1
|
Lester AB, Buckingham G, Bond B. The effects of partial sleep restriction and subsequent caffeine ingestion on neurovascular coupling. J Sleep Res 2024; 33:e14145. [PMID: 38228309 DOI: 10.1111/jsr.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
Habitual poor sleep is associated with cerebrovascular disease. Acute sleep deprivation alters the ability to match brain blood flow to metabolism (neurovascular coupling [NVC]) but it is not known how partial sleep restriction affects NVC. When rested, caffeine disrupts NVC, but its effects in the sleep-restricted state are unknown. The purpose of this study was therefore to investigate the effects of partial sleep restriction and subsequent caffeine ingestion on NVC. A total of 17 adults (mean [standard deviation] age 27 [5] years, nine females) completed three separate overnight conditions with morning supplementation: habitual sleep plus placebo (Norm_Pl), habitual sleep plus caffeine (Norm_Caf), and partial (50% habitual sleep) restriction plus caffeine (PSR_Caf). NVC responses were quantified as blood velocity through the posterior (PCAv) and middle (MCAv) cerebral arteries using transcranial Doppler ultrasound during a visual search task and cognitive function tests, respectively. NVC was assessed the evening before and twice the morning after each sleep condition-before and 1-h after caffeine ingestion. NVC responses as a percentage increase in PCAv and MCAv from resting baseline were not different at any timepoint, across all conditions (p > 0.053). MCAv at baseline, and PCAv at baseline, peak, and total area under the curve were lower 1-h after caffeine in both Norm_Caf and PSR_Caf as compared to Norm_Pl (p < 0.05), with no difference between Norm_Caf and PSR_Caf (p > 0.14). In conclusion, NVC was unaltered after 50% sleep loss, and caffeine did not modify the magnitude of the response in the rested or sleep-deprived state. Future research should explore how habitual poor sleep affects cerebrovascular function.
Collapse
Affiliation(s)
- Alice B Lester
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| | - Gavin Buckingham
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Wüst LN, Capdevila NC, Lane LT, Reichert CF, Lasauskaite R. Impact of one night of sleep restriction on sleepiness and cognitive function: A systematic review and meta-analysis. Sleep Med Rev 2024; 76:101940. [PMID: 38759474 DOI: 10.1016/j.smrv.2024.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Detrimental consequences of chronic sleep restriction on cognitive function are well established in the literature. However, effects of a single night of sleep restriction remain equivocal. Therefore, we synthesized data from 44 studies to investigate effects of sleep restriction to 2-6 h sleep opportunity on sleepiness and cognition in this meta-analysis. We investigated subjective sleepiness, sustained attention, choice reaction time, cognitive throughput, working memory, and inhibitory control. Results revealed a significant increase in subjective sleepiness following one night of sleep restriction (Standardized Mean Difference (SMD) = 0.986, p < 0.001), while subjective sleepiness was not associated with sleep duration during sleep restriction (β = -0.214, p = 0.039, significance level 0.01). Sustained attention, assessed via common 10-min tasks, was impaired, as demonstrated through increased reaction times (SMD = 0.512, p < 0.001) and attentional lapses (SMD = 0.489, p < 0.001). However, the degree of impaired attention was not associated with sleep duration (ps > 0.090). We did not find significant effects on choice reaction time, cognitive throughput, working memory, or inhibitory control. Overall, results suggest that a single night of restricted sleep can increase subjective sleepiness and impair sustained attention, a cognitive function crucial for everyday tasks such as driving.
Collapse
Affiliation(s)
- Larissa N Wüst
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Noëmi C Capdevila
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Lina T Lane
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Ruta Lasauskaite
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Lin YS, Lange D, Baur DM, Foerges A, Chu C, Li C, Elmenhorst EM, Neumaier B, Bauer A, Aeschbach D, Landolt HP, Elmenhorst D. Repeated caffeine intake suppresses cerebral grey matter responses to chronic sleep restriction in an A 1 adenosine receptor-dependent manner: a double-blind randomized controlled study with PET-MRI. Sci Rep 2024; 14:12724. [PMID: 38830861 PMCID: PMC11148136 DOI: 10.1038/s41598-024-61421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Wilhelm Kleinstr. 27, 4002, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Athinoula. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachussetts General Hospital, Harvard Medical School, Boston, USA.
| | - Denise Lange
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Diego Manuel Baur
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Anna Foerges
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, Aachen, Germany
| | - Congying Chu
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Occupational, Social, and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, INM-5, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Daniel Aeschbach
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany.
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Ivanov I, Miraglia B, Prodanova D, Newcorn JH. Sleep Disordered Breathing and Risk for ADHD: Review of Supportive Evidence and Proposed Underlying Mechanisms. J Atten Disord 2024; 28:686-698. [PMID: 38353411 DOI: 10.1177/10870547241232313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Accumulating evidence suggests that sleep disordered breathing (SDB) is under-recognized in youth and adults with ADHD. SDB may contribute to exacerbating pre-existing ADHD symptoms and may play a role in the development of cognitive deficits that may mimic ADHD symptoms. METHOD We conducted a focused review of publications on cross-prevalence, overlapping clinical and neurobiological characteristics and possible mechanisms linking SDB and ADHD. RESULTS Exiting studies suggest that co-occurrence of SDB and ADHD is as high as 50%, with frequent overlap of clinical symptoms such as distractibility and inattention. Mechanisms linking these conditions may include hypoxia during sleep, sleep fragmentation and activation of inflammation, all of which may affect brain structure and physiology to produce disturbances in attention. CONCLUSIONS The relationship between SDB and ADHD symptoms appear well-supported and suggests that more research is needed to better optimize procedures for SDB assessment in youth being evaluated and/or treated for ADHD.
Collapse
|
5
|
Stee W, Legouhy A, Guerreri M, Villemonteix T, Zhang H, Peigneux P. Microstructural dynamics of motor learning and sleep-dependent consolidation: A diffusion imaging study. iScience 2023; 26:108426. [PMID: 38058306 PMCID: PMC10696465 DOI: 10.1016/j.isci.2023.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics. Sixty-one young healthy adults underwent four DWI sessions, two sequential motor trainings, and a night of total sleep deprivation or regular sleep distributed over five days. We observed rapid-motor-learning-related remodeling in occipitoparietal, temporal, and motor-related subcortical regions, reflecting temporary dynamics in learning-related neuronal brain plasticity processes. Sleep-related consolidation seems not to exert a detectable impact on diffusion parameters, at least on the timescale of a few days.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| | - Antoine Legouhy
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Michele Guerreri
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Thomas Villemonteix
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire Psychopathologie et Processus de Changement, Paris-Lumières University, Saint-Denis, France
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
6
|
Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: a brief narrative review of its importance, opportunities, and risks. ERGONOMICS 2023; 66:2242-2254. [PMID: 36946542 DOI: 10.1080/00140139.2023.2194592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Military pilots risk their lives during training and operations. Advancements in aerospace engineering, flight profiles, and mission demands may require the pilot to test the safe limits of their physiology. Monitoring pilot physiology (e.g. heart rate, oximetry, and respiration) inflight is in consideration by several nations to inform pilots of reduced performance capacity and guide future developments in aircraft and life-support system design. Numerous challenges, however, prevent the immediate operationalisation of physiological monitoring sensors, particularly their unreliability in the aerospace environment and incompatibility with pilot clothing and protective equipment. Human performance and behaviour are also highly variable and measuring these in controlled laboratory settings do not mirror the real-world conditions pilots must endure. Misleading or erroneous predictive models are unacceptable as these could compromise mission success and lose operator trust. This narrative review provides an overview of considerations for integrating physiological monitoring systems within the military aviation environment.Practitioner summary: Advancements in military technology can conflictingly enhance and compromise pilot safety and performance. We summarise some of the opportunities, limitations, and risks of integrating physiological monitoring systems within military aviation. Our intent is to catalyse further research and technological development.Abbreviations: AGS: anti-gravity suit; AGSM: anti-gravity straining manoeuvre; A-LOC: almost loss of consciousness; CBF: cerebral blood flow; ECG: electrocardiogram; EEG: electroencephalogram; fNIRS: functional near-infrared spectroscopy; G-forces: gravitational forces; G-LOC: gravity-induced loss of consciousness; HR: heart rate; HRV: heart rate variability; LSS: life-support system; NATO: North Atlantic Treaty Organisation; PE: Physiological Episode; PCO2: partial pressure of carbon dioxide; PO2: partial pressure of oxygen; OBOGS: on board oxygen generating systems; SpO2: peripheral blood haemoglobin-oxygen saturation; STANAG: North Atlantic Treaty Organisation Standardisation Agreement; UPE: Unexplained Physiological Episode; WBV: whole body vibration.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| |
Collapse
|
7
|
Liu Y, Yuan F, Peng Z, Zhan Y, Lin J, Zhang R, Zhang J. Decrease in Cerebral Blood Flow after Reoxygenation Is Associated with Neurological Syndrome Sequelae and Blood Pressure. Brain Sci 2023; 13:1600. [PMID: 38002559 PMCID: PMC10669967 DOI: 10.3390/brainsci13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Changes in cerebral blood flow (CBF) and regulation of cerebral circulation occur at high altitude (HA). However, the changes in CBF and their associations with neurological syndrome sequelae and blood pressure after subjects return to the lowlands remain unclear. In this study, the subjects were 23 college students who were teaching at an altitude of 4300 m for 30 days. These subjects were studied before reaching the HA (Test 1), one week after returning to the lowlands (Test 2), and three months after returning to the lowlands (Test 3). Symptom scores for de-acclimatization syndrome were evaluated. Changes in CBF were measured using the magnetic resonance imaging arterial spin labeling (ASL) technique. Additionally, the velocity of CBF in the cerebral arteries was measured using a transcranial doppler (TCD). In Test 2 vs. Test 1, the peak systolic velocity and mean velocity in the basilar artery were significantly decreased. CBF exhibited significant decreases in the left putamen/cerebellum crus1/vermis and right thalamus/inferior temporal gyrus, while significant increases were observed in the left postcentral gyrus/precuneus and right middle cingulate gyrus/superior frontal gyrus. In Test 3 vs. Test 1, the basilar artery velocity returned to the baseline level, while CBF continued to decrease. The mean global CBF showed a decreasing trend from Test 1 to Test 3. Furthermore, the mean global CBF had a negative correlation with the systolic pressure, pulse pressure, and mean arterial pressure. The decrease in CBF after reoxygenation may underlie the neurological symptoms in subjects returning to the lowlands. Increased blood pressure could serve as a predictor of a decrease in CBF.
