1
|
Badr MY, Ahmed GK, Amer RA, Aref HM, Salem RM, Elmokadem HA, Haridy NA, Khedr EM. Effects of transcranial magnetic stimulation on sleep quality in fibromyalgia: A double-blind randomized clinical trial. Sleep Med 2024; 124:354-361. [PMID: 39378544 DOI: 10.1016/j.sleep.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES The aim of the current study was to assess the therapeutic impact of repeated low frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex (rDLPFC) on sleep problems in patients with fibromyalgia. METHODS Forty two patients with fibromyalgia who had sleep difficulties were randomly assigned to receive either real or sham rTMS treatment. Patients received 20 treatment sessions (5 sessions per week) in which 1200 rTMS pulses were applied over the rDLPFC using a frequency of 1 Hz and an intensity of 120 % of the resting motor threshold. All participants were evaluated at baseline, and then 1 month and 3 months after treatment using the Fibromyalgia Impact Questionnaire (FIQ), Pittsburgh Sleep Quality Index (PSQI), Medical Outcomes Study Sleep Scale (MOS-SS) and polysomnography (PSG). RESULTS There were significant time (pre, 1month, and 3 months)X group (real versus sham group) interactions in all 3 clinical rating scales; FIQ (Df = 1.425, F = 237.645, P = 0.001), PSQI (Df = 2, F = 64.005, P = 0.001), MOS-SS (Df = 2, F = 28.938, P = 0.001) due to the fact that the real group improved significantly more over time than the sham group. Similarly, the real group improved more on the PSG parameters than the sham group. The effect sizes were large both in the rating scales and PSG, indicating a substantial clinical improvement. Correlation as an exploratory analysis between the changes (pre - post 3 months) in MOS-SS and PLMs index (/h) showed significant negative correlation (r = -0.643, P = 0.002). CONCLUSIONS 20 sessions of LF-rTMS over rDLPFC can improve sleep quality in both subjective (PSQI and MOSS) as well as objective (PSG) rating scales.
Collapse
Affiliation(s)
- Marwa Y Badr
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Gellan K Ahmed
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt
| | - Reham A Amer
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Hend M Aref
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Rehab M Salem
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Egypt
| | - Heba A Elmokadem
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Egypt
| | - Nourelhoda A Haridy
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eman M Khedr
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt.
| |
Collapse
|
2
|
Murphy K, Fouragnan E. The future of transcranial ultrasound as a precision brain interface. PLoS Biol 2024; 22:e3002884. [PMID: 39471185 PMCID: PMC11521279 DOI: 10.1371/journal.pbio.3002884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Our understanding of brain circuit operations and disorders has rapidly outpaced our ability to intervene and restore them. Developing technologies that can precisely interface with any brain region and circuit may combine diagnostics with therapeutic intervention, expediting personalised brain medicine. Transcranial ultrasound stimulation (TUS) is a promising noninvasive solution to this challenge, offering focal precision and scalability. By exploiting the biomechanics of pressure waves on brain tissue, TUS enables multi-site targeted neuromodulation across distributed circuits in the cortex and deeper areas alike. In this Essay, we explore the emergent evidence that TUS can functionally test and modify dysfunctional regions, effectively serving as a search and rescue tool for the brain. We define the challenges and opportunities faced by TUS as it moves towards greater target precision and integration with advanced brain monitoring and interventional technology. Finally, we propose a roadmap for the evolution of TUS as it progresses from a research tool to a clinically validated therapeutic for brain disorders.
Collapse
Affiliation(s)
- Keith Murphy
- Department of Radiology, Stanford University, Stanford, California, United States of America
- Attune Neurosciences, San Francisco, California, United States of America
| | - Elsa Fouragnan
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
- School of psychology, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
3
|
Luber B, Beynel L, Deng ZD, Appelbaum LG, Jones T, Harrison A, Murphy DLK, Lo E, McKinley RA, Lisanby SH. Site- and frequency-specific enhancement of visual search performance with online individual alpha frequency (IAF) repetitive transcranial magnetic stimulation (rTMS) to the inferior frontal junction. Cereb Cortex 2024; 34:bhae371. [PMID: 39285717 PMCID: PMC11405677 DOI: 10.1093/cercor/bhae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
In this study, repetitive transcranial magnetic stimulation was applied to either the right inferior frontal junction or the right inferior parietal cortex during a difficult aerial reconnaissance search task to test its capacity to improve search performance. Two stimulation strategies previously found to enhance cognitive performance were tested: The first is called "addition by subtraction," and the second condition utilizes a direct excitatory approach by applying brief trains of high-frequency repetitive transcranial magnetic stimulation immediately before task trials. In a within-subjects design, participants were given active or sham repetitive transcranial magnetic stimulation at either 1 Hz or at 1 Hz above their individual peak alpha frequency (IAF + 1, mean 11.5 Hz), delivered to either the right inferior frontal junction or the right inferior parietal cortex, both defined with individualized peak functional magnetic resonance imaging (fMRI) activation obtained during the visual search task. Results indicated that among the 13 participants who completed the protocol, only active IAF + 1 stimulation to inferior frontal junction resulted in significant speeding of reaction time compared to sham. This site- and frequency-specific enhancement of performance with IAF + 1 repetitive transcranial magnetic stimulation applied immediately prior to task trials provides evidence for the involvement of inferior frontal junction in guiding difficult visual search, and more generally for the use of online repetitive transcranial magnetic stimulation directed at specific functional networks to enhance visual search performance.
Collapse
Affiliation(s)
- Bruce Luber
- Noninvasive Neuromodulation Unit (NNU), Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, 10 Center Drive, MSC 1282, Building 10, Room 2D39B, Bethesda, MD 20892, USA
| | - Lysianne Beynel
- Noninvasive Neuromodulation Unit (NNU), Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, 10 Center Drive, MSC 1282, Building 10, Room 2D39B, Bethesda, MD 20892, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit (NNU), Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, 10 Center Drive, MSC 1282, Building 10, Room 2D39B, Bethesda, MD 20892, USA
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry, 9500 Gilman Drive, University of California, La Jolla, San Diego, CA 92093, USA
| | - Tristan Jones
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 40 Duke Medicine Circle, Box 3620, Durham, NC 27710, USA
| | - Austin Harrison
- Manhattan Center for Cognitive Behavioral Therapy, 315 Madison Avenue, Suite 806, New York, NY 10017, USA
| | - David L K Murphy
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 40 Duke Medicine Circle, Box 3620, Durham, NC 27710, USA
| | - Eric Lo
- Cedars-Sinai Medical Center in Los Angeles, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Richard A McKinley
- Air Force Research Laboratory, Wright-Patterson Air Force Base, 1864 4th St, OH 45433, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit (NNU), Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, 10 Center Drive, MSC 1282, Building 10, Room 2D39B, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Lee K, Wang Y, Cross NE, Jegou A, Razavipour F, Pomares FB, Perrault AA, Nguyen A, Aydin Ü, Uji M, Abdallah C, Anticevic A, Frauscher B, Benali H, Dang-vu TT, Grova C. NREM sleep brain networks modulate cognitive recovery from sleep deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601285. [PMID: 39005401 PMCID: PMC11244911 DOI: 10.1101/2024.06.28.601285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Decrease in cognitive performance after sleep deprivation followed by recovery after sleep suggests its key role, and especially non-rapid eye movement (NREM) sleep, in the maintenance of cognition. It remains unknown whether brain network reorganization in NREM sleep stages N2 and N3 can uniquely be mapped onto individual differences in cognitive performance after a recovery nap following sleep deprivation. Using resting state functional magnetic resonance imaging (fMRI), we quantified the integration and segregation of brain networks during NREM sleep stages N2 and N3 while participants took a 1-hour nap following 24-hour sleep deprivation, compared to well-rested wakefulness. Here, we advance a new analytic framework called the hierarchical segregation index (HSI) to quantify network segregation across spatial scales, from whole-brain to the voxel level, by identifying spatio-temporally overlapping large-scale networks and the corresponding voxel-to-region hierarchy. Our results show that network segregation increased in the default mode, dorsal attention and somatomotor networks during NREM sleep compared to wakefulness. Segregation within the visual, limbic, and executive control networks exhibited N2 versus N3 sleep-specific voxel-level patterns. More segregation during N3 was associated with worse recovery of working memory, executive attention, and psychomotor vigilance after the nap. The level of spatial resolution of network segregation varied among brain regions and was associated with the recovery of performance in distinct cognitive tasks. We demonstrated the sensitivity and reliability of voxel-level HSI to provide key insights into within-region variation, suggesting a mechanistic understanding of how NREM sleep replenishes cognition after sleep deprivation.
