance in GC remains unclear. Material/Methods The expression of exosomal MT1-MMP mRNA in serum of patients with GC, chronic gastritis, or atypical hyperplasia, and healthy controls was detected using real-time quantitative RT-PCR. Serum CEA, CA19-9, and CA72-4 were also measured by electrochemiluminescence assay. Results Exosomes were isolated and identified in serum, and serum exosomal MT1-MMP mRNA was found to be higher in patients with GC compared with healthy controls and patients with chronic gastritis or atypical hyperplasia (all P<0.05). Serum exosomal MT1-MMP mRNA was significantly correlated with tumor diameter, differentiation, Borrmann type, invasion depth, lymphatic metastasis, distal metastasis, and TNM stage. The AUC of exosomal MT1-MMP mRNA was 0.788 (95% CI: 0.714–0.850) with 63.9% sensitivity and 87.1% specificity, and was higher than that of CEA (0.655 (95% CI: 0.573–0.730)). The combination of 2 markers gave an AUC of 0.821 (95% CI: 0.750–0.878), which was better than with the individual marker. The sensitivity, specificity, and positive and negative predictive values were 75.6%, 83.9%, 94.7%, and 47.3%, respectively. Moreover, the multiple logistic regression model showed that tumor diameter, differentiation, invasion depth, and exosomal MT1-MMP mRNA were the risk factors for lymphatic metastasis in GC. Conclusions Our results characterized serum exosomal MT1-MMP mRNA in GC, providing a foundation for discovering serum exosomes-targeted biomarkers for GC diagnosis.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoyan Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Jingjing Xu
- School of Microelectronics, Shandong University, Jinan, Shandong, China (mainland)
| | - Xia Han
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhaoquan Xing
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ding Wang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jian Ge
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Liwei Meng
- Department of Urology Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
35
|
The Small RNA Repertoire of Small Extracellular Vesicles Isolated From Donor Kidney Preservation Fluid Provides a Source for Biomarker Discovery for Organ Quality and Posttransplantation Graft Function. Transplant Direct 2019; 5:e484. [PMID: 31579812 PMCID: PMC6739040 DOI: 10.1097/txd.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. Delayed graft function (DGF) after kidney transplantation is negatively associated with long-term graft function and survival. Kidney function after transplantation depends on multiple factors, both donor- and recipient-associated. Prediction of posttransplantation graft function would allow timely intervention to optimize patient care and survival. Currently, graft-based predictions can be made based on histological and molecular analyses of 0-hour biopsy samples. However, such analyses are currently not implemented, as biopsy samples represent only a very small portion of the entire graft and are not routinely analyzed in all transplantation centers. Alternatives are thus required.
Collapse
|
36
|
Elbay A, Ercan Ç, Akbaş F, Bulut H, Ozdemir H. Three new circulating microRNAs may be associated with wet age-related macular degeneration. Scand J Clin Lab Invest 2019; 79:388-394. [PMID: 31277558 DOI: 10.1080/00365513.2019.1637931] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study investigates the circulating microRNA (miRNA) expression profiles in patients with age-related macular degeneration (AMD) and the role of miRNA in wet AMD and its pathways. Exosomes were extracted from serum samples of AMD patients (n = 70) and a control group (n = 50). After isolating miRNA from the exosomes, miRNAs were transformed into cDNA. In the control and AMD samples, the expression was compared with a panel including 175 genes using the PCR array method. Target genes and pathways of miRNAs were detected by KEGG and Biocarta signaling pathway enrichments. Comparing the serum samples between groups revealed that the expression levels of 15 microRNAs within 175 genes had significantly changed. In the validation studies, miR-129-3p and miR-132-3p had no significant expression in AMD group compared to the controls. miR-486-5p and miR-626 had higher expression in AMD patients compared to the control group, while miR-885-5p showed significantly lower expression. Pathway analysis revealed that these miRNAs may have critical roles in the apoptosis and neovascularization pathways. The data suggest that some miRNAs within the serum may have a role in the pathogenesis of wet AMD. Further studies are needed to examine the use of these miRNAs as biomarkers.