Collapse
Affiliation(s)
- Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Zhongwei Peng
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yadong Zhan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Vigilant Attention, Cerebral Blood Flow and Grey Matter Volume Change after 36 h of Acute Sleep Deprivation in Healthy Male Adults: A Pilot Study. Brain Sci 2022; 12:brainsci12111534. [DOI: 10.3390/brainsci12111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
It is commonly believed that alertness and attention decrease after sleep deprivation (SD). However, there are not enough studies on the changes in psychomotor vigilance testing (PVT) during SD and the corresponding changes in brain function and brain structure after SD. Therefore, we recruited 30 healthy adult men to perform a 36 h acute SD experiment, including the measurement of five indicators of PVT every 2 h, and analysis of cerebral blood flow (CBF) and grey matter volume (GMV) changes, before and after SD by magnetic resonance imaging (MRI). The PVT measurement found that the mean reaction time (RT), fastest 10% RT, minor lapses, and false starts all increased progressively within 20 h of SD, except for major lapses. Subsequently, all indexes showed a significant lengthening or increasing trend, and the peak value was in the range of 24 h-32 h and decreased at 36 h, in which the number of major lapses returned to normal. MRI showed that CBF decreased in the left orbital part of the superior frontal gyrus, the left of the rolandic operculum, the left triangular part, and the right opercular part of the inferior frontal gyrus, and CBF increased in the left lingual gyrus and the right superior gyrus after 36 h SD. The left lingual gyrus was negatively correlated with the major lapses, and both the inferior frontal gyrus and the superior frontal gyrus were positively correlated with the false starts. Still, there was no significant change in GMV. Therefore, we believe that 36 h of acute SD causes alterations in brain function and reduces alert attention, whereas short-term acute SD does not cause changes in brain structure.
Collapse
|
9
|
Lin YS, Weibel J, Landolt HP, Santini F, Garbazza C, Kistler J, Rehm S, Rentsch K, Borgwardt S, Cajochen C, Reichert CF. Time to Recover From Daily Caffeine Intake. Front Nutr 2022; 8:787225. [PMID: 35187019 PMCID: PMC8849224 DOI: 10.3389/fnut.2021.787225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Caffeine elicits widespread effects in the central nervous system and is the most frequently consumed psychostimulant worldwide. First evidence indicates that, during daily intake, the elimination of caffeine may slow down, and the primary metabolite, paraxanthine, may accumulate. The neural impact of such adaptions is virtually unexplored. In this report, we leveraged the data of a laboratory study with N = 20 participants and three within-subject conditions: caffeine (150 mg caffeine × 3/day × 10 days), placebo (150 mg mannitol × 3/day × 10 days), and acute caffeine deprivation (caffeine × 9 days, afterward placebo × 1 day). On day 10, we determined the course of salivary caffeine and paraxanthine using liquid chromatography-mass spectrometry coupled with tandem mass spectrometry. We assessed gray matter (GM) intensity and cerebral blood flow (CBF) after acute caffeine deprivation as compared to changes in the caffeine condition from our previous report. The results indicated that levels of paraxanthine and caffeine remained high and were carried overnight during daily intake, and that the levels of paraxanthine remained elevated after 24 h of caffeine deprivation compared to placebo. After 36 h of caffeine deprivation, the previously reported caffeine-induced GM reduction was partially mitigated, while CBF was elevated compared to placebo. Our findings unveil that conventional daily caffeine intake does not provide sufficient time to clear up psychoactive compounds and restore cerebral responses, even after 36 h of abstinence. They also suggest investigating the consequences of a paraxanthine accumulation during daily caffeine intake.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Neuropsychiatry and Brain Imaging, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Janine Weibel
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Joshua Kistler
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sophia Rehm
- Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- *Correspondence: Christian Cajochen
| | - Carolin F. Reichert
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Poudel GR, Hawes S, Innes CRH, Parsons N, Drummond SPA, Caeyensberghs K, Jones RD. RoWDI: rolling window detection of sleep intrusions in the awake brain using fMRI. J Neural Eng 2021; 18. [PMID: 34592721 DOI: 10.1088/1741-2552/ac2bb9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective.Brief episodes of sleep can intrude into the awake human brain due to lack of sleep or fatigue-compromising the safety of critical daily tasks (i.e. driving). These intrusions can also introduce artefactual activity within functional magnetic resonance imaging (fMRI) experiments, prompting the need for an objective and effective method of removing them.Approach.We have developed a method to track sleep-like events in awake humans via rolling window detection of intrusions (RoWDI) of fMRI signal template. These events can then be used in voxel-wise event-related analysis of fMRI data. To test this approach, we generated a template of fMRI activity associated with transition to sleep via simultaneous fMRI and electroencephalogram (EEG) (N= 10). RoWDI was then used to identify sleep-like events in 20 individuals performing a cognitive task during fMRI after a night of partial sleep deprivation. This approach was further validated in an independent fMRI dataset (N= 56).Main results.Our method (RoWDI) was able to infer frequent sleep-like events during the cognitive task performed after sleep deprivation. The sleep-like events were associated with on average of 20% reduction in pupil size and prolonged response time. The blood-oxygen-level-dependent activity during the sleep-like events covered thalami-cortical regions, which although spatially distinct, co-existed with, task-related activity. These key findings were validated in the independent dataset.Significance.RoWDI can reliably detect spontaneous sleep-like events in the human brain. Thus, it may also be used as a tool to delineate and account for neural activity associated with wake-sleep transitions in both resting-state and task-related fMRI studies.
Collapse
Affiliation(s)
- Govinda R Poudel
- Mary Mackillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Stephanie Hawes
- Mary Mackillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Carrie R H Innes
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakins University, Melbourne, Australia
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Karen Caeyensberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakins University, Melbourne, Australia
| | - Richard D Jones
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Iidaka T. Fluctuations in Arousal Correlate with Neural Activity in the Human Thalamus. Cereb Cortex Commun 2021; 2:tgab055. [PMID: 34557672 PMCID: PMC8455340 DOI: 10.1093/texcom/tgab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
The neural basis of consciousness has been explored in humans and animals; however, the exact nature of consciousness remains elusive. In this study, we aimed to elucidate which brain regions are relevant to arousal in humans. Simultaneous recordings of brain activity and eye-tracking were conducted in 20 healthy human participants. Brain activity was measured by resting-state functional magnetic resonance imaging with a multiband acquisition protocol. The subjective levels of arousal were investigated based on the degree of eyelid closure that was recorded using a near-infrared eye camera within the scanner. The results showed that the participants were in an aroused state for 79% of the scan time, and the bilateral thalami were significantly associated with the arousal condition. Among the major thalamic subnuclei, the mediodorsal nucleus (MD) showed greater involvement in arousal when compared with other subnuclei. A receiver operating characteristic analysis with leave-one-out crossvalidation conducted using template-based brain activity and arousal-level data from eye-tracking showed that, in most participants, thalamic activity significantly predicted the subjective levels of arousal. These results indicate a significant role of the thalamus, and in particular, the MD, which has rich connectivity with the prefrontal cortices and the limbic system in human consciousness.
Collapse
Affiliation(s)
- Tetsuya Iidaka
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Effects of All-Night Driving on Selective Attention in Professional Truck Drivers: A Preliminary Functional Magnetic Resonance Study. ENERGIES 2021. [DOI: 10.3390/en14175409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fatigue affects multiple aspects of cognitive performance among drivers. However, even after fatigue builds up, some are still able to maintain the level of behavioral performance. To evaluate these adaptations on the neural network level, we utilized functional magnetic resonance imaging (fMRI). Seventeen male professional drivers underwent two fMRI sessions, once while rested and once in a fatigued condition after 10-h of overnight driving. The cognitive task used in the study involved the detection of visual feature conjunctions, namely the shape and the color. There were no significant differences in the task performance between the conditions except for longer reaction times in the fatigued condition. However, we observed substantial differences in the activation patterns during the cognitive task involving selective attention between the conditions. On the global level, we observed a general decrease in activation strength in the fatigued condition, which appeared to be more pronounced in the left hemisphere. On the local level, we observed a (spatially) extended activation of the medial prefrontal regions in the fatigued condition, which reflected increased cognitive control mechanisms compensating for the diminished efficiency of mechanisms involved in meeting task demands.