Collapse
Affiliation(s)
- Kangjoo Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada H3A 2B4
| | - Yimeng Wang
- Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, QC, Canada H4B 2A7
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
| | - Nathan E. Cross
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada H3W 1W5
| | - Aude Jegou
- Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, QC, Canada H4B 2A7
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
| | - Fatemeh Razavipour
- Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, QC, Canada H4B 2A7
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
| | - Florence B. Pomares
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada H3W 1W5
| | - Aurore A. Perrault
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada H3W 1W5
| | - Alex Nguyen
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada H3W 1W5
| | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, QC, Canada H4B 2A7
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom, RG6 6ET
| | - Makoto Uji
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada H3A 2B4
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 1A1
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada H3A 2B4
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
- Department of Psychology, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
| | - Birgit Frauscher
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 1A1
- Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada H3A 2B4
| | - Habib Benali
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Biomedical Imaging and Healthy Aging Laboratory, Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, Canada H3G 1S6
| | - Thien Thanh Dang-vu
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology & Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada H4B 1R6
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada H3W 1W5
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada H3A 2B4
- Multimodal Functional Imaging Lab, Department of Physics, Concordia University, Montréal, QC, Canada H4B 2A7
- Concordia School of Health / PERFORM Centre, Concordia University, Montréal, QC, Canada H4B 1R6
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 1A1
- Centre De Recherches En Mathématiques, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
5
|
Riazi H, Nazari M, Raoufy MR, Mirnajafi-Zadeh J, Shojaei A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci 2024; 14:378. [PMID: 38672027 PMCID: PMC11048381 DOI: 10.3390/brainsci14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
- Center for Proteins in Memory—PROMEMO, Danish National Research Foundation, 1057 København, Denmark
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
6
|
Luber B, Ekpo EC, Lisanby SH. The Use of Cognitive Paired Associative Stimulation (C-PAS) in Investigating and Remediating the Effects of Sleep Deprivation on Working Memory in Humans: The Importance of State-Dependency. CURRENT SLEEP MEDICINE REPORTS 2024; 10:199-206. [DOI: 10.1007/s40675-024-00290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 01/03/2025]
Abstract
Abstract
Purpose of Review
Sleep deprivation is a global health issue, and the resultant cognitive deficits can be debilitating. A series of studies reported success with individually neuronavigated transcranial magnetic stimulation (TMS), coupled with online task performance, in substantially reducing performance deficits in working memory in healthy adults caused by 2 days of total sleep depression. This paradigm of coupling TMS with online task performance has been referred to as Cognitive Paired Associative Stimulation (C-PAS). This review describes those studies and the research since using various TMS paradigms to remediate working memory deficits in sleep deprivation.
Recent Findings
Three such studies were found, but none replicated the earlier findings. However, in each case, there were differences in study design that might explain the negative findings and inform future methodological choices and to underline the need to combine TMS with brain imaging guidance.
Summary
Online task performance during TMS, as done in the C-PAS paradigm, appears to be essential to demonstrating lasting remediation of working memory deficits induced by sleep deprivation. This observation highlights the importance of state-dependency in determining the effects of TMS. Further work needs to be done to clarify the potential role of C-PAS in alleviating the effects of sleep deprivation and studying cognitive processes affected by sleep.
Collapse
|
7
|
Abdelhack M, Zhukovsky P, Milic M, Harita S, Wainberg M, Tripathy SJ, Griffiths JD, Hill SL, Felsky D. Opposing brain signatures of sleep in task-based and resting-state conditions. Nat Commun 2023; 14:7927. [PMID: 38040769 PMCID: PMC10692207 DOI: 10.1038/s41467-023-43737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature.
Collapse
Affiliation(s)
- Mohamed Abdelhack
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Boston, MA, USA
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shreyas Harita
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sean L Hill
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada.
| |
Collapse
|
8
|
LaGoy AD, Kubala AG, Deering S, Germain A, Markwald RR. Dawn of a New Dawn: Advances in Sleep Health to Optimize Performance. Sleep Med Clin 2023; 18:361-371. [PMID: 37532375 DOI: 10.1016/j.jsmc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Optimal sleep health is a critical component to high-level performance. In populations such as the military, public service (eg, firefighters), and health care, achieving optimal sleep health is difficult and subsequently deficiencies in sleep health may lead to performance decrements. However, advances in sleep monitoring technologies and mitigation strategies for poor sleep health show promise for further ecological scientific investigation within these populations. The current review briefly outlines the relationship between sleep health and performance as well as current advances in behavioral and technological approaches to improving sleep health for performance.
Collapse
Affiliation(s)
- Alice D LaGoy
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Andrew G Kubala
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Sean Deering
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | | | - Rachel R Markwald
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA.