Collapse
Affiliation(s)
- Ahmet Elbay
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakıf University , Istanbul , Turkey
| | - Çilem Ercan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Huri Bulut
- Department of Biochemistry, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Hakan Ozdemir
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakıf University , Istanbul , Turkey
| |
Collapse
|
37
|
Advances in exosomes technology. Clin Chim Acta 2019; 493:14-19. [DOI: 10.1016/j.cca.2019.02.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
|
38
|
Vall-Palomar M, Arévalo J, Ariceta G, Meseguer A. Establishment of urinary exosome-like vesicles isolation protocol for FHHNC patients and evaluation of different exosomal RNA extraction methods. J Transl Med 2018; 16:278. [PMID: 30305086 PMCID: PMC6180391 DOI: 10.1186/s12967-018-1651-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Molecular and cellular pathophysiological events occurring in the majority of rare kidney diseases remain to be elucidated. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare autosomal recessive disorder caused by mutations in either CLDN16 or CLDN19 genes. This disease is characterized by massive urinary wasting of magnesium and calcium, osmosis deregulation and polyuria. Patients with p.G20D homozygous mutation in CLDN19 gene exhibit different progression to kidney failure suggesting that beyond the pathogenic mutation itself, other molecular events are favoring disease progression. Due to the fact that biopsy is not clinically indicated in these patients, urinary exosome-like vesicles (uEVs) can be envisioned as a valuable non-invasive source of information of events occurring in the kidney. Exosome research has increased notably to identify novel disease biomarkers but there is no consensus standardized protocols for uEVs isolation in patients with polyuria. For this reason, this work was aimed to evaluate and refine different uEVs isolation methods based on differential centrifugation, the gold standard method. RESULTS Characterization by NTA, cryo-TEM and immunoblotting techniques identified the most appropriate protocol to obtain the highest yield and purest uEVs enriched fraction possible from urine control samples and FHHNC patients. Moreover, we tested five different RNA extraction methods and evaluated the miRNA expression pattern by qRT-PCR. CONCLUSIONS In summary, we have standardized the conditions to proceed with the identification of differentially expressed miRNAs in uEVs of FHHNC patients, or other renal diseases characterized by polyuria.
Collapse
Affiliation(s)
- M. Vall-Palomar
- Fisiopatologia Renal, Centre d’Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d’Hebron (VHIR), Barcelona, Spain
| | - J. Arévalo
- Fisiopatologia Renal, Centre d’Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d’Hebron (VHIR), Barcelona, Spain
| | - G. Ariceta
- Fisiopatologia Renal, Centre d’Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d’Hebron (VHIR), Barcelona, Spain
- Nefrologia Pediàtrica, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - A. Meseguer
- Fisiopatologia Renal, Centre d’Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d’Hebron (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
39
|
Wu X, Li L, Iliuk A, Tao WA. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. J Proteome Res 2018; 17:3308-3316. [PMID: 30080416 PMCID: PMC7236337 DOI: 10.1021/acs.jproteome.8b00459] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Analysis of protein phosphorylation in extracellular vesicles (EVs) offers an unprecedented potential for understanding cancer signaling and early stage disease diagnosis. However, prior to the phosphoproteome analysis step, the isolation of EVs from biofluids remains a challenging issue to overcome due to the low yield and impurity from current isolation methods. Here, we carry out an extensive assessment of several EV isolation methods including a novel rapid isolation method EVTRAP for highly efficient capture of extracellular vesicles from human urine sample. We demonstrate that over 95% recovery yield can be consistently achieved by EVTRAP, a significant improvement over current standard techniques. We then applied EVTRAP to identify over 16 000 unique peptides representing 2000 unique EV proteins from 200 μL urine sample, including all known EV markers with substantially increased recovery levels over ultracentrifugation. Most importantly, close to 2000 unique phosphopeptides were identified from more than 860 unique phosphoproteins using 10 mL of urine. The data demonstrated that EVTRAP is a highly effective and potentially widely implementable clinical isolation method for analysis of EV protein phosphorylation.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| |
Collapse
|
40
|
