1
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
3
|
Ildarabadi A, Mir Mohammad Ali SN, Rahmani F, Mosavari N, Pourbakhtyaran E, Rezaei N. Inflammation and oxidative stress in epileptic children: from molecular mechanisms to clinical application of ketogenic diet. Rev Neurosci 2024; 35:473-488. [PMID: 38347675 DOI: 10.1515/revneuro-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 06/02/2024]
Abstract
Childhood epilepsy affects up to 1 % of children. It has been shown that 30 % of patients are resistant to drug treatments, making further investigation of other potential treatment strategies necessary. One such approach is the ketogenic diet (KD) showing promising results and potential benefits beyond the use of current antiepileptic drugs. This study aims to investigate the effects of KD on inflammation and oxidative stress, as one of the main suggested mechanisms of neuroprotection, in children with epilepsy. This narrative review was conducted using the Medline and Google Scholar databases, and by searching epilepsy, drug-resistant epilepsy, child, children, ketogenic, ketogenic diet, diet, ketogenic, keto, ketone bodies (BHB), PUFA, gut microbiota, inflammation, inflammation mediators, neurogenic inflammation, neuroinflammation, inflammatory marker, adenosine modulation, mitochondrial function, MTOR pathway, Nrf2 pathway, mitochondrial dysfunction, PPARɣ, oxidative stress, ROS/RNS, and stress oxidative as keywords. Compelling evidence underscores inflammation and oxidative stress as pivotal factors in epilepsy, even in cases with genetic origins. The ketogenic diet effectively addresses these factors by reducing ROS and RNS, enhancing antioxidant defenses, improving mitochondrial function, and regulating inflammatory genes. Additionally, KD curbs pro-inflammatory cytokine and chemokine production by dampening NF-κB activation, inhibiting the NLRP3 inflammasome, increasing brain adenosine levels, mTOR pathway inhibition, upregulating PPARɣ expression, and promoting a healthy gut microbiota while emphasizing the consumption of healthy fats. KD could be considered a promising therapeutic intervention in patients with epilepsy particularly in drug-resistant epilepsy cases, due to its targeted approach addressing oxidative stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Seyedeh Nooshan Mir Mohammad Ali
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66502, USA
| | - Fatemeh Rahmani
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Narjes Mosavari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Elham Pourbakhtyaran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Pour Sina St, Tehran 1461884513, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
4
|
Hammer M, Krzyzaniak C, Bahramnejad E, Smelser K, Hack J, Watkins J, Ronaldson P. Sex differences in physiological response to increased neuronal excitability in a knockin mouse model of pediatric epilepsy. Clin Sci (Lond) 2024; 138:205-223. [PMID: 38348743 PMCID: PMC10881277 DOI: 10.1042/cs20231572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disease; however, few if any of the currently marketed antiseizure medications prevent or cure epilepsy. Discovery of pathological processes in the early stages of epileptogenesis has been challenging given the common use of preclinical models that induce seizures in physiologically normal animals. Moreover, despite known sex dimorphism in neurological diseases, females are rarely included in preclinical epilepsy models. METHODS We characterized sex differences in mice carrying a pathogenic knockin variant (p.N1768D) in the Scn8a gene that causes spontaneous tonic-clonic seizures (TCs) at ∼3 months of age and found that heterozygous females are more resilient than males in mortality and morbidity. To investigate the cellular mechanisms that underlie female resilience, we utilized blood-brain barrier (BBB) and hippocampal transcriptomic analyses in heterozygous mice before seizure onset (pre-TC) and in mice that experienced ∼20 TCs (post-TC). RESULTS In the pre-TC latent phase, both sexes exhibited leaky BBB; however, patterns of gene expression were sexually dimorphic. Females exhibited enhanced oxidative phosphorylation and protein biogenesis, while males activated gliosis and CREB signaling. After seizure onset (chronic phase), females exhibited a metabolic switch to lipid metabolism, while males exhibited increased gliosis and BBB dysfunction and a strong activation of neuroinflammatory pathways. CONCLUSION The results underscore the central role of oxidative stress and BBB permeability in the early stages of epileptogenesis, as well as sex dimorphism in response to increasing neuronal hyperexcitability. Our results also highlight the need to include both sexes in preclinical studies to effectively translate results of drug efficacy studies.