| |
Collapse
|
9
|
Zhou L, Xu Y, Song F, Li W, Gao F, Zhu Q, Qian Z. The effect of TENS on sleep: A pilot study. Sleep Med 2023; 107:126-136. [PMID: 37167876 DOI: 10.1016/j.sleep.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Insomnia is the second most common neuropsychiatric disorder, but the current treatments are not very effective. There is therefore an urgent need to develop better treatments. Transcutaneous electrical nerve stimulation (TENS) may be a promising means of treating insomnia. OBJECTIVE This work aims to explore whether and how TENS modulate sleep and the effect of stimulation waveforms on sleep. METHODS Forty-five healthy subjects participated in this study. Electroencephalography (EEG) data were recorded before and after four mode low-frequency (1 Hz) TENS with different waveforms, which were formed by superimposing sine waves of different high frequencies (60-210 Hz) and low frequencies (1-6 Hz). The four waveform modes are formed by combining sine waves of varying frequencies. Mode 1 (M1) consists of a combination of high frequencies (60-110 Hz) and low frequencies (1-6 Hz). Mode 2 (M2) is made up of high frequencies (60-210 Hz) and low frequencies (1-6 Hz). Mode 3 (M3) consists of high frequencies (110-160 Hz) and low frequencies (1-6 Hz), while mode 4 (M4) is composed of high frequencies (160-210 Hz) and low frequencies (1-6 Hz). For M1, M3 and M4, the high frequency portions of the stimulus waveforms account for 50%, while for M2, the high frequency portion of the waveform accounts for 65%. For each mode, the current intensities ranged from 4 mA to 7 mA, with values for each participant adjusted according to individual tolerance. During stimulation, the subjects were stimulated at the greater occipital nerve by the four mode TENS. RESULTS M1, M3, and M4 slowed down the frequency of neural activity, broadened the distribution of theta waves, and caused a decrease in activity in wakefulness-related regions and an increase in activity in sleep-related regions. However, M2 has the opposite modulation effect. CONCLUSION These results indicated that low-frequency TENS (1 Hz) may facilitate sleep in a waveform-specific manner. Our findings provide new insights into the mechanisms of sleep modulation by TENS and the design of effective insomnia treatments.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Yixuan Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fanlei Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|
10
|
Lanza G, Fisicaro F, Cantone M, Pennisi M, Cosentino FII, Lanuzza B, Tripodi M, Bella R, Paulus W, Ferri R. Repetitive transcranial magnetic stimulation in primary sleep disorders. Sleep Med Rev 2023; 67:101735. [PMID: 36563570 DOI: 10.1016/j.smrv.2022.101735] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G. Rodolico-San Marco", Catania, Italy; Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
11
|
Feng J, Han P, Zheng W, Kamran A. Identifying the factors affecting strategic decision-making ability to boost the entrepreneurial performance: A hybrid structural equation modeling – artificial neural network approach. Front Psychol 2022; 13:1038604. [DOI: 10.3389/fpsyg.2022.1038604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
This study builds a conceptual model of strategic decision-making ability that leads to entrepreneurial performance (EP) based on the two-system decision-making theory and logical analysis. An empirical approach using structural equation modeling – artificial neural network (SEM-ANN) was performed to describe the linear and nonlinear relationships in the proposed model. The empirical results reveal that strategic decision-making abilities are affected by five factors: attention, memory, thinking, emotion, and sentiment, and whose influence mechanisms and degrees are varied. Results also describe that these abilities have a positive effect on overall EP. Therefore, results suggest that businesses’ strategic decision-making is usually strengthened when entrepreneurs have a clear understanding of these influencing elements, and the interaction between them leads to improved performance.
Collapse
|
12
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in “real time” the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer’s disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
13
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
14
|
Neacsiu AD, Beynel L, Graner JL, Szabo ST, Appelbaum LG, Smoski MJ, LaBar KS. Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation-A randomized controlled trial. J Affect Disord 2022; 301:378-389. [PMID: 35038479 PMCID: PMC9937022 DOI: 10.1016/j.jad.2022.01.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.
Collapse
|
15
|
Neacsiu AD, Beynel L, Powers JP, Szabo ST, Appelbaum LG, Lisanby SH, LaBar KS. Enhancing Cognitive Restructuring with Concurrent Repetitive Transcranial Magnetic Stimulation: A Transdiagnostic Randomized Controlled Trial. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:94-106. [PMID: 34551415 PMCID: PMC8891052 DOI: 10.1159/000518957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Emotional dysregulation constitutes a serious public health problem in need of novel transdiagnostic treatments. OBJECTIVE To this aim, we developed and tested a one-time intervention that integrates behavioral skills training with concurrent repetitive transcranial magnetic stimulation (rTMS). METHODS Forty-six adults who met criteria for at least one DSM-5 disorder and self-reported low use of cognitive restructuring (CR) were enrolled in a randomized, double-blind, sham-controlled trial that used a between-subjects design. Participants were taught CR and underwent active rTMS applied at 10 Hz over the right (n = 17) or left (n = 14) dorsolateral prefrontal cortex (dlPFC) or sham rTMS (n = 15) while practicing reframing and emotional distancing in response to autobiographical stressors. RESULTS Those who received active left or active right as opposed to sham rTMS exhibited enhanced regulation (ds = 0.21-0.62) as measured by psychophysiological indices during the intervention (higher high-frequency heart rate variability, lower regulation duration). Those who received active rTMS over the left dlPFC also self-reported reduced distress throughout the intervention (d = 0.30), higher likelihood to use CR, and lower daily distress during the week following the intervention. The procedures were acceptable and feasible with few side effects. CONCLUSIONS These findings show that engaging frontal circuits simultaneously with cognitive skills training and rTMS may be clinically feasible, well-tolerated and may show promise for the treatment of transdiagnostic emotional dysregulation. Larger follow-up studies are needed to confirm the efficacy of this novel therapeutic approach.
Collapse
|
16
|
Collins AR, Cheung J, Croarkin PE, Kolla BP, Kung S. Effects of transcranial magnetic stimulation on sleep quality and mood in patients with major depressive disorder. J Clin Sleep Med 2021; 18:1297-1305. [PMID: 34931606 PMCID: PMC9059593 DOI: 10.5664/jcsm.9846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES It is unknown whether sleep quality improvements after repetitive transcranial magnetic stimulation (rTMS) are inherent to the intervention or related to improvements in depressive symptoms. This retrospective study examined sleep quality in patients with major depressive disorder (MDD) before and after treatment with rTMS, adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments, depression severity and changes in depressive symptoms. METHODS Adults with MDD underwent a six-week course of 10 Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC). Patients completed the Patient Health Questionnaire-9 (PHQ-9) depression rating scale and Pittsburgh Sleep Quality Index (PSQI) before and after treatment. To limit confounding, analysis of depressive symptoms occurred without item 3 (the sleep item) of the PHQ-9. RESULTS Twenty-one patients completed the study, with a mean (± standard deviation) baseline PSQI score of 12.0 (±3.8), compared to 10.5 (±4.3) post-treatment (p = 0.01). The mean baseline PHQ-9 score without item 3 was 17.3 (±3.0), compared to 12.2 (±4.9) post-treatment (p = 0.0001). PSQI and modified PHQ-9 changes were uncorrelated in non-adjusted and adjusted linear regression models, as well as in Spearman's rank-order correlation. CONCLUSIONS Mood and sleep quality improved independently following rTMS treatment, even after adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments and depression severity. These findings suggest that rTMS exerts direct effects on both mood and sleep in patients with MDD.
Collapse
Affiliation(s)
| | - Joseph Cheung
- Mayo Clinic Division of Pulmonary and Sleep Medicine, Jacksonville, FL
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| | - Bhanu Prakash Kolla
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN.,Center for Sleep Medicine, Mayo Clinic, Rochester, MN
| | - Simon Kung
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| |
Collapse
|
17
|
Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, Fan Y, Duprat RJ, Satterthwaite TD, Sheline YI, Linn KA. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1553. [PMID: 33470055 DOI: 10.1002/wcs.1553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A DeLuisi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gianna M Perez
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Romain J Duprat
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristin A Linn
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Oroz R, Kung S, Croarkin PE, Cheung J. Transcranial magnetic stimulation therapeutic applications on sleep and insomnia: a review. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-020-00057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) is a neuromodulatory technique approved by the US Food and Drug Administration for use in treatment-resistant major depressive disorder. It works by generating localized magnetic fields that create depolarizing electrical currents in neurons a few centimeters below the scalp. This localized effect is believed to stimulate neural plasticity, activate compensatory processes, and influence cortical excitability. Additionally, rTMS has been used in a variety of clinical trials for neurological and psychiatric conditions such as anxiety, post-traumatic stress disorder and epilepsy. Beneficial effects in sleep parameters have been documented in these trials, as well as in major depressive disorder, and have led to an interest in using rTMS in the field of sleep medicine for specific disorders such as insomnia, hypersomnia, and restless legs syndrome. It is unknown whether rTMS has intrinsically beneficial properties when applied to primary sleep disorders, or if it only acts on sleep through mood disorders. This narrative review sought to examine available literature regarding the application of rTMS for sleep disorder to identify knowledge gaps and inform future study design. The literature in this area remains scarce, with few randomized clinical trials on rTMS and insomnia. Available studies have found mixed results, with some studies reporting subjective sleep improvement while objective improvement is less consistent. Due to the heterogeneity of results and the variations in rTMS protocols, no definitive conclusions have been reached, signaling the need for further research.