Collapse
|
13
|
Sherwood MS, McIntire L, Madaris AT, Kim K, Ranganath C, McKinley RA. Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. Front Hum Neurosci 2021; 15:679977. [PMID: 34456695 PMCID: PMC8397582 DOI: 10.3389/fnhum.2021.679977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) to the left prefrontal cortex has been shown to produce broad behavioral effects including enhanced learning and vigilance. Still, the neural mechanisms underlying such effects are not fully understood. Furthermore, the neural underpinnings of repeated stimulation remain understudied. In this work, we evaluated the effects of the repetition and intensity of tDCS on cerebral perfusion [cerebral blood flow (CBF)]. A cohort of 47 subjects was randomly assigned to one of the three groups. tDCS of 1- or 2-mA was applied to the left prefrontal cortex on three consecutive days, and resting CBF was quantified before and after stimulation using the arterial spin labeling MRI and then compared with a group that received sham stimulation. A widespread decreased CBF was found in a group receiving sham stimulation across the three post-stimulation measures when compared with baseline. In contrast, only slight decreases were observed in the group receiving 2-mA stimulation in the second and third post-stimulation measurements, but more prominent increased CBF was observed across several brain regions including the locus coeruleus (LC). The LC is an integral region in the production of norepinephrine and the noradrenergic system, and an increased norepinephrine/noradrenergic activity could explain the various behavioral findings from the anodal prefrontal tDCS. A decreased CBF was observed in the 1-mA group across the first two post-stimulation measurements, similar to the sham group. This decreased CBF was apparent in only a few small clusters in the third post-stimulation scan but was accompanied by an increased CBF, indicating that the neural effects of stimulation may persist for at least 24 h and that the repeated stimulation may produce cumulative effects.
Collapse
Affiliation(s)
| | | | - Aaron T. Madaris
- Infoscitex, Inc., Beavercreek, OH, United States
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, United States
| | - Kamin Kim
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - R. Andy McKinley
- Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, United States
| |
Collapse
|
14
|
Clemente A, Domínguez D JF, Imms P, Burmester A, Dhollander T, Wilson PH, Poudel G, Caeyenberghs K. Individual differences in attentional lapses are associated with fiber-specific white matter microstructure in healthy adults. Psychophysiology 2021; 58:e13871. [PMID: 34096075 DOI: 10.1111/psyp.13871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Attentional lapses interfere with goal-directed behaviors, which may result in harmless (e.g., not hearing instructions) or severe (e.g., fatal car accident) consequences. Task-related functional MRI (fMRI) studies have shown a link between attentional lapses and activity in the frontoparietal network. Activity in this network is likely to be mediated by the organization of the white matter fiber pathways that connect the regions implicated in the network, such as the superior longitudinal fasciculus I (SLF-I). In the present study, we investigate the relationship between susceptibility to attentional lapses and relevant white matter pathways in 36 healthy adults (23 females, Mage = 31.56 years). Participants underwent a diffusion MRI (dMRI) scan and completed the global-local task to measure attentional lapses, similar to previous fMRI studies. Applying the fixel-based analysis framework for fiber-specific analysis of dMRI data, we investigated the association between attentional lapses and variability in microstructural fiber density (FD) and macrostructural (morphological) fiber-bundle cross section (FC) in the SLF-I. Our results revealed a significant negative association between higher total number of attentional lapses and lower FD in the left SLF-I. This finding indicates that the variation in the microstructure of a key frontoparietal white matter tract is associated with attentional lapses and may provide a trait-like biomarker in the general population. However, SLF-I microstructure alone does not explain propensity for attentional lapses, as other factors such as sleep deprivation or underlying psychological conditions (e.g., sleep disorders) may also lead to higher susceptibility in both healthy people and those with neurological disorders.
Collapse
Affiliation(s)
- Adam Clemente
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Phoebe Imms
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Peter H Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol 2020; 191:114369. [PMID: 33338474 DOI: 10.1016/j.bcp.2020.114369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e., online) but also during the offline periods that take place after the end of the actual learning episode. Structural brain changes as a consequence of learning have been consistently demonstrated on the long term using non-invasive neuroimaging methods, but short-term changes remained more elusive. Fortunately, the swift development of advanced MR methods over the last decade now allows tracking fine-grained cerebral changes on short timescales beyond gross volumetric modifications stretching over several days or weeks. Besides a mere effect of time, post-learning sleep mechanisms have been shown to play an important role in memory consolidation and promote long-lasting changes in neural networks. Sleep was shown to contribute to structural modifications over weeks of prolonged training, but studies evidencing more rapid post-training sleep structural effects linked to memory consolidation are still scarce in human. On the other hand, animal studies convincingly show how sleep might modulate synaptic microstructure. We aim here at reviewing the literature establishing a link between different types of training/learning and the resulting structural changes, with an emphasis on the role of post-training sleep and time in tuning these modifications. Open questions are raised such as the role of post-learning sleep in macrostructural changes, the links between different MR structural measurement-related modifications and the underlying microstructural brain processes, and bidirectional influences between structural and functional brain changes.
Collapse
|
16
|
Li S, Zhou H, Yu Y, Lyu H, Mou T, Shi G, Hu S, Huang M, Hu J, Xu Y. Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial. Sleep Med 2020; 77:270-278. [PMID: 32843299 DOI: 10.1016/j.sleep.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Currently, an efficient method for improving cognitive impairment due to sleep deprivation (SD) is lacking. The aim of this study is to evaluate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) during SD on reversing the adverse effects of SD. METHODS A total of 66 healthy people were randomized into the rTMS group and sham group. Both groups were deprived of sleep for 24 h. During SD, participants were asked to complete several cognitive tasks and underwent mood assessments. Saliva cortisol levels, plasma concentrations of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), and tissue-type plasminogen activator (tPA), and frontal blood activation were detected before and after SD. The rTMS group received real rTMS stimulation for 2 sessions of 10 Hz rTMS (40 trains of 50 pulses with a 20-second intertrain interval) to the left dorsolateral prefrontal cortex and the sham group received sham stimulation during SD. RESULTS Twenty-four hours of SD induced a reduced accuracy in the n-back task, increases in both anxiety and depression, increased cortisol levels, decreased frontal blood activation and decreased BDNF levels in healthy people. Notably, rTMS improved the hyperactivity of the hypothalamic-pituitary-adrenal axis and decreased frontal blood activation induced by SD, and reduced the consumption of plasma proBDNF. CONCLUSIONS Twenty-four hours of SD induced a cognitive impairment. The administration of high-frequency rTMS during sleep deprivation exerted positive effects on HPA axis and frontal activation and might help alleviate cognitive impairment in the long term.
Collapse
Affiliation(s)
- Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yueran Yu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Gongde Shi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.
| |
Collapse
|
17
|
Song J, Cui S, Chen Y, Ye X, Huang X, Su H, Zhou Y, Liu X, Chen W, Shan X, Yan Z, Liu K. Disrupted Regional Cerebral Blood Flow in Children With Newly-Diagnosed Type 1 Diabetes Mellitus: An Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Study. Front Neurol 2020; 11:572. [PMID: 32636800 PMCID: PMC7316953 DOI: 10.3389/fneur.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Object: Diabetes is associated with cerebral vascular dysfunction and increased vascular cognitive impairment. The objective of this study was to use arterial spin labeling (ASL) perfusion-weighted magnetic resonance imaging to investigate whether cerebral perfusion was changed in newly-diagnosed children with type 1 diabetes mellitus (T1DM) and the possible relationship between aberrant cerebral blood flow (CBF) with cognitive as well as clinical variables. Methods: Between January 2017 and February 2018, 34 children with newly-diagnosed T1DM and 34 age, gender, and education-matched healthy controls were included. Three dimensional pseudo-continuous ASL perfusion MRI was used to evaluate CBF. A conventional T2WI sequence was added to exclude intracranial disease. Regions with CBF differences between T1DM children and the controls were detected via voxel-wise comparisons in REST software. Associations among the result of neuropsychological test, clinical variables, and CBF values of different brains were investigated by using partial correlation analysis. Results: Compared with the controls, T1DM children show decreased CBF in the left calcarine and postcentral gyrus, and right precentral gyrus. The perfusion in the postcentral gyrus was positively correlated with IQ performance. No significant correlations were found between CBF and HbA1c, blood glucose level before imaging and IQ in other brain regions in T1DM children. Conclusion: There is an abnormal cerebral perfusion in children with newly diagnosed T1DM. The visual and sensorimotor areas are brain areas where perfusion is prone to change at the beginning of T1DM. Our study provided clues for cerebral pathophysiological changes in the initial stage of T1DM.