Collapse
Affiliation(s)
- Michael F. Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Neurology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, Arizona, U.S.A
| | | | - Joshua B. Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
| | - Joseph C. Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, U.S.A
| | | |
Collapse
|
5
|
Chi W, Kiskinis E. Integrative analysis of epilepsy-associated genes reveals expression-phenotype correlations. Sci Rep 2024; 14:3587. [PMID: 38351047 PMCID: PMC10864290 DOI: 10.1038/s41598-024-53494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epilepsy is a highly prevalent neurological disorder characterized by recurrent seizures. Patients exhibit broad genetic, molecular, and clinical diversity involving mild to severe comorbidities. The factors that contribute to this phenotypic diversity remain unclear. Here we used publicly available datasets to systematically interrogate the expression pattern of 230 epilepsy-associated genes across human tissues, developmental stages, and central nervous system (CNS) cellular subtypes. We grouped genes based on their curated phenotypes into 3 broad classes: core epilepsy genes (CEG), where seizures are the dominant phenotype, developmental and epileptic encephalopathy genes (DEEG) that are associated with developmental and epileptic encephalopathy, and seizure-related genes (SRG), which are characterized by the presence of seizures and gross brain malformations. We find that compared to the other two groups of genes, DEEGs are highly expressed within the adult CNS, exhibit the highest and most dynamic expression in various brain regions across development, and are significantly enriched in GABAergic neurons. Our analysis provides an overview of the expression pattern of epilepsy-associated genes with spatiotemporal resolution and establishes a broad expression-phenotype correlation in epilepsy.
Collapse
Affiliation(s)
- Wanhao Chi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
7
|
Manca C, Coa R, Murru E, Carta G, Pinna G, Sanfilippo R, Polizzi L, Pistis M, Follesa P, Puligheddu M, Banni S. Identification of metabolic biomarkers of chronic vagus nerve stimulation (VNS) in subjects with drug-resistant epilepsy (DRE). Epilepsia Open 2024; 9:432-438. [PMID: 38016924 PMCID: PMC10839364 DOI: 10.1002/epi4.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Neuromodulation by means of vagus nerve stimulation (VNS) therapy, reduces seizure frequency and improves quality of life in subjects with drug-resistant epilepsy (DRE), yet its molecular mechanism remains unclear. This study investigates the impact of chronic VNS on lipid bioactive metabolites and fatty acids (FA) in the plasma and red blood cells of seven subjects with DRE. By measuring expression levels of peroxisome proliferator-activated receptor α (PPARα) and sirtuin1 (SIRT1) genes-key regulators in energy and lipid metabolism-and lipid profiles before and after various stages of VNS, this study identifies potential mechanisms by which VNS may reduce seizure frequency. Blood samples collected before VNS device implantation, after acute VNS stimulus, and following gradual intensity increments up to therapeutic levels revealed that VNS increases SIRT1 and PPARα expression and erythrocyte concentrations of PPARα ligands. Additionally, we observe reduced de novo lipogenesis biomarkers in erythrocytes, indicating that VNS may influence systemic lipid and energy metabolism. Our findings suggest that VNS could enhance neuronal function by modulating energy metabolism, thus potentially reducing seizure frequency in subjects with DRE. Future research targeting SIRT1 and PPARα may provide innovative therapeutic strategies for managing DRE. Plain Language Summary: The exact mechanism of VNS is still unknown. This study investigated the effects of VNS Therapy on energetic metabolism, suggesting possible novel biomarkers for DRE subjects and neuromodulation therapies.