Collapse
|
19
|
Khan WAA, Jackson ML, Kennedy GA, Conduit R. A field investigation of the relationship between rotating shifts, sleep, mental health and physical activity of Australian paramedics. Sci Rep 2021; 11:866. [PMID: 33441601 PMCID: PMC7806923 DOI: 10.1038/s41598-020-79093-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Paramedics working on a rotating shift are at an increased risk of developing chronic health issues due to continuous circadian rhythm disruption. The acute effects of shift rotation and objectively measured sleep have rarely been reported in paramedics. This study investigated the relationships between a rotating shift schedule and sleep (using actigraphy), subjective reports of sleepiness, mood, stress and fatigue. Galvanic Skin Response, energy expenditure and physical activity (BodyMedia SenseWear Armband) were also recorded across the shift schedule. Paramedics were monitored for a period of eight consecutive days across pre-shift, day shift, night shift, and 2 days off. Fifteen paramedics (M age = 39.5 and SD = 10.7 years) who worked rotational shifts experienced sleep restriction during night shift compared to pre-shift, day shift and days off (p < 0.001). Night shift was also associated with higher levels of stress (p < 0.05), fatigue (p < 0.05), and sleepiness (p < 0.05). One day off was related to a return to pre-shift functioning. Such shift-related issues have a compounding negative impact on an already stressful occupation with high rates of physical and mental health issues. Therefore, there is an urgent need to investigate methods to reduce rotating shift burden on the health of paramedics. This could be through further research aimed at providing recommendations for shift work schedules with sufficient periods for sleep and recovery from stress.
Collapse
Affiliation(s)
- Wahaj Anwar A Khan
- Occupational Health Department, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
- Psychology Discipline, School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Melinda L Jackson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Gerard A Kennedy
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
- School of Health and Life Sciences, Federation University, Ballarat, Australia
- Psychology Discipline, School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Russell Conduit
- Institute for Breathing and Sleep, Austin Health, Melbourne, Australia.
- Psychology Discipline, School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
20
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 619] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
21
|
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania. Via Santa Sofia, 78 - 95125, Catania, Italy; Department of Neurology IC, Oasi Research Institute - IRCCS, Via Conte Ruggero, 73 - 94018, Troina, Italy.
| |
Collapse
|
22
|
Deng ZD, Luber B, Balderston NL, Velez Afanador M, Noh MM, Thomas J, Altekruse WC, Exley SL, Awasthi S, Lisanby SH. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu Rev Pharmacol Toxicol 2020; 60:591-614. [PMID: 31914895 DOI: 10.1146/annurev-pharmtox-010919-023253] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Device-based neuromodulation of brain circuits is emerging as a promising new approach in the study and treatment of psychiatric disorders. This work presents recent advances in the development of tools for identifying neurocircuits as therapeutic targets and in tools for modulating neurocircuits. We review clinical evidence for the therapeutic efficacy of circuit modulation with a range of brain stimulation approaches, including subthreshold, subconvulsive, convulsive, and neurosurgical techniques. We further discuss strategies for enhancing the precision and efficacy of neuromodulatory techniques. Finally, we survey cutting-edge research in therapeutic circuit modulation using novel paradigms and next-generation devices.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melbaliz Velez Afanador
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Michelle M Noh
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeena Thomas
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - William C Altekruse
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shannon L Exley
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shriya Awasthi
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
23
|
Balderston NL, Roberts C, Beydler EM, Deng ZD, Radman T, Luber B, Lisanby SH, Ernst M, Grillon C. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation. Nat Protoc 2020; 15:3595-3614. [PMID: 33005039 PMCID: PMC8123368 DOI: 10.1038/s41596-020-0387-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method to stimulate the cerebral cortex that has applications in psychiatry, such as in the treatment of depression and anxiety. Although many TMS targeting methods that use figure-8 coils exist, many do not account for individual differences in anatomy or are not generalizable across target sites. This protocol combines functional magnetic resonance imaging (fMRI) and iterative electric-field (E-field) modeling in a generalized approach to subject-specific TMS targeting that is capable of optimizing the stimulation site and TMS coil orientation. To apply this protocol, the user should (i) operationally define a region of interest (ROI), (ii) generate the head model from the structural MRI data, (iii) preprocess the functional MRI data, (iv) identify the single-subject stimulation site within the ROI, and (iv) conduct E-field modeling to identify the optimal coil orientation. In comparison with standard targeting methods, this approach demonstrates (i) reduced variability in the stimulation site across subjects, (ii) reduced scalp-to-cortical-target distance, and (iii) reduced variability in optimal coil orientation. Execution of this protocol requires intermediate-level skills in structural and functional MRI processing. This protocol takes ~24 h to complete and demonstrates how constrained fMRI targeting combined with iterative E-field modeling can be used as a general method to optimize both the TMS coil site and its orientation.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Camille Roberts
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Beydler
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Radman
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Li S, Zhou H, Yu Y, Lyu H, Mou T, Shi G, Hu S, Huang M, Hu J, Xu Y. Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial. Sleep Med 2020; 77:270-278. [PMID: 32843299 DOI: 10.1016/j.sleep.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Currently, an efficient method for improving cognitive impairment due to sleep deprivation (SD) is lacking. The aim of this study is to evaluate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) during SD on reversing the adverse effects of SD. METHODS A total of 66 healthy people were randomized into the rTMS group and sham group. Both groups were deprived of sleep for 24 h. During SD, participants were asked to complete several cognitive tasks and underwent mood assessments. Saliva cortisol levels, plasma concentrations of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), and tissue-type plasminogen activator (tPA), and frontal blood activation were detected before and after SD. The rTMS group received real rTMS stimulation for 2 sessions of 10 Hz rTMS (40 trains of 50 pulses with a 20-second intertrain interval) to the left dorsolateral prefrontal cortex and the sham group received sham stimulation during SD. RESULTS Twenty-four hours of SD induced a reduced accuracy in the n-back task, increases in both anxiety and depression, increased cortisol levels, decreased frontal blood activation and decreased BDNF levels in healthy people. Notably, rTMS improved the hyperactivity of the hypothalamic-pituitary-adrenal axis and decreased frontal blood activation induced by SD, and reduced the consumption of plasma proBDNF. CONCLUSIONS Twenty-four hours of SD induced a cognitive impairment. The administration of high-frequency rTMS during sleep deprivation exerted positive effects on HPA axis and frontal activation and might help alleviate cognitive impairment in the long term.