Collapse
Affiliation(s)
- Jiawen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihan Cui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaomeng Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Su
- Department of Pediatric Endocrine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongjin Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoou Shan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Melzer TR, Keenan RJ, Leeper GJ, Kingston-Smith S, Felton SA, Green SK, Henderson KJ, Palmer NJ, Shoorangiz R, Almuqbel MM, Myall DJ. Test-retest reliability and sample size estimates after MRI scanner relocation. Neuroimage 2020; 211:116608. [PMID: 32032737 DOI: 10.1016/j.neuroimage.2020.116608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Many factors can contribute to the reliability and robustness of MRI-derived metrics. In this study, we assessed the reliability and reproducibility of three MRI modalities after an MRI scanner was relocated to a new hospital facility. METHODS Twenty healthy volunteers (12 females, mean age (standard deviation) = 41 (11) years, age range [25-66]) completed three MRI sessions. The first session (S1) was one week prior to the 3T GE HDxt scanner relocation. The second (S2) occurred nine weeks after S1 and at the new location; a third session (S3) was acquired 4 weeks after S2. At each session, we acquired structural T1-weighted, pseudo-continuous arterial spin labelled, and diffusion tensor imaging sequences. We used longitudinal processing streams to create 12 summary MRI metrics, including total gray matter (GM), cortical GM, subcortical GM, white matter (WM), and lateral ventricle volume; mean cortical thickness; total surface area; average gray matter perfusion, and average diffusion tensor metrics along principal white matter pathways. We compared mean MRI values and variance at the old scanner location to multiple sessions at the new location using Bayesian multi-level regression models. K-fold cross validation allowed identification of important predictors. Whole-brain analyses were used to investigate any regional differences. Furthermore, we calculated within-subject coefficient of variation (wsCV), intraclass correlation coefficient (ICC), and dice similarity index (SI) of cortical segmentations across scanner relocation and within-site. Additionally, we estimated sample sizes required to robustly detect a 4% difference between two groups across MRI metrics. RESULTS All global MRI metrics exhibited little mean difference and small variability (bar cortical gray matter perfusion) both across scanner relocation and within-site repeat. T1- and DTI-derived tissue metrics showed < |0.3|% mean difference and <1.2% variance across scanner location and <|0.4|% mean difference and <0.8% variance within the new location, with between-site intraclass correlation coefficient (ICC) > 0.80 and within-subject coefficient of variation (wsCV) < 1.4%. Mean cortical gray matter perfusion had the highest between-session variability (6.7% [0.3, 16.7], estimate [95% uncertainty interval]), and hence the smallest ICC (0.71 [0.44,0.92]) and largest wsCV (13.4% [5.4, 18.1]). No global metric exhibited evidence of a meaningful mean difference between scanner locations. However, surface area showed evidence of a mean difference within-site repeat (between S2 and S3). Whole-brain analyses revealed no significant areas of difference between scanner relocation or within-site. For all metrics, we found no support for a systematic difference in variance across relocation sites compared to within-site test-retest reliability. Necessary sample sizes to detect a 4% difference between two independent groups varied from a maximum of n = 362 per group (cortical gray matter perfusion), to total gray matter volume (n = 114), average fractional anisotropy (n = 23), total gray matter volume normalized by intracranial volume (n = 19), and axial diffusivity (n = 3 per group). CONCLUSION Cortical gray matter perfusion was the most variable metric investigated (necessitating large sample sizes to identify group differences), with other metrics showing substantially less variability. Scanner relocation appeared to have a negligible effect on variability of the global MRI metrics tested. This manuscript reports within-site test-retest variability to act as a tool for calculating sample size in future investigations. Our results suggest that when all other parameters are held constant (e.g., sequence parameters and MRI processing), the effect of scanner relocation is indistinguishable from within-site variability, but may need to be considered depending on the question being investigated.
Collapse
Affiliation(s)
- Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand; Brain Research New Zealand - Rangahau Roro Aotearoa Centre of Research Excellence, New Zealand.
| | - Ross J Keenan
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Radiology, Christchurch Hospital, Christchurch, New Zealand; Pacific Radiology Group, Christchurch, New Zealand.
| | | | | | | | | | | | | | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Mustafa M Almuqbel
- Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand; Pacific Radiology Group, Christchurch, New Zealand.
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand.
| |
Collapse
|
19
|
Kojima S, Abe T, Morishita S, Inagaki Y, Qin W, Hotta K, Tsubaki A. Acute moderate-intensity exercise improves 24-h sleep deprivation-induced cognitive decline and cerebral oxygenation: A near-infrared spectroscopy study. Respir Physiol Neurobiol 2019; 274:103354. [PMID: 31809903 DOI: 10.1016/j.resp.2019.103354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
We evaluated the effects of moderate-intensity exercise in improving the decline in cognitive performance induced by a 24-h period of acute sleep deprivation (SD). We hypothesized that the positive effect of exercise is mediated by increased oxygenation (measured using near-infrared spectroscopy) of the dorsolateral prefrontal cortex (DLPFC). Cognitive performance was measured using the reaction time and interference scores of the Stroop colour and word test, in 12 healthy adults (eight males, 21.1 ± 0.3 years-old), at pre- and post-exercise. Cognitive scores were compared under two conditions: rested wakefulness (RW) and 24-h SD. The exercise consisted of 20-min of ergometer cycling at an intensity of 60 % VO2peak. Oxygenation to the DLPFC increased, at 12 min after exercise onset, compared to the baseline and was maintained until the end of the exercise in both RW and SD conditions (P < 0.01). The change in RT correlated with sleepiness (P < 0.05), with no correlation for the interference score and oxygenation. Taken together, moderate-intensity exercise reverses SD-induced cognitive decline.
Collapse
Affiliation(s)
- Sho Kojima
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan.
| | - Tomoya Abe
- Department of Rehabilitation Medicine, Kameda General Hospital, 929 Higashi-cho, Kamogawa-city, Chiba 296-8602, Japan
| | - Shinichiro Morishita
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Yuta Inagaki
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Weixiang Qin
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Kazuki Hotta
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| | - Atsuhiro Tsubaki
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-city, Niigata 950-3198, Japan
| |
Collapse
|
20
|
Network-based Responses to the Psychomotor Vigilance Task during Lapses in Adolescents after Short and Extended Sleep. Sci Rep 2019; 9:13913. [PMID: 31558730 PMCID: PMC6763427 DOI: 10.1038/s41598-019-50180-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Neuroimaging studies of the Psychomotor Vigilance Task (PVT) have revealed brain regions involved in attention lapses in sleep-deprived and well-rested adults. Those studies have focused on individual brain regions, rather than integrated brain networks, and have overlooked adolescence, a period of ongoing brain development and endemic short sleep. This study used functional MRI (fMRI) and a contemporary analytic approach to assess time-resolved peri-stimulus response of key brain networks when adolescents complete the PVT, and test for differences across attentive versus inattentive periods and after short sleep versus well-rested states. Healthy 14–17-year-olds underwent a within-subjects randomized protocol including 5-night spans of extended versus short sleep. PVT was performed during fMRI the morning after each sleep condition. Event-related independent component analysis (eICA) identified coactivating functional networks and corresponding time courses. Analysis of salient time course characteristics tested the effects of sleep condition, lapses, and their interaction. Seven eICA networks were identified supporting attention, executive control, motor, visual, and default-mode functions. Attention lapses, after either sleep manipulation, were accompanied by broadly increased response magnitudes post-stimulus and delayed peak responses in some networks. Well-circumscribed networks respond during the PVT in adolescents, with timing and intensity impacted by attentional lapses regardless of experimentally shortened or extended sleep.
Collapse
|
21
|
Zhou F, Huang M, Gu L, Hong S, Jiang J, Zeng X, Gong H. Regional cerebral hypoperfusion after acute sleep deprivation: A STROBE-compliant study of arterial spin labeling fMRI. Medicine (Baltimore) 2019; 98:e14008. [PMID: 30633191 PMCID: PMC6336630 DOI: 10.1097/md.0000000000014008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous neuroimaging studies have shown that functional changes occur after acute sleep deprivation, which suggest detrimental effects of a lack of sleep on the intrinsic functional architecture of the brain. We aimed to identify regional resting perfusion changes in subjects with acute sleep deprivation.Thirty-three healthy subjects with habitual good sleep participated in 36 hours (2 days and 1 night) of sleep deprivation and then underwent the attention network test and pseudo-continuous arterial spin labeling scanning. Regional cerebral blood flow was used to compare cerebral perfusion before and after sleep deprivation. Correlation analyses of regional perfusion changes and scores on the attention network test were performed.Compared with the baseline (n = 20) scans, the scans of subjects after sleep deprivation (n = 26) revealed a slower response time (549.99 milliseconds vs 603.36 milliseconds; t = -2.301; P = .028) and a significantly higher lapse rate (0.88% vs 22.85%; t = -2.977; P = .006). The sleep deprivation subjects showed lower cerebral blood flow (CBF) in the left parahippocampal gyrus/fusiform cortex (pHipp/Fus), right pHipp/Fus, and right prefrontal cortex (PFC) relative to the baseline subjects (Gaussian random field correction, voxel level P < .01, and cluster level P < .05). Although no significant relationships were observed between the altered regional CBF (rCBF) values and the attention network test scores, the receiver-operating characteristic and leave-one-out cross-validation analyses revealed that significant decreases in rCBF in the bilateral pHipp/Fus and right PFC could discriminate between sleep deprivation and good sleep status.We observed that rCBF was reduced after 36 hours (2 days and 1 night) of sleep deprivation. Our preliminary findings suggest an acute vulnerability to hypoperfusion due to lack of sleep.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Lili Gu
- Department of Clinical Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| |
Collapse
|
22
|
Park YK, Kim JH, Choi SJ, Kim ST, Joo EY. Altered Regional Cerebral Blood Flow Associated with Mood and Sleep in Shift Workers: Cerebral Perfusion Magnetic Resonance Imaging Study. J Clin Neurol 2019; 15:438-447. [PMID: 31591830 PMCID: PMC6785470 DOI: 10.3988/jcn.2019.15.4.438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Shift work disrupts the body's circadian rhythms and increases the risk of health problems. Despite evidence of neuropsychological disturbances in shift workers (SW), the brain functional status as measured by brain perfusion in chronic shift work has not been evaluated previously. We investigated the regional cerebral blood flow (rCBF) in SW using perfusion MRI (pMRI) and evaluated the relationships between altered rCBF and sleep, mood, psychometric measures, and quality of life. METHODS Fifteen rotational SW and 15 day workers (DW) were enrolled. The participants were all female nurses working at a university-affiliated hospital. During 2 weeks of actigraphy they underwent pMRI scanning and psychometric testing on the last day immediately after working. Demographic characteristics, insomnia, daytime sleepiness, and mood were compared between the groups. RESULTS The participants were aged 35.3±2.9 years (mean±SD) and had been performing their current work for more than 2 years. The demographic characteristics did not differ between SW and DW, but the levels of insomnia, anxiety, depression, and hyperactivity-restlessness in psychometric measures were higher in SW than in DW. Cerebral perfusion in SW was significantly decreased in the cuneus, fusiform/parahippocampal gyri, and cerebellum of the right hemisphere, while it was increased in the inferior occipital gyrus of the left hemisphere. Perfusion changes in SW were significantly correlated with depression and insomnia severity. The onset and duration irregularity of sleep among SW were related to insomnia, mood, hyperactivity/ restlessness, and quality of life. CONCLUSIONS SW experience considerably more insomnia and mood disturbances than do DW, and this is significantly related to perfusion changes in multiple brain areas.