Collapse
Affiliation(s)
- Claudia Manca
- Department of Biomedical SciencesDivision of PhysiologyUniversity of CagliariCagliariItaly
| | - Roberta Coa
- Center for the Diagnosis and Treatment of Adult EpilepsyNeurology UnitAOU CagliariCagliariItaly
| | - Elisabetta Murru
- Department of Biomedical SciencesDivision of PhysiologyUniversity of CagliariCagliariItaly
| | - Gianfranca Carta
- Department of Biomedical SciencesDivision of PhysiologyUniversity of CagliariCagliariItaly
| | - Giovanni Pinna
- SC NeurosurgeryNeuroscience and Rehabilitation Department, San Michele HospitalARNAS G. BrotzuCagliariItaly
| | | | - Lorenzo Polizzi
- Center for the Diagnosis and Treatment of Adult EpilepsyNeurology UnitAOU CagliariCagliariItaly
| | - Marco Pistis
- Department of Biomedical SciencesDivision of Neuroscience and Clinical PharmacologyUniversity of CagliariCagliariItaly
- Neuroscience InstituteNational Research Council of Italy (CNR), Section of CagliariCagliariItaly
- Clinical Pharmacology UnitAOU CagliariCagliariItaly
| | - Paolo Follesa
- Department of Life and Environmental SciencesSection of Neuroscience and AnthropologyUniversity of CagliariCagliariItaly
| | - Monica Puligheddu
- Center for the Diagnosis and Treatment of Adult EpilepsyNeurology UnitAOU CagliariCagliariItaly
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Sebastiano Banni
- Department of Biomedical SciencesDivision of PhysiologyUniversity of CagliariCagliariItaly
| |
Collapse
|
8
|
Lau KEH, Nguyen NT, Kesavan JC, Langa E, Fanning K, Brennan GP, Sanz-Rodriguez A, Villegas-Salmerón J, Yan Y, Venø MT, Mills JD, Rosenow F, Bauer S, Kjems J, Henshall DC. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun 2024; 6:fcad355. [PMID: 38204971 PMCID: PMC10781512 DOI: 10.1093/braincomms/fcad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kelvin E How Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway H91 TK33, Ireland
| | - Yan Yan
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St.Peter SL9 0RJ, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Felix Rosenow
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Sebastian Bauer
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
9
|
Bartolini E, Ferrari AR, Fiori S, Della Vecchia S. Glycaemic Imbalances in Seizures and Epilepsy of Paediatric Age: A Literature Review. J Clin Med 2023; 12:jcm12072580. [PMID: 37048663 PMCID: PMC10095009 DOI: 10.3390/jcm12072580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Cerebral excitability and systemic metabolic balance are closely interconnected. Energy supply to neurons depends critically on glucose, whose fluctuations can promote immediate hyperexcitability resulting in acute symptomatic seizures. On the other hand, chronic disorders of sugar metabolism (e.g., diabetes mellitus) are often associated with long-term epilepsy. In this paper, we aim to review the existing knowledge on the association between acute and chronic glycaemic imbalances (hyper- and hypoglycaemia) with seizures and epilepsy, especially in the developing brain, focusing on clinical and instrumental features in order to optimize the care of children and adolescents and prevent the development of chronic neurological conditions in young patients.