Collapse
Affiliation(s)
- Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yueran Yu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Gongde Shi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.
| |
Collapse
|
25
|
Beynel L, Davis SW, Crowell CA, Dannhauer M, Lim W, Palmer H, Hilbig SA, Brito A, Hile C, Luber B, Lisanby SH, Peterchev AV, Cabeza R, Appelbaum LG. Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults. Brain Sci 2020; 10:E255. [PMID: 32349366 PMCID: PMC7287855 DOI: 10.3390/brainsci10050255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/04/2022] Open
Abstract
The process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Simon W. Davis
- Department of Neurology, Duke University School of Medicine, 3116 N Duke Street, Durham, NC 27704, USA;
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
| | - Courtney A. Crowell
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Wesley Lim
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Hannah Palmer
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Susan A. Hilbig
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Alexandra Brito
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Connor Hile
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Bruce Luber
- National Institute of Mental Health, 6001 Executive Boulevard, Bethesda, MD 20852, USA;
| | - Sarah H. Lisanby
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- National Institute of Mental Health, 6001 Executive Boulevard, Bethesda, MD 20852, USA;
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- Department of Biomedical Engineering, Duke University, 305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, 305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA
- Department of Neurosurgery, Duke University School of Medicine, 200 Trent Drive, Box 3807 DUMC, Durham, NC 27710, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
- Department of Psychology & Neuroscience, Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | - Lawrence G. Appelbaum
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| |
Collapse
|
26
|
Mechanistic link between right prefrontal cortical activity and anxious arousal revealed using transcranial magnetic stimulation in healthy subjects. Neuropsychopharmacology 2020; 45:694-702. [PMID: 31791039 PMCID: PMC7021903 DOI: 10.1038/s41386-019-0583-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.
Collapse
|
27
|
Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Transl Psychiatry 2020; 10:68. [PMID: 32066739 PMCID: PMC7026136 DOI: 10.1038/s41398-020-0751-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most prevalent mental disorders, with few effective neuropharmacological treatments, making treatments development critical. While noninvasive neuromodulation can successfully treat depression, few treatment targets have been identified specifically for anxiety disorders. Previously, we showed that shock threat increases excitability and connectivity of the intraparietal sulcus (IPS). Here we tested the hypothesis that inhibitory repetitive transcranial magnetic stimulation (rTMS) targeting this region would reduce induced anxiety. Subjects were exposed to neutral, predictable, and unpredictable shock threat, while receiving double-blinded, 1 Hz active or sham IPS rTMS. We used global brain connectivity and electric-field modelling to define the single-subject targets. We assessed subjective anxiety with online ratings and physiological arousal with the startle reflex. Startle stimuli (103 dB white noise) probed fear and anxiety during the predictable (fear-potentiated startle, FPS) and unpredictable (anxiety-potentiated startle, APS) conditions. Active rTMS reduced both FPS and APS relative to both the sham and no stimulation conditions. However, the online anxiety ratings showed no difference between the stimulation conditions. These results were not dependent on the laterality of the stimulation, or the subjects' perception of the stimulation (i.e. active vs. sham). Results suggest that reducing IPS excitability during shock threat is sufficient to reduce physiological arousal related to both fear and anxiety, and are consistent with our previous research showing hyperexcitability in this region during threat. By extension, these results suggest that 1 Hz parietal stimulation may be an effective treatment for clinical anxiety, warranting future work in anxiety patients.
Collapse
|
28
|
High-Frequency Repetitive Transcranial Magnetic Stimulation Could Improve Impaired Working Memory Induced by Sleep Deprivation. Neural Plast 2019; 2019:7030286. [PMID: 31915432 PMCID: PMC6930796 DOI: 10.1155/2019/7030286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Objective To investigate whether and how the working memory impairment induced by sleep deprivation (SD) could be recovered by using repetitive transcranial magnetic stimulation (rTMS), as well as to clarify the corresponding brain activity changes. Methods Seventeen healthy adults received one session of 5.0 Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) following 24 hours of SD. Resting state functional magnetic resonance imaging (fMRI) and working memory test were performed during a rested waking period, after SD and rTMS. The amplitude of low-frequency fluctuations (ALFF) was used to detect the spontaneous neural activity changes after both SD and rTMS. The relationship between ALFF and the performance of working memory was also assessed by using correlation analysis. Results After SD, the participants exhibited lower response accuracies and longer reaction times on the working memory tests of letters and numbers. The decreased response accuracy of numbers was significantly improved after rTMS similarly to the state of the rested waking period after a normal night of sleep. ALFF values decreased from the rested waking period state to the state of SD in the brain regions involving the frontal gyrus, precuneus, angular gyrus, and parietal lobe which showed significantly increased ALFF after rTMS. Furthermore, significantly positive correlations were observed between changes of response accuracy and the changes of ALFF value of the inferior frontal gyrus and supramarginal gyrus. Conclusion These results indicate that high-frequency rTMS applied over left DLPFC may contribute to the recovery of the impaired working memory after SD by modulating the neural activity of related brain regions.
Collapse
|
29
|
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, Nguyen D, Chrapliwy NA, Davis SW, Cabeza R, Lisanby SH, Deng ZD. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev 2019; 107:47-58. [PMID: 31473301 PMCID: PMC7654714 DOI: 10.1016/j.neubiorev.2019.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 01/03/2023]
Abstract
Online repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence G Appelbaum
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Courtney A Crowell
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Susan A Hilbig
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Wesley Lim
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Duy Nguyen
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Nicolas A Chrapliwy
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - Sarah H Lisanby
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
30
|
Morales J, Yáñez A, Fernández-González L, Montesinos-Magraner L, Marco-Ahulló A, Solana-Tramunt M, Calvete E. Stress and autonomic response to sleep deprivation in medical residents: A comparative cross-sectional study. PLoS One 2019; 14:e0214858. [PMID: 30947295 PMCID: PMC6448892 DOI: 10.1371/journal.pone.0214858] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to evaluate the stress suffered by medical residents as the result of being on call for 24 hours, from a multidimensional approach. Two groups of medical residents selected according to their work shift, participated in the study: one group (n = 40) was sleep-deprived after having been actively on-call for 24 hours, and another contrast group (n = 18) had performed a normal work day and were not sleep-deprived. All participants completed pre-post measures during a 24 h cycle. These were administered on both occasions at 8 am. The measures included HRV, cortisol, cognitive performance and transitory mood. The effect of the group x phase interaction was significant for all variables analysed, indicating that doctors in the 24h on-call shift group showed significant deterioration in all physiological, performance and mood indicators in comparison with the participants in the group not on call. These results suggest the need to review medical on-call systems, in order to reduce the stress load, which has a direct effect on working conditions.