Malla B, Aebersold DM, Dal Pra A. Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy. J Transl Med 2018; 16:223. [PMID: 30103771 PMCID: PMC6090775 DOI: 10.1186/s12967-018-1592-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating exosomes from prostate cancer (PCa) patients undergoing radiotherapy are attractive candidate biomarkers for monitoring treatment response. Multiple workflows for isolation and content characterization of exosomes in biofluids have been attempted. We report a protocol to isolate and characterize exosomal miRNAs content and assess radiation-induced changes. METHODS In this pilot study, we performed targeted exosomal miRNA profiling of 25 serum samples obtained from PCa patients with intermediate- and high-risk disease treated with curative radiotherapy (RT), and controls. Post-treatment blood samples were collected at least 28 days after radiation therapy as a paired follow-up sample. The complete workflow consisted of two phases: I) filtration and polyethylene glycol salt precipitation phase which enriched particles below 200 nm in size followed by characterization using electron microscopy, and II) flow cytometry. Finally, miRNA expression analysis between untreated and treated patient samples was performed using RNA extraction kit, and qRT-PCR. RESULTS In our preliminary data, 1 ml of serum from PCa patients showed higher exosomal concentration (3.68E+10) compared to controls (6.07E+08). The overall expression of exosomes after RT was found to be higher compared to untreated samples; the median value changed from 3.68E+10 to 5.40E+10; p = 0.52. Using electron microscopy, we were able to visualize cup-shaped vesicles with morphology and size compatible with exosomes. The bead-based flow cytometry showed positivity for exosomal tetraspanins surface markers CD63 and CD9. All five miRNAs (hsa-let-7a-5p, hsa-miR-141-3p, hsa-miR-145-5p, hsa-miR-21-5p, hsa-miR-99b-5p) have been identified in exosomes. Despite overall changes in hsa-let-7a-5p expression after radiation, the difference was significant only in the high-risk group (p = 0.037). In addition, the radiation response to hsa-miR-21-5p was elevated in the high-risk group compared to the intermediate group (p = 0.036). CONCLUSIONS Herewith, we demonstrated a protocol for isolation of serum exosomes and exosomal miRNA amplification. The recovery of exosomal miRNAs and their differential expression after radiation treatment suggests promising biomarker potential that requires further investigation in larger patient cohorts.
Collapse
Affiliation(s)
- Bijaya Malla
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alan Dal Pra
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
41
|
Buschmann D, Kirchner B, Hermann S, Märte M, Wurmser C, Brandes F, Kotschote S, Bonin M, Steinlein OK, Pfaffl MW, Schelling G, Reithmair M. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 2018; 7:1481321. [PMID: 29887978 PMCID: PMC5990937 DOI: 10.1080/20013078.2018.1481321] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are intercellular communicators with key functions in physiological and pathological processes and have recently garnered interest because of their diagnostic and therapeutic potential. The past decade has brought about the development and commercialization of a wide array of methods to isolate EVs from serum. Which subpopulations of EVs are captured strongly depends on the isolation method, which in turn determines how suitable resulting samples are for various downstream applications. To help clinicians and scientists choose the most appropriate approach for their experiments, isolation methods need to be comparatively characterized. Few attempts have been made to comprehensively analyse vesicular microRNAs (miRNAs) in patient biofluids for biomarker studies. To address this discrepancy, we set out to benchmark the performance of several isolation principles for serum EVs in healthy individuals and critically ill patients. Here, we compared five different methods of EV isolation in combination with two RNA extraction methods regarding their suitability for biomarker discovery-focused miRNA sequencing as well as biological characteristics of captured vesicles. Our findings reveal striking method-specific differences in both the properties of isolated vesicles and the ability of associated miRNAs to serve in biomarker research. While isolation by precipitation and membrane affinity was highly suitable for miRNA-based biomarker discovery, methods based on size-exclusion chromatography failed to separate patients from healthy volunteers. Isolated vesicles differed in size, quantity, purity and composition, indicating that each method captured distinctive populations of EVs as well as additional contaminants. Even though the focus of this work was on transcriptomic profiling of EV-miRNAs, our insights also apply to additional areas of research. We provide guidance for navigating the multitude of EV isolation methods available today and help researchers and clinicians make an informed choice about which strategy to use for experiments involving critically ill patients.