Collapse
Affiliation(s)
- Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Department of Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Correspondence: ; Tel.: +39-050-886-332
| |
Collapse
|
10
|
Wieser M, Beckmann KM, Kutter APN, Mauri N, Richter H, Zölch N, Bektas RN. Ketamine administration in idiopathic epileptic and healthy control dogs: Can we detect differences in brain metabolite response with spectroscopy? Front Vet Sci 2023; 9:1093267. [PMID: 36686158 PMCID: PMC9853535 DOI: 10.3389/fvets.2022.1093267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction In recent years ketamine has increasingly become the focus of multimodal emergency management for epileptic seizures. However, little is known about the effect of ketamine on brain metabolites in epileptic patients. Magnetic resonance spectroscopy (MRS) is a non-invasive technique to estimate brain metabolites in vivo. Our aim was to measure the effect of ketamine on thalamic metabolites in idiopathic epileptic (IE) dogs using 3 Tesla MRS. We hypothesized that ketamine would increase the glutamine-glutamate (GLX)/creatine ratio in epileptic dogs with and without antiseizure drug treatment, but not in control dogs. Furthermore, we hypothesized that no different responses after ketamine administration in other measured brain metabolite ratios between the different groups would be detected. Methods In this controlled prospective experimental trial IE dogs with or without antiseizure drug treatment and healthy client-owned relatives of the breeds Border Collie and Greater Swiss Mountain Dog, were included. After sedation with butorphanol, induction with propofol and maintenance with sevoflurane in oxygen and air, a single voxel MRS at the level of the thalamus was performed before and 2 min after intravenous administration of 1 mg/kg ketamine. An automated data processing spectral fitting linear combination model algorithm was used to estimate all commonly measured metabolite ratios. A mixed ANOVA with the independent variables ketamine administration and group allocation was performed for all measured metabolites. A p < 0.05 was considered statistically significant. Results Twelve healthy control dogs, 10 untreated IE and 12 treated IE dogs were included. No significant effects for GLX/creatine were found. However, increased glucose/creatine ratios were found (p < 0.001) with no effect of group allocation. Furthermore, increases in the GABA/creatine ratio were found in IEU dogs. Discussion MRS was able to detect changes in metabolite/creatine ratios after intravenous administration of 1 mg/kg ketamine in dogs and no evidence was found that excitatory effects are induced in the thalamus. Although it is beyond the scope of this study to investigate the antiseizure potential of ketamine in dogs, results of this research suggest that the effect of ketamine on the brain metabolites could be dependent on the concentrations of brain metabolites before administration.
Collapse
Affiliation(s)
- Manuela Wieser
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland,*Correspondence: Manuela Wieser ✉
| | | | - Annette P. N. Kutter
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| | - Nico Mauri
- Department of Clinical Diagnostics and Services, Clinic for Diagnostic Imaging, University of Zurich, Zurich, Switzerland,Vetimage Diagnostik AG, Oberentfelden, Switzerland
| | - Henning Richter
- Department of Clinical Diagnostics and Services, Clinic for Diagnostic Imaging, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Rima Nadine Bektas
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Gola L, Bierhansl L, Hummel N, Korn L, Pawlowski M, Cerina M, Hundehege P, Budde T, König S, Meuth SG, Wiendl H, Kovac S. MMF induces antioxidative and anaplerotic pathways and is neuroprotective in hyperexcitability in vitro. Free Radic Biol Med 2023; 194:337-346. [PMID: 36521578 DOI: 10.1016/j.freeradbiomed.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Hyperexcitability-induced neuronal damage plays a role both in epilepsy as well as in inflammatory brain diseases such as multiple sclerosis (MS) and as such represents an important disease pathway which potentially can be targeted to mitigate neuronal damage. Dimethyl fumarate (DMF) and its pharmacologically active metabolite monomethyl fumarate (MMF) are FDA-approved therapeutics for MS, which can induce immunosuppressive and antioxidant pathways, and their neuroprotective capacity has been demonstrated in other preclinical neurological disease models before. In this study, we used an unbiased proteomic approach to identify potential new targets upon the treatment of MMF in glio-neuronal hippocampal cultures. MMF treatment results in induction of antioxidative (HMOX1, NQO1) and anaplerotic metabolic (GAPDH, PC) pathways, which correlated with reduction in ROS production, increased mitochondrial NADH-redox index and decreased NADH pool, independent of glutathione levels. Additionally, MMF reduced glycolytic capacity indicating individual intra-cellular metabolic programs within different cell types. Furthermore, we demonstrate a neuroprotective effect of MMF upon hyperexcitability in vitro (low magnesium model), where MMF prevents glio-neuronal death via reduced ROS production. These results highlight MMF as a potential new therapeutic opportunity in hyperexcitability-induced neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicolas Hummel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Budde
- Department of Neurophysiology, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
12
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
14
|
An Integrated Multi-Omic Network Analysis Identifies Seizure-Associated Dysregulated Pathways in the GAERS Model of Absence Epilepsy. Int J Mol Sci 2022; 23:ijms23116063. [PMID: 35682742 PMCID: PMC9181682 DOI: 10.3390/ijms23116063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.