Collapse
Affiliation(s)
- Yun Kyung Park
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Jae Hun Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jung Choi
- Department of Nursing, Samsung Medical Center, Department of Clinical Nursing Science, Graduate School of Clinical Nursing Science, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Tae Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
23
|
Elvsåshagen T, Mutsaerts HJ, Zak N, Norbom LB, Quraishi SH, Pedersen PØ, Malt UF, Westlye LT, van Someren EJ, Bjørnerud A, Groote IR. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation. Neuroimage 2018; 186:497-509. [PMID: 30471387 DOI: 10.1016/j.neuroimage.2018.11.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022] Open
Abstract
Elucidating the neurobiological effects of sleep and wake is an important goal of the neurosciences. Whether and how human cerebral blood flow (CBF) changes during the sleep-wake cycle remain to be clarified. Based on the synaptic homeostasis hypothesis of sleep and wake, we hypothesized that a day of wake and a night of sleep deprivation would be associated with gray matter resting CBF (rCBF) increases and that sleep would be associated with rCBF decreases. Thirty-eight healthy adult males (age 22.1 ± 2.5 years) underwent arterial spin labeling perfusion magnetic resonance imaging at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (n = 19) or a night of sleep (n = 19). All analyses were adjusted for hematocrit and head motion. rCBF increased from morning to evening and decreased after a night of sleep. These effects were most prominent in bilateral hippocampus, amygdala, thalamus, and in the occipital and sensorimotor cortices. Group × time interaction analyses for evening versus next morning revealed significant interaction in bilateral lateral and medial occipital cortices and in bilateral insula, driven by rCBF increases in the sleep deprived individuals and decreases in the sleepers, respectively. Furthermore, group × time interaction analyses for first morning versus next morning showed significant effects in medial and lateral occipital cortices, in anterior cingulate gyrus, and in the insula, in both hemispheres. These effects were mainly driven by CBF increases from TP1 to TP3 in the sleep deprived individuals. There were no associations between the rCBF changes and sleep characteristics, vigilant attention, or subjective sleepiness that remained significant after adjustments for multiple analyses. Altogether, these results encourage future studies to clarify mechanisms underlying sleep-related rCBF changes.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Henri Jmm Mutsaerts
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Radiology, Amsterdam University Medical Center, the Netherlands
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | | | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Research and Education, Oslo University Hospital, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Psychology, University of Oslo, Norway
| | - Eus Jw van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, the Netherlands; Department of Integrative Neurophysiology, Amsterdam University Medical Center, the Netherlands
| | - Atle Bjørnerud
- Department of Psychology, University of Oslo, Norway; Department of Physics, University of Oslo, Norway; The Intervention Center, Oslo University Hospital, Norway
| | | |
Collapse
|
24
|
Clement P, Mutsaerts HJ, Václavů L, Ghariq E, Pizzini FB, Smits M, Acou M, Jovicich J, Vanninen R, Kononen M, Wiest R, Rostrup E, Bastos-Leite AJ, Larsson EM, Achten E. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab 2018; 38:1418-1437. [PMID: 28393659 PMCID: PMC6120130 DOI: 10.1177/0271678x17702156] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard operating procedure, based on practices already implemented in several research centers. Also, a theory of 'deep MRI physiotyping' is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce variance by taking both personal information and the presence or absence of perfusion modifiers into account. We hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier diagnoses of brain disorders.
Collapse
Affiliation(s)
- Patricia Clement
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| | - Henk-Jan Mutsaerts
- 2 Cognitive Neurology Research Unit, Sunnybrook Healthy Sciences Centre, Toronto, Canada.,3 Academic Medical Center, Amsterdam, the Netherlands
| | - Lena Václavů
- 3 Academic Medical Center, Amsterdam, the Netherlands
| | - Eidrees Ghariq
- 4 Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Marjan Acou
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| | - Jorge Jovicich
- 7 Magnetic Resonance Imaging Laboratory Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
| | | | | | | | - Egill Rostrup
- 10 Department of Diagnostics, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | - Eric Achten
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Maric A, Lustenberger C, Werth E, Baumann CR, Poryazova R, Huber R. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study. Sleep 2018; 40:3981015. [PMID: 28934530 DOI: 10.1093/sleep/zsx122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Study Objectives To compare intraindividually the effects of acute sleep deprivation (ASD) and chronic sleep restriction (CSR) on the homeostatic increase in slow wave activity (SWA) and to relate it to impairments in basic cognitive functioning, that is, vigilance. Methods The increase in SWA after ASD (40 hours of wakefulness) and after CSR (seven nights with time in bed restricted to 5 hours per night) relative to baseline sleep was assessed in nine healthy, male participants (age = 18-26 years) by high-density electroencephalography. The SWA increase during the initial part of sleep was compared between the two conditions of sleep loss. The increase in SWA was related to the increase in lapses of vigilance in the psychomotor vigilance task (PVT) during the preceding days. Results While ASD induced a stronger increase in initial SWA than CSR, the increase was globally correlated across the two conditions in most electrodes. The increase in initial SWA was positively associated with the increase in PVT lapses. Conclusions The individual homeostatic response in SWA is globally preserved across acute and chronic sleep loss, that is, individuals showing a larger increase after ASD also do so after CSR and vice versa. Furthermore, the increase in SWA is globally correlated to vigilance impairments after sleep loss over both conditions. Thus, the increase in SWA might therefore provide a physiological marker for individual differences in performance impairments after sleep loss.
Collapse
Affiliation(s)
- Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Caroline Lustenberger
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland.,Child Development Center and Pediatric Sleep Disorders Center, University Children's Hospital Zurich, University of Zurich, Switzerland.,Department of Psychiatry, University of North Carolina at Chapel Hill, NC
| | - Esther Werth
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Rositsa Poryazova
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Reto Huber
- Child Development Center and Pediatric Sleep Disorders Center, University Children's Hospital Zurich, University of Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| |
Collapse
|
26
|
Tkachenko O, Dinges DF. Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review. Neurosci Biobehav Rev 2018; 89:29-48. [PMID: 29563066 DOI: 10.1016/j.neubiorev.2018.03.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/28/2018] [Accepted: 03/16/2018] [Indexed: 12/28/2022]
Abstract
Stable trait-like responding is well established for neurobehavioral performance measures across repeated exposures to total sleep deprivation and partial chronic sleep restriction. These observed phenotypes are task-dependent, suggesting that there are distinct cognitive profiles of responding with differential vulnerability to sleep loss within the same individual. Numerous factors have been investigated as potential markers of phenotypic vulnerability to the effects of sleep loss but none fully account for this phenomenon. Observed interindividual differences in performance during extended wakefulness may be driven by underlying deficits in the wake-promoting system resulting in greater performance instability due to failure to counteract increased homeostatic pressure. Further work would benefit from a systems approach to the study of interindividual vulnerability in which behavioral, neurobiological, and genetic data are integrated in a larger framework delineating the relationships between genes, proteins, neurobiology, and behavior.