Collapse
Affiliation(s)
- Jose Morales
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Ramon Llull University, Barcelona, Spain
- * E-mail:
| | - Alexandre Yáñez
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Liria Fernández-González
- Department of Personality and Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | | | - Adrià Marco-Ahulló
- Unidad de lesionados medulares, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Mónica Solana-Tramunt
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Esther Calvete
- Department of Personality and Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| |
Collapse
|
31
|
Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS One 2019; 14:e0213707. [PMID: 30901345 PMCID: PMC6430375 DOI: 10.1371/journal.pone.0213707] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 01/06/2023] Open
Abstract
Working memory is the ability to perform mental operations on information that is stored in a flexible, limited capacity buffer. The ability to manipulate information in working memory is central to many aspects of human cognition, but also declines with healthy aging. Given the profound importance of such working memory manipulation abilities, there is a concerted effort towards developing approaches to improve them. The current study tested the capacity to enhance working memory manipulation with online repetitive transcranial magnetic stimulation in healthy young and older adults. Online high frequency (5Hz) repetitive transcranial magnetic stimulation was applied over the left dorsolateral prefrontal cortex to test the hypothesis that active repetitive transcranial magnetic stimulation would lead to significant improvements in memory recall accuracy compared to sham stimulation, and that these effects would be most pronounced in working memory manipulation conditions with the highest cognitive demand in both young and older adults. Repetitive transcranial magnetic stimulation was applied while participants were performing a delayed response alphabetization task with three individually-titrated levels of difficulty. The left dorsolateral prefrontal cortex was identified by combining electric field modeling to individualized functional magnetic resonance imaging activation maps and was targeted during the experiment using stereotactic neuronavigation with real-time robotic guidance, allowing optimal coil placement during the stimulation. As no accuracy differences were found between young and older adults, the results from both groups were collapsed. Subsequent analyses revealed that active stimulation significantly increased accuracy relative to sham stimulation, but only for the hardest condition. These results point towards further investigation of repetitive transcranial magnetic stimulation for memory enhancement focusing on high difficulty conditions as those most likely to exhibit benefits.
Collapse
|
32
|
Sathappan AV, Luber BM, Lisanby SH. The Dynamic Duo: Combining noninvasive brain stimulation with cognitive interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:347-360. [PMID: 30312634 DOI: 10.1016/j.pnpbp.2018.10.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
Pharmacotherapy, psychotherapy, and non-invasive brain stimulation (NIBS)1 each show efficacy in the treatment of psychiatric disorders; however, more efficacious interventions are needed as reflected by an overall unmet need in mental health care. While each modality has typically been studied and developed as a monotherapy, in practice they are typically used in combination. Research has begun to emerge studying the potential synergistic actions of multi-modal, combination therapies. For example, NIBS combined with rehabilitation strategies have demonstrated some success for speech and motor rehabilitation in stroke patients. In this review we present evidence suggesting that combining NIBS with targeted, cognitive interventions offers a potentially powerful new approach to treating neuropsychiatric disorders. Here we focus on NIBS studies using transcranial direct current stimulation (tDCS)2 and transcranial magnetic stimulation (TMS)3 given that these modalities are relatively safe, noninvasive, and can be performed simultaneously with neurocognitive interventions. We review the concept of "state dependent" effects of NIBS and highlight how simultaneous or sequential cognitive interventions could help optimize NIBS therapy by providing further control of ongoing neural activity in targeted neural networks. This review spans a range of neuropsychiatric disorders including major depressive disorder, schizophrenia, generalized anxiety, and autism. For each disorder, we emphasize neuroanatomical circuitry that could be engaged with combination therapy and critically discuss the literature that has begun to emerge. Finally, we present possible underlying mechanisms and propose future research strategies that may further refine the potential of combination therapies.
Collapse
Affiliation(s)
- Aakash V Sathappan
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bruce M Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Zhou F, Huang M, Gu L, Hong S, Jiang J, Zeng X, Gong H. Regional cerebral hypoperfusion after acute sleep deprivation: A STROBE-compliant study of arterial spin labeling fMRI. Medicine (Baltimore) 2019; 98:e14008. [PMID: 30633191 PMCID: PMC6336630 DOI: 10.1097/md.0000000000014008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous neuroimaging studies have shown that functional changes occur after acute sleep deprivation, which suggest detrimental effects of a lack of sleep on the intrinsic functional architecture of the brain. We aimed to identify regional resting perfusion changes in subjects with acute sleep deprivation.Thirty-three healthy subjects with habitual good sleep participated in 36 hours (2 days and 1 night) of sleep deprivation and then underwent the attention network test and pseudo-continuous arterial spin labeling scanning. Regional cerebral blood flow was used to compare cerebral perfusion before and after sleep deprivation. Correlation analyses of regional perfusion changes and scores on the attention network test were performed.Compared with the baseline (n = 20) scans, the scans of subjects after sleep deprivation (n = 26) revealed a slower response time (549.99 milliseconds vs 603.36 milliseconds; t = -2.301; P = .028) and a significantly higher lapse rate (0.88% vs 22.85%; t = -2.977; P = .006). The sleep deprivation subjects showed lower cerebral blood flow (CBF) in the left parahippocampal gyrus/fusiform cortex (pHipp/Fus), right pHipp/Fus, and right prefrontal cortex (PFC) relative to the baseline subjects (Gaussian random field correction, voxel level P < .01, and cluster level P < .05). Although no significant relationships were observed between the altered regional CBF (rCBF) values and the attention network test scores, the receiver-operating characteristic and leave-one-out cross-validation analyses revealed that significant decreases in rCBF in the bilateral pHipp/Fus and right PFC could discriminate between sleep deprivation and good sleep status.We observed that rCBF was reduced after 36 hours (2 days and 1 night) of sleep deprivation. Our preliminary findings suggest an acute vulnerability to hypoperfusion due to lack of sleep.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Lili Gu
- Department of Clinical Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital
- Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute
| |
Collapse
|
34
|
Powers JP, LaBar KS. Regulating emotion through distancing: A taxonomy, neurocognitive model, and supporting meta-analysis. Neurosci Biobehav Rev 2018; 96:155-173. [PMID: 30502352 DOI: 10.1016/j.neubiorev.2018.04.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
Abstract
Distancing is a type of emotion regulation that involves simulating a new perspective to alter the psychological distance and emotional impact of a stimulus. The effectiveness and versatility of distancing relative to other types of emotion regulation make it a promising tool for clinical applications. However, the neurocognitive mechanisms of this tactic are unclear, and inconsistencies in terminology and methods across studies make it difficult to synthesize the literature. To promote more effective research, we propose a taxonomy of distancing within the broader context of emotion regulation strategies; review the effects of this tactic; and offer a preliminary neurocognitive model describing key cognitive processes and their neural bases. Our model emphasizes three components-self-projection, affective self-reflection, and cognitive control. Additionally, we present results from a supporting meta-analysis of neuroimaging studies of distancing. These efforts are presented within the overarching goals of supporting effective applications of distancing in laboratory, clinical, and other real-world contexts, and advancing understanding of the relevant high-level cognitive functions in the brain.
Collapse
Affiliation(s)
- John P Powers
- Duke University, Department of Psychology & Neuroscience, Center for Cognitive Neuroscience, Box 90999, Durham, NC, 27708-0999, United States.
| | - Kevin S LaBar
- Duke University, Department of Psychology & Neuroscience, Center for Cognitive Neuroscience, Box 90999, Durham, NC, 27708-0999, United States.
| |
Collapse
|
35
|
Gupta A. Sleep Deprivation Therapy Enhanced Via Repetitive Transcranial Magnetic Stimulation in Major Depression. Cureus 2018; 10:e2174. [PMID: 29644161 PMCID: PMC5889156 DOI: 10.7759/cureus.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Transcranial magnetic stimulation (rTMS) and sleep deprivation (SD) are two of the latest advances made in the field of psychiatric research. Though yet in development, they present unique opportunities to achieve significant clinical outcomes particularly in major depression disorder (MDD). A limited set of studies have been done in the combined use of rTMS-SD in treating MDD. While promising, these studies have been hampered by the limited knowledge of rTMS and SD themselves due to their relatively recent use as viable therapeutic options. This review is aimed at an analysis of the limitations observed in the studies conducted to date involving rTMS and SD. In addition, it explores the potential new avenues for future research in the deployment of rTMS-SD as a viable treatment option.