Collapse
|
15
|
Xu W, Zhang W, Cui L, Shi L, Zhu B, Lyu TJ, Ma W. Novel mutation of SIK1 gene causing a mild form of pediatric epilepsy in a Chinese patient. Metab Brain Dis 2022; 37:1207-1219. [PMID: 35267137 DOI: 10.1007/s11011-022-00943-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
Developmental and Epileptic Encephalopathy (DEE) is a group of disorders affecting children at early stages of infancy, which is characterized by frequent seizures, epileptiform activity on EEG, and developmental delayor regression. Developmental and epileptic encephalopathy-30 (DEE30) is a severe neurologic disorder characterized by onset of refractory seizures soon after birth or in the first months of life. Which was recently found to be caused by heterozygous mutations in the salt-inducible kinase SIK1. In this study, we investigated a patient with early onset epilepsy. DNA sequencing of the whole coding region revealed a de novel heterozygous nucleotide substitution (c.880G > A) causing a missense mutation (p.A294T). This mutation was classified as variant of unknown significance (VUS) by American College of Medical Genetics and Genomics (ACMG). To further investigate the pathogenicity and pathogenesis of this mutation, we established a human neuroblastoma cell line (SH-SY5Y) stably-expressing wild type SIK1 and A294T mutant, and compared the transcriptome and metabolomics profiles. We presented a pediatric patient suffering from infantile onset epilepsy. Early EEG showed a boundary dysfunction of activity and MRI scan of the brain was normal. The patient responded well to single anti-epileptic drug treatment. Whole-exome sequencing found a missense mutation of SIK1 gene (c.880G > A chr21: 43,420,326 p. A294T). Dysregulated transcriptome and metabolome in cell models expressing WT and MUT SIK1 confirmed the pathogenicity of the mutation. Specifically, we found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation. We found MEF2C target genes, certain epilepsy causing genes and metabolites are dysregulated by SIK1 mutation. Our finding further expanded the disease spectrum and provided novel mechanistic insights of DEE30.
Collapse
Affiliation(s)
- Wangshu Xu
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China
| | - Wenqun Zhang
- Department of Pediatrics, Chongqing Youyoubaobei Women and Children's Hospital, Chongqing, 400000, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Lei Shi
- Department of Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| | - Tina-Jie Lyu
- China National Clinical Research Center for Neurological Diseases, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| | - Wenping Ma
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
16
|
Niu D, Sun P, Zhang F, Song F. Metabonomic analysis of cerebrospinal fluid in epilepsy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:449. [PMID: 35571432 PMCID: PMC9096421 DOI: 10.21037/atm-22-1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Background We sought to explore the relationship between epilepsy and cerebrospinal fluid metabolomics and identify biomarkers for the diagnosis, treatment, and prognosis of epilepsy. Methods In total, 23 epileptic patients treated at The First Affiliated Hospital of Dalian Medical University from April 2019 to September 2019 were selected for the disease group and 13 non-epileptic patients were selected for the control group. Cerebrospinal fluid samples were collected from both groups, and the metabolites were analyzed by gas chromatography–mass spectrometry. The metabolites differentially expressed in the cerebrospinal fluid samples were identified. A differential metabolite enrichment analysis was performed to determine the metabolic pathways. Results Using a variable importance in the projection value >1 and a P value <0.05 as the screening criteria, we found that 3 metabolites (i.e., alpha-ketoisocaproic acid 1, xylose 1, and glycine 2) were differentially expressed in the cerebrospinal fluid of the 23 epileptic patients compared to the 13 non-epileptic patients. Alpha-ketoisocaproic acid 1 and xylose 1 were highly expressed in the epileptic cerebrospinal fluid samples, while glycine 2 was lowly expressed in the epileptic cerebrospinal fluid samples. Additionally, the 3 metabolites were significantly enriched in the 5 metabolic pathways of primary bile acid biosynthesis, valine, leucine, and isoleucine degradation, glutathione metabolism, glyoxylate and dicarboxylate metabolism, and glycine, serine, and threonine metabolism. Conclusions The present study examined the metabolites of the cerebrospinal fluid of epileptic patients and non-epileptic patients. Our findings provide insights that may inform the discovery of therapeutic targets and diagnostic markers for epilepsy.