Collapse
Affiliation(s)
- Olga Tkachenko
- Department of Psychology, University of Pennsylvania, 425 S. University Avenue, Philadelphia, PA 19104, United States.
| | - David F Dinges
- Department of Psychiatry, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, PA 19104, United States.
| |
Collapse
|
27
|
Poudel GR, Innes CRH, Jones RD. Temporal evolution of neural activity and connectivity during microsleeps when rested and following sleep restriction. Neuroimage 2018; 174:263-273. [PMID: 29555427 DOI: 10.1016/j.neuroimage.2018.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
Even when it is critical to stay awake, such as when driving, sleep deprivation weakens one's ability to do so by substantially increasing the propensity for microsleeps. Microsleeps are complete lapses of consciousness but, paradoxically, are associated with transient increases in cortical activity. But do microsleeps provide a benefit in terms of attenuating the need for sleep? And is the neural response to microsleeps altered by the degree of homeostatic drive to sleep? In this study, we continuously monitored eye-video, visuomotor responsiveness, and brain activity via fMRI in 20 healthy subjects during a 20-min visuomotor tracking task following a normally-rested night and a sleep-restricted (4-h) night. As expected, sleep restriction led to an increased number of microsleeps and an increased variability in tracking error. Microsleeps exhibited transient increases in regional activity in the fronto-parietal and parahippocampal area. Network analyses revealed divergent transient changes in the right fronto-parietal, dorsal-attention, default-mode, and thalamo-cortical functional networks. In all subjects, tracking error immediately following microsleeps was improved compared to before the microsleeps. Importantly, post-microsleep recovery in tracking response speed was associated with hyperactivation in the thalamo-cortical network. The temporal evolution of functional connectivity within the frontal and posterior nodes of the default-mode network and between the right fronto-parietal and default-mode networks was associated with temporal changes in visuomotor responsiveness. These findings demonstrate distinct brain-network-level changes in brain activity during microsleeps and suggest that neural activity in the thalamo-cortical network may facilitate the transient recovery from microsleeps. The temporal pattern of evolution in brain activity and performance is indicative of dynamic changes in vigilance during the struggle to stay awake following sleep loss.
Collapse
Affiliation(s)
- Govinda R Poudel
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand; Sydney Imaging, Brain and Mind Centre, The University of Sydney, NSW, Australia.
| | - Carrie R H Innes
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand
| | - Richard D Jones
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand; Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand; Department of Psychology, University of Canterbury, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
28
|
Li Z, Vidorreta M, Katchmar N, Alsop DC, Wolf DH, Detre JA. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI. Neuroimage 2018; 173:165-175. [PMID: 29454933 PMCID: PMC5957091 DOI: 10.1016/j.neuroimage.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition.
Collapse
Affiliation(s)
- Zhengjun Li
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, USA
| | - Marta Vidorreta
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, USA
| | - Natalie Katchmar
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, USA
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, USA; Department of Radiology, University of Pennsylvania Perelman School of Medicine, USA.
| |
Collapse
|
29
|
Dunham CM, McClain JV, Burger A. Comparison of Bispectral Index™ values during the flotation restricted environmental stimulation technique and results for stage I sleep: a prospective pilot investigation. BMC Res Notes 2017; 10:640. [PMID: 29187246 PMCID: PMC5707909 DOI: 10.1186/s13104-017-2947-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Objective To determine whether Bispectral Index™ values obtained during flotation-restricted environment stimulation technique have a similar profile in a single observation compared to literature-derived results found during sleep and other relaxation-induction interventions. Results Bispectral Index™ values were as follows: awake-state, 96.6; float session-1, 84.3; float session-2, 82.3; relaxation-induction, 82.8; stage I sleep, 86.0; stage II sleep, 66.2; and stages III–IV sleep, 45.1. Awake-state values differed from float session-1 (%difference 12.7%; Cohen’s d = 3.6) and float session-2 (%difference 14.8%; Cohen’s d = 4.6). Relaxation-induction values were similar to float session-1 (%difference 1.8%; Cohen’s d = 0.3) and float session-2 (%difference 0.5%; Cohen’s d = 0.1). Stage I sleep values were similar to float session-1 (%difference 1.9%; Cohen’s d = 0.4) and float session-2 (%difference 4.3%; Cohen’s d = 1.0). Stage II sleep values differed from float session-1 (%difference 21.5%; Cohen’s d = 4.3) and float session-2 (%difference 19.6%; Cohen’s d = 4.0). Stages III–IV sleep values differed from float session-1 (%difference 46.5%; Cohen’s d = 5.6) and float session-2 (%difference 45.2%; Cohen’s d = 5.4). Bispectral Index™ values during flotation were comparable to those found in stage I sleep and nadir values described with other relaxation-induction techniques. Electronic supplementary material The online version of this article (10.1186/s13104-017-2947-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Michael Dunham
- Trauma, Critical Care, and General Surgery Services, St. Elizabeth Youngstown Hospital, 1044 Belmont Ave., Youngstown, OH, 44501, USA.
| | - Jesse V McClain
- Advanced Neurology Associates, Inc, 1340 Belmont Ave., Youngstown, OH, 44504, USA
| | - Amanda Burger
- Behavioral Medicine, St. Elizabeth Family Medicine Residency, 1053 Belmont Ave., Youngstown, OH, 44504, USA
| |
Collapse
|
30
|
Tüshaus L, Balsters JH, Schläpfer A, Brandeis D, O’Gorman Tuura R, Achermann P. Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity. Brain Topogr 2017; 30:757-773. [DOI: 10.1007/s10548-017-0575-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
|
31
|
Schneider M, Hathway P, Leuchs L, Sämann PG, Czisch M, Spoormaker VI. Spontaneous pupil dilations during the resting state are associated with activation of the salience network. Neuroimage 2016; 139:189-201. [DOI: 10.1016/j.neuroimage.2016.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
|
32
|
Kim LJ, Coelho FM, Araujo P, Tedesco RC, Souza RB, Tufik S, Andersen ML. Sleep restriction reduces the survival time and aggravates the neurological dysfunction and memory impairments in an animal model of cerebral hypoperfusion. Brain Res 2016; 1644:213-21. [DOI: 10.1016/j.brainres.2016.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
|
33
|
Shoorangiz R, Weddell SJ, Jones RD. Prediction of microsleeps from EEG: Preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4650-4653. [PMID: 28269311 DOI: 10.1109/embc.2016.7591764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brief episodes of momentarily falling asleep - microsleeps - can have fatal consequences, especially in the transportation sector. In this study, the EEG data of eight subjects, while performing a 1-D tracking task, were used to predict imminent microsleeps. A novel algorithm was developed to improve the accuracy of microsleep identification from two independent measures: tracking performance and face-video. The uncertain labels of gold-standard were then pruned out. Additionally, the state of microsleep at 0.25 s ahead was continuously predicted. Log-power spectral features were then extracted from EEG data. The most relevant features were selected by mutual information. Leave-one-subject-out was performed to test the classifier on an independent subject and this procedure was done for all the subjects. Two oversampling methods, synthetic minority oversampling technique (SMOTE) and adaptive sampling (ADASYN), were utilized to improve the training in the presence of imbalanced data. The best average area under the curve of receiver operating characteristic (AUCroc) of 0.90 was achieved using SMOTE oversampling over a 5.25 s window length, with a corresponding geometric mean (GM) of 0.74. ADASYN oversampling achieved the best sensitivity of 0.76 (cf. 0.70 for SMOTE), but with a lower specificity of 0.77 (cf. 0.86 for SMOTE).
Collapse
|
34
|
Alonso JF, Romero S, Mañanas MA, Alcalá M, Antonijoan RM, Giménez S. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context. SENSORS (BASEL, SWITZERLAND) 2016; 16:E540. [PMID: 27089346 PMCID: PMC4851054 DOI: 10.3390/s16040540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 01/24/2023]
Abstract
Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.
Collapse
Affiliation(s)
- Joan F Alonso
- Biomedical Engineering Research Centre, Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08028, Spain.
- Barcelona College of Industrial Engineering, Universitat Politècnica de Catalunya, Barcelona 08037, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain.
| | - Sergio Romero
- Biomedical Engineering Research Centre, Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08028, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain.
| | - Miguel A Mañanas
- Biomedical Engineering Research Centre, Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08028, Spain.
- Barcelona College of Industrial Engineering, Universitat Politècnica de Catalunya, Barcelona 08037, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain.
| | - Marta Alcalá
- Biomedical Engineering Research Centre, Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08028, Spain.
- Barcelona College of Industrial Engineering, Universitat Politècnica de Catalunya, Barcelona 08037, Spain.
| | - Rosa M Antonijoan
- Drug Research Centre, Hospital de la Santa Creu i Sant Pau, Barcelona 08026, Spain.
- Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid 28029, Spain.
| | - Sandra Giménez
- Drug Research Centre, Hospital de la Santa Creu i Sant Pau, Barcelona 08026, Spain.
- Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid 28029, Spain.