Collapse
Affiliation(s)
- Dominik Buschmann
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany.,Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Stefanie Hermann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Melanie Märte
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Wurmser
- Chair of Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Ortrud K Steinlein
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
42
|
Tadimety A, Closson A, Li C, Yi S, Shen T, Zhang JXJ. Advances in liquid biopsy on-chip for cancer management: Technologies, biomarkers, and clinical analysis. Crit Rev Clin Lab Sci 2018; 55:140-162. [PMID: 29388456 PMCID: PMC6101655 DOI: 10.1080/10408363.2018.1425976] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liquid biopsy, as a minimally invasive method of gleaning insight into the dynamics of diseases through a patient fluid sample, has been growing in popularity for cancer diagnosis, prognosis, and monitoring. While many technologies have been developed and validated in research laboratories, there has also been a push to expand these technologies into other clinical settings and as point of care devices. In this article, we discuss and evaluate microchip-based technologies for circulating tumor cell (CTC), exosome, and circulating tumor nucleic acid (ctNA) capture, detection, and analysis. Such integrated systems streamline otherwise multiple-step, manual operations to get a sample-to-answer quantitation. In addition, analysis of disease biomarkers is suited to point of care settings because of ease of use, low consumption of sample and reagents, and high throughput. We also cover the basics of biomarkers and their detection in biological fluid samples suitable for liquid biopsy on-chip. We focus on emerging technologies that process a small patient sample with high spatial-temporal resolution and derive clinically meaningful results through on-chip biomarker sensing and downstream molecular analysis in a simple workflow. This critical review is meant as a resource for those interested in developing technologies for capture, detection, and analysis platforms for liquid biopsy in a variety of settings.
Collapse
Affiliation(s)
- Amogha Tadimety
- a Thayer School of Engineering , Dartmouth College , Hanover , NH , USA
| | - Andrew Closson
- a Thayer School of Engineering , Dartmouth College , Hanover , NH , USA
| | - Cathy Li
- a Thayer School of Engineering , Dartmouth College , Hanover , NH , USA
| | - Song Yi
- b Nanolite Systems , Austin , TX , USA
| | - Ting Shen
- b Nanolite Systems , Austin , TX , USA
| | - John X J Zhang
- a Thayer School of Engineering , Dartmouth College , Hanover , NH , USA
- c Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| |
Collapse
|
43
|
Lovo-Martins MI, Malvezi AD, Zanluqui NG, Lucchetti BFC, Tatakihara VLH, Mörking PA, de Oliveira AG, Goldenberg S, Wowk PF, Pinge-Filho P. Extracellular Vesicles Shed By Trypanosoma cruzi Potentiate Infection and Elicit Lipid Body Formation and PGE 2 Production in Murine Macrophages. Front Immunol 2018; 9:896. [PMID: 29755471 PMCID: PMC5934475 DOI: 10.3389/fimmu.2018.00896] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
During the onset of Trypanosoma cruzi infection, an effective immune response is necessary to control parasite replication and ensure host survival. Macrophages have a central role in innate immunity, acting as an important trypanocidal cell and triggering the adaptive immune response through antigen presentation and cytokine production. However, T. cruzi displays immune evasion mechanisms that allow infection and replication in macrophages, favoring its chronic persistence. One potential mechanism is the release of T. cruzi strain Y extracellular vesicle (EV Y), which participate in intracellular communication by carrying functional molecules that signal host cells and can modulate the immune response. The present work aimed to evaluate immune modulation by EV Y in C57BL/6 mice, a prototype resistant to infection by T. cruzi strain Y, and the effects of direct EV Y stimulation of macrophages in vitro. EV Y inoculation in mice prior to T. cruzi infection resulted in increased parasitemia, elevated cardiac parasitism, decreased plasma nitric oxide (NO), reduced NO production by spleen cells, and modulation of cytokine production, with a reduction in TNF-α in plasma and decreased production of TNF-α and IL-6 by spleen cells from infected animals. In vitro assays using bone marrow-derived macrophages showed that stimulation with EV Y prior to infection by T. cruzi increased the parasite internalization rate and release of infective trypomastigotes by these cells. In this same scenario, EV Y induced lipid body formation and prostaglandin E2 (PGE2) production by macrophages even in the absence of T. cruzi. In infected macrophages, EV Y decreased production of PGE2 and cytokines TNF-α and IL-6 24 h after infection. These results suggest that EV Y modulates the host response in favor of the parasite and indicates a role for lipid bodies and PGE2 in immune modulation exerted by EVs.