Collapse
Affiliation(s)
- Di Niu
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Pin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fenghua Zhang
- College of Laboratory Medicine, Dalian Medical University, Dalian, China.,Department of Laboratory Medicine, Zhoupu Hospital Affiliated of Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fan Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Weng OY, Li Y, Wang LY. Modeling Epilepsy Using Human Induced Pluripotent Stem Cells-Derived Neuronal Cultures Carrying Mutations in Ion Channels and the Mechanistic Target of Rapamycin Pathway. Front Mol Neurosci 2022; 15:810081. [PMID: 35359577 PMCID: PMC8960276 DOI: 10.3389/fnmol.2022.810081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is a neurological disorder that affects over 65 million people globally. It is characterized by periods of seizure activity of the brain as a result of excitation and inhibition (E/I) imbalance, which is regarded as the core underpinning of epileptic activity. Both gain- and loss-of-function (GOF and LOF) mutations of ion channels, synaptic proteins and signaling molecules along the mechanistic target of rapamycin (mTOR) pathway have been linked to this imbalance. The pathogenesis of epilepsy often has its roots in the early stage of brain development. It remains a major challenge to extrapolate the findings from many animal models carrying these GOF or LOF mutations to the understanding of disease mechanisms in the developing human brain. Recent advent of the human pluripotent stem cells (hPSCs) technology opens up a new avenue to recapitulate patient conditions and to identify druggable molecular targets. In the following review, we discuss the progress, challenges and prospects of employing hPSCs-derived neural cultures to study epilepsy. We propose a tentative working model to conceptualize the possible impact of these GOF and LOF mutations in ion channels and mTOR signaling molecules on the morphological and functional remodeling of intrinsic excitability, synaptic transmission and circuits, ultimately E/I imbalance and behavioral phenotypes in epilepsy.
Collapse
Affiliation(s)
- Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Yun Li,
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lu-Yang Wang,
| |
Collapse
|
18
|
Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2021; 43:87-96. [PMID: 34887128 DOI: 10.1016/j.tips.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Acquired epilepsy (AE) can result from a number of brain insults and neurological diseases with wide etiological diversity sharing one common outcome of brain epileptiform activity. This implies that despite their disparity, all these initiating pathologies affect the same fundamental brain functions underlying network excitability. Identifying such mechanisms and their availability as therapeutic targets would help develop an effective strategy for epileptogenesis prevention. In this opinion article, we propose that the vicious cycle of NADPH oxidase (NOX)-mediated oxidative stress and glucose hypometabolism is the underlying cause of AE, as available data reveal a critical role for both pathologies in epileptogenesis and the process of seizure initiation. Altogether, here we present a novel view on the mechanisms behind the onset of AE and identify therapeutic targets for potential clinical applications.