- Sleep Unit, Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08028, Spain.
| |
Collapse
|
35
|
Bougard C, Moussay S, Espié S, Davenne D. The effects of sleep deprivation and time of day on cognitive performance. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2015.1129696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Toppi J, Astolfi L, Poudel GR, Innes CR, Babiloni F, Jones RD. Time-varying effective connectivity of the cortical neuroelectric activity associated with behavioural microsleeps. Neuroimage 2016; 124:421-432. [DOI: 10.1016/j.neuroimage.2015.08.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022] Open
|
37
|
Melzer TR, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Watts R, Keenan RJ, Dalrymple-Alford JC, Anderson TJ. Tracking Parkinson's Disease over One Year with Multimodal Magnetic Resonance Imaging in a Group of Older Patients with Moderate Disease. PLoS One 2015; 10:e0143923. [PMID: 26714266 PMCID: PMC4694717 DOI: 10.1371/journal.pone.0143923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022] Open
Abstract
Background & Objectives Cross-sectional magnetic resonance imaging (MRI) suggests that Parkinson’s disease (PD) is associated with changes in cerebral tissue volume, diffusion tensor imaging metrics, and perfusion values. Here, we performed a longitudinal multimodal MRI study—including structural, diffusion tensor imaging (DTI), and perfusion MRI—to investigate progressive brain changes over one year in a group of older PD patients at a moderate stage of disease. Methods Twenty-three non-demented PD (mean age (SD) = 69.5 (6.4) years, disease duration (SD) = 5.6 (4.3) years) and 23 matched control participants (mean age: 70.6 (6.8)) completed extensive neuropsychological and clinical assessment, and multimodal 3T MRI scanning at baseline and one year later. We used a voxel-based approach to assess change over time and group-by-time interactions for cerebral structural and perfusion metrics. Results Compared to controls, in PD participants there was localized grey matter atrophy over time in bilateral inferior and right middle temporal, and left orbito-frontal cortices. Using a voxel-based approach that focused on the centers of principal white matter tracts, the PD and control cohorts exhibited similar levels of change in DTI metrics. There was no significant change in perfusion, cognitive, or motor severity measures. Conclusions In a cohort of older, non-demented PD participants, macrostructural MRI detected atrophy in the PD group compared with the control group in temporal and orbito-frontal cortices. Changes in diffusion MRI along principal white matter tracts over one year were found, but this was not differentially affected by PD.
Collapse
Affiliation(s)
- Tracy R. Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- * E-mail:
| | - Daniel J. Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Michael R. MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Toni L. Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Leslie Livingston
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Richard Watts
- College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ross J. Keenan
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Christchurch Radiology Group, Christchurch, New Zealand
| | - John C. Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Psychology, University of Canterbury, New Zealand
| | - Tim J. Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
38
|
Khan MJ, Hong KS. Passive BCI based on drowsiness detection: an fNIRS study. BIOMEDICAL OPTICS EXPRESS 2015; 6:4063-78. [PMID: 26504654 PMCID: PMC4605063 DOI: 10.1364/boe.6.004063] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/22/2015] [Accepted: 09/15/2015] [Indexed: 05/06/2023]
Abstract
We use functional near-infrared spectroscopy (fNIRS) to discriminate the alert and drowsy states for a passive brain-computer interface (BCI). The passive brain signals for the drowsy state are acquired from the prefrontal and dorsolateral prefrontal cortex. The experiment is performed on 13 healthy subjects using a driving simulator, and their brain activity is recorded using a continuous-wave fNIRS system. Linear discriminant analysis (LDA) is employed for training and testing, using the data from the prefrontal, left- and right-dorsolateral prefrontal regions. For classification, eight features are tested: mean oxyhemoglobin, mean deoxyhemoglobin, skewness, kurtosis, signal slope, number of peaks, sum of peaks, and signal peak, in 0~5, 0~10, and 0~15 second time windows, respectively. The results show that the best performance for classification is achieved using mean oxyhemoglobin, the signal peak, and the sum of peaks as features. The average accuracies in the right dorsolateral prefrontal cortex (83.1, 83.4 and 84.9% in the 0~5, 0~10 and 0~15 second time windows, respectively) show that the proposed method has an effective utility for detection of drowsiness for a passive BCI.
Collapse
Affiliation(s)
- M. Jawad Khan
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
| |
Collapse
|
39
|
Ong JL, Kong D, Chia TT, Tandi J, Thomas Yeo B, Chee MW. Co-activated yet disconnected—Neural correlates of eye closures when trying to stay awake. Neuroimage 2015; 118:553-62. [DOI: 10.1016/j.neuroimage.2015.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
|
40
|
Macey PM. Altered Resting Cerebral Blood Flow in Obstructive Sleep Apnea: A Helpful Change or Not? Sleep 2015; 38:1345-7. [PMID: 26285008 DOI: 10.5665/sleep.4962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/03/2022] Open
Affiliation(s)
- Paul M Macey
- UCLA School of Nursing; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
41
|
Elvemo NA, Landrø NI, Borchgrevink PC, Håberg AK. A particular effect of sleep, but not pain or depression, on the blood-oxygen-level dependent response during working memory tasks in patients with chronic pain. J Pain Res 2015; 8:335-46. [PMID: 26185465 PMCID: PMC4500611 DOI: 10.2147/jpr.s83486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with chronic pain (CP) are often reported to have deficits in working memory. Pain impairs working memory, but so do depression and sleep problems, which are also common in CP. Depression has been linked to changes in brain activity in CP during working memory tasks, but the effect of sleep problems on working memory performance and brain activity remains to be investigated. Methods Fifteen CP patients and 17 age-, sex-, and education-matched controls underwent blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging at 3T while performing block design 0-back, 2-back, and paced visual serial addition test paradigms. Subjects also reported their level of pain (Brief Pain Inventory), depression (Beck Depression Inventory II), and sleep problems (Pittsburgh Sleep Quality Index) and were tested outside the scanner with neuropsychological tests of working memory. Results The CP group reported significantly higher levels of pain, depression, and sleep problems. No significant performance difference was found on the neuropsychological tests in or outside the scanner between the two groups. There were no correlations between level of pain, depression, and sleep problems or between these and the neuropsychological test scores. CP patients exhibited significantly less brain activation and deactivation than controls in parietal and frontal lobes, which are the brain areas that normally show activation and deactivation during working memory tasks. Sleep problems independently and significantly modulated the BOLD response to the complex working memory tasks and were associated with decreased brain activation in task-positive regions and decreased deactivation in the default mode network in the CP group compared to the control group. The pain and depression scores covaried with working memory activation. Discussion Sleep problems in CP patients had a significant impact on the BOLD response during working memory tasks, independent of pain level and depression, even when performance was shown not to be significantly affected.
Collapse
Affiliation(s)
- Nicolas A Elvemo
- Department of Neuroscience, Medical Faculty, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils I Landrø
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway ; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Petter C Borchgrevink
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; National Norwegian Advisory Unit for Complex Disorders, St Olav University Hospital, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuroscience, Medical Faculty, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; Department of Medical Imaging, St Olav University Hospital, Trondheim, Norway
| |
Collapse
|
42
|
Innes CRH, Kelly PT, Hlavac M, Melzer TR, Jones RD. Decreased Regional Cerebral Perfusion in Moderate-Severe Obstructive Sleep Apnoea during Wakefulness. Sleep 2015; 38:699-706. [PMID: 25669185 DOI: 10.5665/sleep.4658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/14/2015] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES To investigate gray matter volume and concentration and cerebral perfusion in people with untreated obstructive sleep apnea (OSA) while awake. DESIGN Voxel-based morphometry to quantify gray matter concentration and volume. Arterial spin labeling perfusion imaging to quantify cerebral perfusion. SETTING Lying supine in a 3-T magnetic resonance imaging scanner in the early afternoon. PARTICIPANTS 19 people with OSA (6 females, 13 males; mean age 56.7 y, range 41-70; mean AHI 18.5, range 5.2-52.8) and 19 controls (13 females, 6 males; mean age: 50.0 y, range 41-81). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS There were no differences in regional gray matter concentration or volume between participants with OSA and controls. Neither was there any difference in regional perfusion between controls and people with mild OSA (n = 11). However, compared to controls, participants with moderate-severe OSA (n = 8) had decreased perfusion (while awake) in three clusters. The largest cluster incorporated, bilaterally, the paracingulate gyrus, anterior cingulate gyrus, and subcallosal cortex, and the left putamen and left frontal orbital cortex. The second cluster was right-lateralized, incorporating the posterior temporal fusiform cortex, parahippocampal gyrus, and hippocampus. The third cluster was located in the right thalamus. CONCLUSIONS There is decreased regional perfusion during wakefulness in participants with moderate-severe obstructive sleep apnea, and these are in brain regions which have shown decreased regional gray matter volume in previous studies in people with severe OSA. Thus, we hypothesize that cerebral perfusion changes are evident before (and possibly underlie) future structural changes.
Collapse
Affiliation(s)
- Carrie R H Innes
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Medical Physics & Bioengineering, Christchurch Hospital, Christchurch, New Zealand.,Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Paul T Kelly
- Sleep Unit, Christchurch Hospital, Christchurch, New Zealand
| | - Michael Hlavac
- Sleep Unit, Christchurch Hospital, Christchurch, New Zealand
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Richard D Jones
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Medical Physics & Bioengineering, Christchurch Hospital, Christchurch, New Zealand.,Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Psychology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
43
|
Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 2015; 38:233-40. [PMID: 25409102 DOI: 10.5665/sleep.4404] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/15/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. DESIGN Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. METHODS The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. RESULTS The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. CONCLUSION Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity.