Collapse
Affiliation(s)
- Maria Isabel Lovo-Martins
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aparecida Donizette Malvezi
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Bruno Fernando Cruz Lucchetti
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Admilton Gonçalves de Oliveira
- Laboratório de Microscopia Eletrônica e Microanálises, Central de Laboratórios de Pesquisa Multiusuários, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
44
|
Armstrong EA, Beal EW, Chakedis J, Paredes AZ, Moris D, Pawlik TM, Schmidt CR, Dillhoff ME. Exosomes in Pancreatic Cancer: from Early Detection to Treatment. J Gastrointest Surg 2018; 22:737-750. [PMID: 29423813 DOI: 10.1007/s11605-018-3693-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) remains one of the most fatal forms of cancer worldwide with incidence nearly equal to mortality. This is often attributed to the fact that diagnosis is often not made until later disease stages when treatment proves difficult. Efforts have been made to reduce the mortality of PC through improvements in early screening techniques and treatments of late-stage disease. Exosomes, small extracellular vesicles involved in cellular communication, have shown promise in helping understand PC disease biology. METHODS In this review, we discuss current studies of the role of exosomes in PC physiology, and their potential use as diagnostic and treatment tools. RESULTS Exosomes have a role in diagnosing pancreatic cancer and in understanding tumor biology including migration, proliferation, chemoresistance, immunosuppression, cachexia and diabetes, and have a potential role in therapy for pancreatic cancer. CONCLUSIONS Exosomal analysis is beneficial in demonstrating mechanisms behind PC growth and metastasis, immunosuppression, drug resistance, and paraneoplastic conditions. Furthermore, the use of exosomes can be beneficial in detecting early-stage PC and exosomes have potential applications as therapeutic targets.
Collapse
Affiliation(s)
- Emily A Armstrong
- The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Eliza W Beal
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA.
| | - Jeffery Chakedis
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Anghela Z Paredes
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Carl R Schmidt
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Mary E Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| |
Collapse
|
45
|
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic Potential of Engineered Extracellular Vesicles. AAPS JOURNAL 2018; 20:50. [PMID: 29546642 PMCID: PMC8299397 DOI: 10.1208/s12248-018-0211-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) comprise a heterogeneous group of small membrane vesicles, including exosomes, which play a critical role in intracellular communication and regulation of numerous physiological processes in health and disease. Naturally released from virtually all cells, these vesicles contain an array of nucleic acids, lipids and proteins which they transfer to target cells within their local milieu and systemically. They have been proposed as a means of “cell-free, cell therapy” for cancer, immune disorders, and more recently cardiovascular disease. In addition, their unique properties of stability, biocompatibility, and low immunogenicity have prompted research into their potential as therapeutic delivery agents for drugs and small molecules. In this review, we aim to provide a comprehensive overview of the current understanding of extracellular vesicle biology as well as engineering strategies in play to improve their therapeutic potential.