Collapse
|
36
|
Martin DM, McClintock SM, Forster JJ, Lo TY, Loo CK. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depress Anxiety 2017; 34:1029-1039. [PMID: 28543994 DOI: 10.1002/da.22658] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/31/2017] [Accepted: 04/23/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an approved therapeutic treatment of major depressive disorder and has increasing clinical use throughout the world. However, it remains unclear whether an rTMS course for depression may also produce cognitive enhancement. In a recent meta-analysis of sham-controlled randomized controlled studies (RCTs) conducted in patients with neuropsychiatric conditions, no evidence was found for generalized cognitive enhancing effects across cognitive domains with active compared to sham rTMS. Notwithstanding, there remains the possibility of cognitive effects following an rTMS course that are more highly specific, for example, in specific clinical conditions, or at the individual task level. This study aimed to determine whether a therapeutic rTMS course in patients with depression is associated with cognitive enhancing effects at the task level. METHODS A systematic review and meta-analysis of outcomes on individual neuropsychological tasks from sham-controlled RCTs where an rTMS course was administered to the dorsolateral prefrontal cortex (DLPFC) in patients with depression. RESULTS Eighteen studies met the inclusion criteria. Active rTMS treatment showed no specific enhancing effects on the majority of cognitive tasks. Modest effect size improvements with active compared to sham rTMS treatment were found for performance on the Trail Making Test Parts A (g = 0.28, 95% CI = 0.06-0.50) and B (g = 0.26, 95% CI = 0.06-0.47). CONCLUSION A therapeutic rTMS course administered to the prefrontal cortex for depression may produce modest cognitive enhancing effects specific to psychomotor speed, visual scanning, and set-shifting ability.
Collapse
Affiliation(s)
- Donel M Martin
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jane J Forster
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Tin Yan Lo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Abstract
How does a lack of sleep affect our brains? In contrast to the benefits of sleep, frameworks exploring the impact of sleep loss are relatively lacking. Importantly, the effects of sleep deprivation (SD) do not simply reflect the absence of sleep and the benefits attributed to it; rather, they reflect the consequences of several additional factors, including extended wakefulness. With a focus on neuroimaging studies, we review the consequences of SD on attention and working memory, positive and negative emotion, and hippocampal learning. We explore how this evidence informs our mechanistic understanding of the known changes in cognition and emotion associated with SD, and the insights it provides regarding clinical conditions associated with sleep disruption.
Collapse
|
38
|
Luber BM, Davis S, Bernhardt E, Neacsiu A, Kwapil L, Lisanby SH, Strauman TJ. Reprint of ‘‘Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention’’. Neuroimage 2017; 151:65-71. [PMID: 28476213 PMCID: PMC10072336 DOI: 10.1016/j.neuroimage.2017.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 10/18/2016] [Accepted: 12/29/2016] [Indexed: 10/19/2022] Open
Abstract
The standard clinical technique for using repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) is associated with limited efficacy to date. Such limited efficacy may be due to reliance on scalp-based targeting rather than state-of-the-science methods which incorporate fMRI-guided neuronavigation based on a specific model of neurocircuit dysfunction. In this review, we examine such a specific model drawn from regulatory focus theory, which postulates two brain/behavior systems, the promotion and prevention systems, underlying goal pursuit. Individual differences in these systems have been shown to predict vulnerability to MDD as well as to comorbid generalized anxiety disorder (GAD). Activation of an individual's promotion or prevention goals via priming leads to motivational and affective responses modulated by the individual's appraisal of their progress in attaining the goal. In addition, priming promotion vs. prevention goals induces discriminable patterns of brain activation that are sensitive to the effects of depression and anxiety: MDD is associated with promotion system failure, anhedonic/dysphoric symptoms, and hypoactivation in specific regions in left prefrontal cortex, whereas GAD is associated with prevention system failure, hypervigilant/agitated symptoms, and hyperactivation in right prefrontal cortex (PFC). These left and right PFC locations can be directly targeted in an individualized manner for TMS. Additionally, this individually targeted rTMS can be integrated with cognitive interventions designed to activate the neural circuitry associated with promotion vs. prevention, thus allowing the neuroplasticity induced by the rTMS to benefit the systems likely to be involved in remediating depression. Targeted engagement of cortical systems involved in emotion regulation using individualized fMRI guidance may help increase the efficacy of rTMS in depression.
Collapse
|
39
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
40
|
Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention. Neuroimage 2017. [PMID: 28062252 DOI: 10.1016/j.neuroimage.2016.12.0831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
The standard clinical technique for using repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) is associated with limited efficacy to date. Such limited efficacy may be due to reliance on scalp-based targeting rather than state-of-the-science methods which incorporate fMRI-guided neuronavigation based on a specific model of neurocircuit dysfunction. In this review, we examine such a specific model drawn from regulatory focus theory, which postulates two brain/behavior systems, the promotion and prevention systems, underlying goal pursuit. Individual differences in these systems have been shown to predict vulnerability to MDD as well as to comorbid generalized anxiety disorder (GAD). Activation of an individual's promotion or prevention goals via priming leads to motivational and affective responses modulated by the individual's appraisal of their progress in attaining the goal. In addition, priming promotion vs. prevention goals induces discriminable patterns of brain activation that are sensitive to the effects of depression and anxiety: MDD is associated with promotion system failure, anhedonic/dysphoric symptoms, and hypoactivation in specific regions in left prefrontal cortex, whereas GAD is associated with prevention system failure, hypervigilant/agitated symptoms, and hyperactivation in right prefrontal cortex (PFC). These left and right PFC locations can be directly targeted in an individualized manner for TMS. Additionally, this individually targeted rTMS can be integrated with cognitive interventions designed to activate the neural circuitry associated with promotion vs. prevention, thus allowing the neuroplasticity induced by the rTMS to benefit the systems likely to be involved in remediating depression. Targeted engagement of cortical systems involved in emotion regulation using individualized fMRI guidance may help increase the efficacy of rTMS in depression.
Collapse
|
41
|
Luber BM, Davis S, Bernhardt E, Neacsiu A, Kwapil L, Lisanby SH, Strauman TJ. Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention. Neuroimage 2017; 148:1-7. [PMID: 28062252 DOI: 10.1016/j.neuroimage.2016.12.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 10/18/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022] Open
Abstract
The standard clinical technique for using repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) is associated with limited efficacy to date. Such limited efficacy may be due to reliance on scalp-based targeting rather than state-of-the-science methods which incorporate fMRI-guided neuronavigation based on a specific model of neurocircuit dysfunction. In this review, we examine such a specific model drawn from regulatory focus theory, which postulates two brain/behavior systems, the promotion and prevention systems, underlying goal pursuit. Individual differences in these systems have been shown to predict vulnerability to MDD as well as to comorbid generalized anxiety disorder (GAD). Activation of an individual's promotion or prevention goals via priming leads to motivational and affective responses modulated by the individual's appraisal of their progress in attaining the goal. In addition, priming promotion vs. prevention goals induces discriminable patterns of brain activation that are sensitive to the effects of depression and anxiety: MDD is associated with promotion system failure, anhedonic/dysphoric symptoms, and hypoactivation in specific regions in left prefrontal cortex, whereas GAD is associated with prevention system failure, hypervigilant/agitated symptoms, and hyperactivation in right prefrontal cortex (PFC). These left and right PFC locations can be directly targeted in an individualized manner for TMS. Additionally, this individually targeted rTMS can be integrated with cognitive interventions designed to activate the neural circuitry associated with promotion vs. prevention, thus allowing the neuroplasticity induced by the rTMS to benefit the systems likely to be involved in remediating depression. Targeted engagement of cortical systems involved in emotion regulation using individualized fMRI guidance may help increase the efficacy of rTMS in depression.