Collapse
Affiliation(s)
- Ning Ma
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David F Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
44
|
Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab 2014; 34:1373-80. [PMID: 24849665 PMCID: PMC4126098 DOI: 10.1038/jcbfm.2014.92] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
Abstract
Until recently, no direct comparison between [(15)O]water positron emission tomography (PET) and arterial spin labeling (ASL) for measuring cerebral blood flow (CBF) was possible. With the introduction of integrated, hybrid magnetic resonance (MR)-PET scanners, such a comparison becomes feasible. This study presents results of CBF measurements recorded simultaneously with [(15)O]water and ASL. A 3T MR-BrainPET scanner was used for the simultaneous acquisition of pseudo-continuous ASL (pCASL) magnetic resonance imaging (MRI) and [(15)O]water PET. Quantitative CBF values were compared in 10 young healthy male volunteers at baseline conditions. A statistically significant (P<0.05) correlation was observed between the two modalities; the whole-brain CBF values determined with PET and pCASL were 43.3±6.1 mL and 51.9±7.1 mL per 100 g per minute, respectively. The gray/white matter (GM/WM) ratio of CBF was 3.0 for PET and 3.4 for pCASL. A paired t-test revealed differences in regional CBF between ASL and PET with higher ASL-CBF than PET-CBF values in cortical areas. Using an integrated, hybrid MR-PET a direct simultaneous comparison between ASL and [(15)O]water PET became possible for the first time so that temporal, physiologic, and functional variations were avoided. Regional and individual differences were found despite the overall similarity between ASL and PET, requiring further detailed investigations.
Collapse
|
45
|
Abe T, Mollicone D, Basner M, Dinges DF. Sleepiness and Safety: Where Biology Needs Technology. Sleep Biol Rhythms 2014; 12:74-84. [PMID: 24955033 DOI: 10.1111/sbr.12067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintaining human alertness and behavioral capability under conditions of sleep loss and circadian misalignment requires fatigue management technologies due to: (1) dynamic nonlinear modulation of performance capability by the interaction of sleep homeostatic drive and circadian regulation; (2) large differences among people in neurobehavioral vulnerability to sleep loss; (3) error in subjective estimates of fatigue on performance; and (4) to inform people of the need for recovery sleep. Two promising areas of technology have emerged for managing fatigue risk in safety-sensitive occupations. The first involves preventing fatigue by optimizing work schedules using biomathematical models of performance changes associated with sleep homeostatic and circadian dynamics. Increasingly these mathematical models account for individual differences to achieve a more accurate estimate of the timing and magnitude of fatigue effects on individuals. The second area involves technologies for detecting transient fatigue from drowsiness. The Psychomotor Vigilance Test (PVT), which has been extensively validated to be sensitive to deficits in attention from sleep loss and circadian misalignment, is an example in this category. Two shorter-duration versions of the PVT recently have been developed for evaluating whether operators have sufficient behavioral alertness prior to or during work. Another example is online tracking the percent of slow eyelid closures (PERCLOS), which has been shown to reflect momentary fluctuations of vigilance. Technologies for predicting and detecting sleepiness/fatigue have the potential to predict and prevent operator errors and accidents in safety-sensitive occupations, as well as physiological and mental diseases due to inadequate sleep and circadian misalignment.
Collapse
Affiliation(s)
- Takashi Abe
- Space Biomedical Research Office, Flight Crew Operations and Technology Department, Tsukuba Space Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | | | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Debernard L, Melzer TR, Van Stockum S, Graham C, Wheeler-Kingshott CA, Dalrymple-Alford JC, Miller DH, Mason DF. Reduced grey matter perfusion without volume loss in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85:544-51. [PMID: 24039024 DOI: 10.1136/jnnp-2013-305612] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Grey matter (GM) pathology in multiple sclerosis (MS) is associated with progressive long-term disability. Detection of GM abnormalities in early MS may therefore be valuable in understanding and predicting the long-term course. However, structural MRI measures such as volume loss have shown only modest abnormalities in early relapsing-remitting MS (RRMS). We therefore investigated for evidence of abnormality in GM perfusion, consistent with metabolic dysfunction, in early RRMS. METHODS 25 RRMS patients with ≤5 years disease duration and 25 age-matched healthy controls underwent 3 Tesla MRI with a pseudo-continuous arterial spin labelling sequence to quantify GM perfusion and a volumetric T1-weighted sequence to measure GM volume. Neurological status was assessed in patients and neuropsychological evaluation undertaken in all subjects. Voxel-based analysis was used to compare regional GM perfusion and volume measures in patients and controls. RESULTS There was reduced global GM perfusion in patients versus controls (50.6±5.8 mL/100 g/min vs 54.4±7.6 mL/100 g/min, p=0.04). Voxel-based analysis revealed extensive regions of decreased cortical and deep GM perfusion in MS subjects. Reduced perfusion was associated with impaired memory scores. There was no reduction in global or regional analysis of GM volume in patients versus controls. CONCLUSIONS The decrease in GM perfusion in the absence of volume loss is consistent with neuronal metabolic dysfunction in early RRMS. Future studies in larger cohorts and longitudinal follow-up are needed to investigate the functional and prognostic significance of the early GM perfusion deficits observed.
Collapse
|
47
|
Abstract
Maintaining human alertness and behavioral capability under conditions of sleep loss and circadian misalignment requires fatigue management technologies due to: (1) dynamic nonlinear modulation of performance capability by the interaction of sleep homeostatic drive and circadian regulation; (2) large differences among people in neurobehavioral vulnerability to sleep loss; (3) error in subjective estimates of fatigue on performance; and (4) to inform people of the need for recovery sleep. Two promising areas of technology have emerged for managing fatigue risk in safety-sensitive occupations. The first involves preventing fatigue by optimizing work schedules using biomathematical models of performance changes associated with sleep homeostatic and circadian dynamics. Increasingly these mathematical models account for individual differences to achieve a more accurate estimate of the timing and magnitude of fatigue effects on individuals. The second area involves technologies for detecting transient fatigue from drowsiness. The Psychomotor Vigilance Test (PVT), which has been extensively validated to be sensitive to deficits in attention from sleep loss and circadian misalignment, is an example in this category. Two shorter-duration versions of the PVT recently have been developed for evaluating whether operators have sufficient behavioral alertness prior to or during work. Another example is online tracking the percent of slow eyelid closures (PERCLOS), which has been shown to reflect momentary fluctuations of vigilance. Technologies for predicting and detecting sleepiness/fatigue have the potential to predict and prevent operator errors and accidents in safety-sensitive occupations, as well as physiological and mental diseases due to inadequate sleep and circadian misalignment.
Collapse
Affiliation(s)
- Takashi Abe
- Space Biomedical Research Office, Flight Crew Operations and Technology Department, Tsukuba Space Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | | | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Poudel GR, Innes CRH, Bones PJ, Watts R, Jones RD. Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps. Hum Brain Mapp 2014; 35:257-69. [PMID: 23008180 PMCID: PMC6869765 DOI: 10.1002/hbm.22178] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/24/2012] [Accepted: 07/12/2012] [Indexed: 11/07/2022] Open
Abstract
Maintaining alertness is critical for safe and successful performance of most human activities. Consequently, microsleeps during continuous visuomotor tasks, such as driving, can be very serious, not only disrupting performance but sometimes leading to injury or death due to accidents. We have investigated the neural activity underlying behavioral microsleeps--brief (0.5-15 s) episodes of complete failure to respond accompanied by slow eye-closures--and EEG theta activity during drowsiness in a continuous task. Twenty healthy normally-rested participants performed a 50-min continuous tracking task while fMRI, EEG, eye-video, and responses were simultaneously recorded. Visual rating of performance and eye-video revealed that 70% of the participants had frequent microsleeps. fMRI analysis revealed a transient decrease in thalamic, posterior cingulate, and occipital cortex activity and an increase in frontal, posterior parietal, and parahippocampal activity during microsleeps. The transient activity was modulated by the duration of the microsleep. In subjects with frequent microsleeps, power in the post-central EEG theta was positively correlated with the BOLD signal in the thalamus, basal forebrain, and visual, posterior parietal, and prefrontal cortices. These results provide evidence for distinct neural changes associated with microsleeps and with EEG theta activity during drowsiness in a continuous task. They also suggest that the occurrence of microsleeps during an active task is not a global deactivation process but involves localized activation of fronto-parietal cortex, which, despite a transient loss of arousal, may constitute a mechanism by which these regions try to restore responsiveness.
Collapse
Affiliation(s)
- Govinda R Poudel
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand; Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
49
|
Basner M, Rao H, Goel N, Dinges DF. Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol 2013; 23:854-63. [PMID: 23523374 PMCID: PMC3700596 DOI: 10.1016/j.conb.2013.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
Abstract
Lifestyles involving sleep deprivation are common, despite mounting evidence that both acute total sleep deprivation and chronically restricted sleep degrade neurobehavioral functions associated with arousal, attention, memory and state stability. Current research suggests dynamic differences in the way the central nervous system responds to acute versus chronic sleep restriction, which is reflected in new models of sleep-wake regulation. Chronic sleep restriction likely induces long-term neuromodulatory changes in brain physiology that could explain why recovery from it may require more time than from acute sleep loss. High intraclass correlations in neurobehavioral responses to sleep loss suggest that these trait-like differences are phenotypic and may include genetic components. Sleep deprivation induces changes in brain metabolism and neural activation that involve distributed networks and connectivity.
Collapse
Affiliation(s)
- Mathias Basner
- Unit of Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
50
|
Innes CRH, Poudel GR, Jones RD. Efficient and Regular Patterns of Nighttime Sleep are Related to Increased Vulnerability to Microsleeps Following a Single Night of Sleep Restriction. Chronobiol Int 2013; 30:1187-96. [DOI: 10.3109/07420528.2013.810222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|