Collapse
Affiliation(s)
- Kyle I Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jonathan D Snitzer
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Sarah Rusnak
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jennifer K Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
46
|
Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes released from different cell types and their effects in wound healing. J Cell Biochem 2018; 119:5043-5052. [DOI: 10.1002/jcb.26706] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ali Golchin
- Department of Tissue engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
47
|
Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget 2018; 7:60736-60751. [PMID: 27517627 PMCID: PMC5312416 DOI: 10.18632/oncotarget.11177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm. They can be secreted by all cell types and transfer information in the form of their contents, which include proteins, lipids and nucleic acids, to other cells throughout the body. They have roles in normal physiological processes as well as in disease development. Here, we review recent findings regarding tumor-derived exosomes, including methods for their extraction and preservation. We also describe the actions of exosomes in tumorigenesis. The exosomal antigen-presenting effect during antitumor immune responses and its suppressive function in immune tolerance are discussed. Finally, we describe the potential application of exosomes to cancer therapy and liquid biopsy.
Collapse
Affiliation(s)
- Yingkuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanwei Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuewen Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Xu H, Gong Z, Shen Y, Fang Y, Zhong S. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 2018; 10:187-197. [PMID: 29334253 DOI: 10.2217/epi-2017-0109] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM We aimed to explore the roles of circular RNAs (circRNAs) in extracellular vesicles (EVs) isolated from serum of patients with endometrial cancer. MATERIALS & METHODS EVs were isolated from serum samples of three patients with stage III adenocarcinoma aged 50-60 years and three matched healthy controls. RNA was extracted from the EVs and analyzed using RNA-seq technique. RESULTS We got 209 upregulated circRNAs and 66 downregulated circRNAs. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the differentially expressed circRNAs were enriched in five pathways. The expression level of hsa_circ_0109046 and hsa_circ_0002577 was confirmed using real-time quantitative PCR. CONCLUSION We identified 275 differentially expressed circRNAs and the expression level of two circRNAs was confirmed using real-time quantitative PCR.
Collapse
Affiliation(s)
- Hanzi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Zhen Gong
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Yang Shen
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Yichen Fang
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| |
Collapse
|
49
|
Souza AG, B. Silva IB, Campos-Fernández E, Marangoni K, F. Bastos VA, Alves PT, Goulart LR, Alonso-Goulart V. Extracellular vesicles as drivers of epithelial-mesenchymal transition and carcinogenic characteristics in normal prostate cells. Mol Carcinog 2018; 57:503-511. [DOI: 10.1002/mc.22775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Aline G. Souza
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Isaura Beatriz B. Silva
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Esther Campos-Fernández
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Karina Marangoni
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Victor A. F. Bastos
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Patrícia T. Alves
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| | - Luiz R. Goulart
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
- Department of Medical Microbiology and Immunology; University of California-Davis; Davis California
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology; Institute of Biotechnology; Federal University of Uberlândia; MG Brazil
| |
Collapse
|
50
|
Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, Neelakanta G, Sultana H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog 2018; 14:e1006764. [PMID: 29300779 PMCID: PMC5754134 DOI: 10.1371/journal.ppat.1006764] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis.
Collapse
MESH Headings
- Animals
- Arthropod Vectors/cytology
- Arthropod Vectors/ultrastructure
- Arthropod Vectors/virology
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/pathology
- Cerebral Cortex/ultrastructure
- Cerebral Cortex/virology
- Chlorocebus aethiops
- Coculture Techniques
- Cryoelectron Microscopy
- Embryo, Mammalian/cytology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/transmission
- Encephalitis, Tick-Borne/virology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Exosomes/ultrastructure
- Exosomes/virology
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Ixodes/cytology
- Ixodes/ultrastructure
- Ixodes/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/ultrastructure
- Keratinocytes/virology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Neurons/cytology
- Neurons/pathology
- Neurons/ultrastructure
- Neurons/virology
- RNA, Viral/metabolism
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Michael Woodson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Biswas Neupane
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|