1
|
Tukanov E, Van Loo D, Dieltjens M, Verbraecken J, Vanderveken OM, Op de Beeck S. Baseline Characteristics Associated with Hypoglossal Nerve Stimulation Treatment Outcomes in Patients with Obstructive Sleep Apnea: A Systematic Review. Life (Basel) 2024; 14:1129. [PMID: 39337912 PMCID: PMC11433192 DOI: 10.3390/life14091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Hypoglossal nerve stimulation (HGNS) has emerged as an effective treatment for obstructive sleep apnea (OSA). Identifying baseline characteristics that prospectively could predict treatment outcomes even better is crucial for optimizing patient selection and improving therapeutic success in the future. A systematic review was conducted following PRISMA guidelines. Literature searches in Medline, Web of Science, and Cochrane databases identified studies assessing baseline characteristics associated with HGNS treatment outcomes. Inclusion criteria focused on studies with adult patients diagnosed with OSA, treated with HGNS, and assessed using full-night efficacy sleep studies. Risk of bias was evaluated using the NICE tool. Twenty-six studies met the inclusion criteria. Commonly reported baseline characteristics with predictive potential included BMI, site of collapse, and various pathophysiological endotypes. Most studies used the original Sher criteria to define treatment response, though variations were noted. Results suggested that lower BMI, absence of complete concentric collapse at the palatal level, and specific pathophysiological traits were associated with better HGNS outcomes. This review identified several baseline characteristics associated with HGNS outcomes, which may guide future patient selection. Importantly, patients were already preselected for HGNS. Standardizing response criteria is recommended to enhance the evaluation and effectiveness of HGNS therapy in OSA patients.
Collapse
Affiliation(s)
- Eldar Tukanov
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of ENT, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Dorine Van Loo
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of ENT, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Marijke Dieltjens
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of ENT, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Johan Verbraecken
- Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, 2650 Edegem, Belgium;
- Research Group LEMP, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Olivier M. Vanderveken
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of ENT, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium
- Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Sara Op de Beeck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of ENT, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Choi AM, Brenner MJ, Gorelik D, Erbele ID, Crowson MG, Kadkade P, Takashima M, Santa Maria PL, Hong RS, Rose AS, Ostrander BT, Rabbani CC, Morrison RJ, Weissbrod PA, Tate AD, Kain JJ, Lina IA, Shaffer SR, Ahmed OG. New Medical Device and Therapeutic Approvals in Otolaryngology: State of the Art Review of 2021. OTO Open 2022; 6:2473974X221126495. [PMID: 36171808 PMCID: PMC9511340 DOI: 10.1177/2473974x221126495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate new medical devices and drugs pertinent to otolaryngology–head and neck surgery that were approved by the Food and Drug Administration (FDA) in 2021. Data Sources Publicly available FDA device and drug approvals from ENT (ear, nose, and throat), anesthesia, neurosurgery, plastic surgery, and general surgery FDA committees. Review Methods FDA device and therapeutic approvals were identified and reviewed by members of the American Academy of Otolaryngology–Head and Neck Surgery’s Medical Devices and Drugs Committee. Two independent reviewers assessed the relevance of devices and drugs to otolaryngologists. Medical devices and drugs were then allocated to their respective subspecialty fields for critical review based on available scientific literature. Conclusions The Medical Devices and Drugs Committee reviewed 1153 devices and 52 novel drugs that received FDA approval in 2021 (67 ENT, 106 anesthesia, 618 general surgery and plastic surgery, 362 neurosurgery). Twenty-three devices and 1 therapeutic agent relevant to otolaryngology were included in the state of the art review. Advances spanned all subspecialties, including over-the-counter hearing aid options in otology, expanding treatment options for rhinitis in rhinology, innovative laser-safe endotracheal tubes in laryngology, novel facial rejuvenation and implant technology in facial plastic surgery, and advances in noninvasive and surgical treatment options for obstructive sleep apnea. Implications for Practice FDA approvals for new technology and pharmaceuticals present new opportunities across subspecialties in otolaryngology. Clinicians’ nuanced understanding of the safety, advantages, and limitations of these innovations ensures ongoing progress in patient care.