Collapse
Affiliation(s)
- Bruce M Luber
- National Institute of Mental Health, Bethesda, MD, USA.
| | - Simon Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Andrada Neacsiu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Lori Kwapil
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sarah H Lisanby
- National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Timothy J Strauman
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
42
|
Chengyang L, Daqing H, Jianlin Q, Haisheng C, Qingqing M, Jin W, Jiajia L, Enmao Y, Yongcong S, Xi Z. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction. Brain Imaging Behav 2016; 11:954-963. [DOI: 10.1007/s11682-016-9570-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Albergo J, Fernández M, Zaifrani L, Giunta D, Albergo L. ¿Cómo afecta la privación de sueño durante una guardia de 24 horas las funciones cognitivas de los residentes de ortopedia y traumatología? Rev Esp Cir Ortop Traumatol (Engl Ed) 2016; 60:113-8. [DOI: 10.1016/j.recot.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/14/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022] Open
|
44
|
How does sleep deprivation during 24h on call duty affect the cognitive performance orthopaedic residents? Rev Esp Cir Ortop Traumatol (Engl Ed) 2016. [DOI: 10.1016/j.recote.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Lanza G, Cantone M, Lanuzza B, Pennisi M, Bella R, Pennisi G, Ferri R. Distinctive patterns of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome, restless legs syndrome, insomnia, and sleep deprivation. Sleep Med Rev 2015; 19:39-50. [PMID: 24849846 DOI: 10.1016/j.smrv.2014.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/25/2014] [Accepted: 04/03/2014] [Indexed: 02/07/2023]
Abstract
Altered responses to transcranial magnetic stimulation (TMS) in obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), insomnia, and sleep-deprived healthy subjects have been reported. We have reviewed the relevant literature in order to identify eventual distinctive electrocortical profiles based on single and paired-pulse TMS, sensorimotor modulation, plasticity-related and repetitive TMS measures. Although obtained from heterogeneous studies, the detected changes might be the result of the different pathophysiological substrates underlying OSAS, RLS, insomnia and sleep deprivation rather than reflect the general effect of non-specific sleep loss and instability. OSAS tends to exhibit an increased motor cortex inhibition, which is reduced in RLS; intracortical excitability seems to be in favor of an "activating" profile in chronic insomnia and in sleep-deprived healthy individuals. Abnormal plasticity-related TMS phenomena have been demonstrated in OSAS and RLS. This review provides a perspective of TMS techniques by further understanding the role of neurotransmission pathways and plastic remodeling of neuronal networks involved in common sleep disorders. TMS might be considered a valuable tool in the assessment of sleep disorders, the evaluation of the effect of therapy and the design of non-pharmacological approaches.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73, 94018 Troina, EN, Italy.
| | - Mariagiovanna Cantone
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73, 94018 Troina, EN, Italy
| | - Bartolo Lanuzza
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73, 94018 Troina, EN, Italy
| | - Manuela Pennisi
- Department of Chemistry, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Rita Bella
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78, 95123 Catania, Italy
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78, 95123 Catania, Italy
| | - Raffaele Ferri
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73, 94018 Troina, EN, Italy
| |
Collapse
|
46
|
Limitations on visual information processing in the sleep-deprived brain and their underlying mechanisms. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Kahn RS, Sommer IE. The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry 2015; 20:84-97. [PMID: 25048005 PMCID: PMC4320288 DOI: 10.1038/mp.2014.66] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/15/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
It is evident that once psychosis is present in patients with schizophrenia, the underlying biological process of the illness has already been ongoing for many years. At the time of diagnosis, patients with schizophrenia show decreased mean intracranial volume (ICV) as compared with healthy subjects. Since ICV is driven by brain growth, which reaches its maximum size at approximately 13 years of age, this finding suggests that brain development in patients with schizophrenia is stunted before that age. The smaller brain volume is expressed as decrements in both grey and white matter. After diagnosis, it is mainly the grey matter loss that progresses over time whereas white matter deficits are stable or may even improve over the course of the illness. To understand the possible causes of the brain changes in the first phase of schizophrenia, evidence from treatment studies, postmortem and neuroimaging investigations together with animal experiments needs to be incorporated. These data suggest that the pathophysiology of schizophrenia is multifactorial. Increased striatal dopamine synthesis is already evident before the time of diagnosis, starting during the at-risk mental state, and increases during the onset of frank psychosis. Cognitive impairment and negative symptoms may, in turn, result from other abnormalities, such as NMDA receptor hypofunction and low-grade inflammation of the brain. The latter two dysfunctions probably antedate increased dopamine synthesis by many years, reflecting the much earlier presence of cognitive and social dysfunction. Although correction of the hyperdopaminergic state with antipsychotic agents is generally effective in patients with a first-episode psychosis, the effects of treatments to correct NMDA receptor hypofunction or low-grade inflammation are (so far) rather modest at best. Improved efficacy of these interventions can be expected when they are applied at the onset of cognitive and social dysfunction, rather than at the onset of psychosis.
Collapse
Affiliation(s)
- R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - I E Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Neurostimulation Devices for Cognitive Enhancement: Toward a Comprehensive Regulatory Framework. NEUROETHICS-NETH 2014. [DOI: 10.1007/s12152-014-9225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Luber B. Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition. Front Syst Neurosci 2014; 8:127. [PMID: 25071479 PMCID: PMC4085567 DOI: 10.3389/fnsys.2014.00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022] Open
Affiliation(s)
- Bruce Luber
- Division of Brain Stimulation, Departments of Psychiatry and Behavioral Sciences and Psychology and Neuroscience, Duke University Durham, NC, USA
| |
Collapse
|
50
|
Luber B, McClintock SM, Lisanby SH. Applications of transcranial magnetic stimulation and magnetic seizure therapy in the study and treatment of disorders related to cerebral aging. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576892 PMCID: PMC3622472 DOI: 10.31887/dcns.2013.15.1/bluber] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used to probe cortical function and treat neuropsychiatric illnesses. TMS has demonstrated neuroplastic effects akin to long-term potentiation and long-term depression, and therapeutic applications are in development for post-stroke recovery, Alzheimer's disease, and depression in seniors. Here, we discuss two new directions of TMS research relevant to cerebral aging and cognition. First, we introduce a paradigm for enhancing cognitive reserve, based on our research in sleep deprivation. Second, we discuss the use of magnetic seizure therapy (MST) to spare cognitive functions relative to conventional electroconvulsive therapy, and as a means of providing a more potent antidepressant treatment when subconvulsive TMS has shown modest efficacy in seniors. Whether in the enhancement of cognition as a treatment goal, or in the reduction of amnesia as a side effect, these approaches to the use of TMS and MST merit further exploration regarding their clinical potential.
Collapse
Affiliation(s)
- Bruce Luber
- Department of Psychiatry and Behavioral Sciences, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | | | | |
Collapse
|