Collapse
Affiliation(s)
- Alexander M. Choi
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J. Brenner
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel Gorelik
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Isaac D. Erbele
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Matthew G. Crowson
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Prajoy Kadkade
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, North Shore University Hospital, Sunnyside, New York, USA
| | - Masayoshi Takashima
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Peter L. Santa Maria
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Palo Alto, California, USA
| | - Robert S. Hong
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Wayne State University, Detroit, Michigan, USA
- Michigan Ear Institute, Farmington Hills, Michigan, USA
| | - Austin S. Rose
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Benjamin T. Ostrander
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Cyrus C. Rabbani
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | - Robert J. Morrison
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip A. Weissbrod
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Alan D. Tate
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Joshua J. Kain
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Ioan A. Lina
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Scott R. Shaffer
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Marlton, New Jersey, USA
| | - Omar G. Ahmed
- Medical Devices and Drugs Committee, American Academy of Otolaryngology–Head and Neck Surgery, Alexandria, Virginia, USA
- Department of Otolaryngology–Head and Neck Surgery, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Ricci A, Calhoun SL, He F, Fang J, Vgontzas AN, Liao D, Bixler EO, Younes M, Fernandez-Mendoza J. Association of a novel EEG metric of sleep depth/intensity with attention-deficit/hyperactivity, learning, and internalizing disorders and their pharmacotherapy in adolescence. Sleep 2022; 45:zsab287. [PMID: 34888687 PMCID: PMC8919202 DOI: 10.1093/sleep/zsab287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Psychiatric/learning disorders are associated with sleep disturbances, including those arising from abnormal cortical activity. The odds ratio product (ORP) is a standardized electroencephalogram metric of sleep depth/intensity validated in adults, while ORP data in youth are lacking. We tested ORP as a measure of sleep depth/intensity in adolescents with and without psychiatric/learning disorders. METHODS Four hundred eighteen adolescents (median 16 years) underwent a 9-hour, in-lab polysomnography. Of them, 263 were typically developing (TD), 89 were unmedicated, and 66 were medicated for disorders including attention-deficit/hyperactivity (ADHD), learning (LD), and internalizing (ID). Central ORP during non-rapid eye movement (NREM) sleep was the primary outcome. Secondary/exploratory outcomes included central and frontal ORP during NREM stages, in the 9-seconds following arousals (ORP-9), in the first and second halves of the night, during REM sleep and wakefulness. RESULTS Unmedicated youth with ADHD/LD had greater central ORP than TD during stage 3 and in central and frontal regions during stage 2 and the second half of the sleep period, while ORP in youth with ADHD/LD on stimulants did not significantly differ from TD. Unmedicated youth with ID did not significantly differ from TD in ORP, while youth with ID on antidepressants had greater central and frontal ORP than TD during NREM and REM sleep, and higher ORP-9. CONCLUSIONS The greater ORP in unmedicated youth with ADHD/LD, and normalized levels in those on stimulants, suggests ORP is a useful metric of decreased NREM sleep depth/intensity in ADHD/LD. Antidepressants are associated with greater ORP/ORP-9, suggesting these medications induce cortical arousability.
Collapse
Affiliation(s)
- Anna Ricci
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| | - Susan L Calhoun
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| | - Fan He
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Jidong Fang
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| | - Duanping Liao
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| | - Magdy Younes
- Sleep Disorders Centre, Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA,USA
| |
Collapse
|
5
|
Pépin JL, Eastwood P, Eckert DJ. Novel avenues to approach non-CPAP therapy and implement comprehensive OSA care. Eur Respir J 2021; 59:13993003.01788-2021. [PMID: 34824053 DOI: 10.1183/13993003.01788-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Recent advances in obstructive sleep apnoea (OSA) pathophysiology and translational research have opened new lines of investigation for OSA treatment and management. Key goals of such investigations are to provide efficacious, alternative treatment and management pathways that are better tailored to individual risk profiles to move beyond the traditional, continuous positive airway pressure (CPAP)-focused, "one size fits all", trial and error approach which is too frequently inadequate for many patients. Identification of different clinical manifestations of OSA (clinical phenotypes) and underlying pathophysiological phenotypes (endotypes), that contribute to OSA have provided novel insights into underlying mechanisms and have underpinned these efforts. Indeed, this new knowledge has provided the framework for precision medicine for OSA to improve treatment success rates with existing non-CPAP therapies such as mandibular advancement devices and upper airway surgery, and newly developed therapies such as hypoglossal nerve stimulation and emerging therapies such as pharmacotherapies and combination therapy. These concepts have also provided insight into potential physiological barriers to CPAP adherence for certain patients. This review summarises the recent advances in OSA pathogenesis, non-CPAP treatment, clinical management approaches and highlights knowledge gaps for future research. OSA endotyping and clinical phenotyping, risk stratification and personalised treatment allocation approaches are rapidly evolving and will further benefit from the support of recent advances in e-health and artificial intelligence.
Collapse
Affiliation(s)
- Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, University Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Peter Eastwood
- Flinders Health and Medical Research Institute and Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Danny J Eckert
- Flinders Health and Medical Research Institute and Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Younes M, Azarbarzin A, Reid M, Mazzotti DR, Redline S. Characteristics and reproducibility of novel sleep EEG biomarkers and their variation with sleep apnea and insomnia in a large community-based cohort. Sleep 2021; 44:zsab145. [PMID: 34156473 PMCID: PMC8503837 DOI: 10.1093/sleep/zsab145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/25/2021] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES New electroencephalogram (EEG) features became available for use in polysomnography and have shown promise in early studies. They include a continuous index of sleep depth (odds-ratio-product: ORP), agreement between right and left sleep depth (R/L coefficient), dynamics of sleep recovery following arousals (ORP-9), general EEG amplification (EEG Power), alpha intrusion and arousal intensity. This study was undertaken to establish ranges and reproducibility of these features in subjects with different demographics and clinical status. METHODS We utilized data from the two phases of the Sleep-Heart-Health-Study (SHHS1 and SHHS2). Polysomnograms of 5,804 subjects from SHHS1 were scored to determine the above features. Feature values were segregated according to clinical status of obstructive sleep apnea (OSA), insomnia, insomnia plus OSA, no clinical sleep disorder, and demographics (age, gender, and race). Results from SHHS visit2 were compared with SHHS1 results. RESULTS All features varied widely among clinical groups and demographics. Relative to participants with no sleep disorder, wake ORP was higher in participants reporting insomnia symptoms and lower in those with OSA (p < 0.0001 for both), reflecting opposite changes in sleep pressure, while NREM ORP was higher in both insomnia and OSA (p<0.0001), reflecting lighter sleep in both groups. There were significant associations with age, gender, and race. EEG Power, and REM ORP were highly reproducible across the two studies (ICC > 0.75). CONCLUSIONS The reported results serve as bases for interpreting studies that utilize novel sleep EEG biomarkers and identify characteristic EEG changes that vary with age, gender and may help distinguish insomnia from OSA.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Disorders Centre, Misericordia Health Centre, University of Manitoba, Winnipeg, Canada
| | - Ali Azarbarzin
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle Reid
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Diego R Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|