Collapse
|
19
|
Tapia A, Giachello CN, Palomino-Schätzlein M, Baines RA, Galindo MI. Generation and Characterization of the Drosophila melanogaster paralytic Gene Knock-Out as a Model for Dravet Syndrome. Life (Basel) 2021; 11:life11111261. [PMID: 34833136 PMCID: PMC8619338 DOI: 10.3390/life11111261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Dravet syndrome is a severe rare epileptic disease caused by mutations in the SCN1A gene coding for the Nav1.1 protein, a voltage-gated sodium channel alpha subunit. We have made a knock-out of the paralytic gene, the single Drosophila melanogaster gene encoding this type of protein, by homologous recombination. These flies showed a heat-induced seizing phenotype, and sudden death in long term seizures. In addition to seizures, neuromuscular alterations were observed in climbing, flight, and walking tests. Moreover, they also manifested some cognitive alterations, such as anxiety and problems in learning. Electrophysiological analyses from larval motor neurons showed a decrease in cell capacitance and membrane excitability, while persistent sodium current increased. To detect alterations in metabolism, we performed an NMR metabolomic profiling of heads, which revealed higher levels in some amino acids, succinate, and lactate; and also an increase in the abundance of GABA, which is the main neurotransmitter implicated in Dravet syndrome. All these changes in the paralytic knock-out flies indicate that this is a good model for epilepsy and specifically for Dravet syndrome. This model could be a new tool to understand the pathophysiology of the disease and to find biomarkers, genetic modifiers and new treatments.
Collapse
Affiliation(s)
- Andrea Tapia
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
| | - Carlo N. Giachello
- Manchester Academic Health Science Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (C.N.G.); (R.A.B.)
| | | | - Richard A. Baines
- Manchester Academic Health Science Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (C.N.G.); (R.A.B.)
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
- Correspondence:
| |
Collapse
|
20
|
Jablonski J, Hoffmann L, Blümcke I, Fejtová A, Uebe S, Ekici AB, Gnatkovsky V, Kobow K. Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study. Cells 2021; 10:cells10113004. [PMID: 34831225 PMCID: PMC8616120 DOI: 10.3390/cells10113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding seizure development requires an integrated knowledge of different scales of organization of epileptic networks. We developed a model of “epilepsy-in-a-dish” based on dissociated primary neuronal cells from neonatal rat hippocampus. We demonstrate how a single application of glutamate stimulated neurons to generate spontaneous synchronous spiking activity with further progression into spontaneous seizure-like events after a distinct latency period. By computational analysis, we compared the observed neuronal activity in vitro with intracranial electroencephalography (EEG) data recorded from epilepsy patients and identified strong similarities, including a related sequence of events with defined onset, progression, and termination. Next, a link between the neurophysiological changes with network composition and cellular structure down to molecular changes was established. Temporal development of epileptiform network activity correlated with increased neurite outgrowth and altered branching, increased ratio of glutamatergic over GABAergic synapses, and loss of calbindin-positive interneurons, as well as genome-wide alterations in DNA methylation. Differentially methylated genes were engaged in various cellular activities related to cellular structure, intracellular signaling, and regulation of gene expression. Our data provide evidence that a single short-term excess of glutamate is sufficient to induce a cascade of events covering different scales from molecule- to network-level, all of which jointly contribute to seizure development.
Collapse
Affiliation(s)
- Janos Jablonski
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.J.); (L.H.); (I.B.)
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.J.); (L.H.); (I.B.)
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.J.); (L.H.); (I.B.)
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Steffen Uebe
- NGS Core Unit, Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.U.); (A.B.E.)
| | - Arif B. Ekici
- NGS Core Unit, Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.U.); (A.B.E.)
| | - Vadym Gnatkovsky
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.J.); (L.H.); (I.B.)
- Correspondence: ; Tel.: +49-9131-8522859
| |
Collapse
|
21
|
Spatio-temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. Proc Natl Acad Sci U S A 2021; 118:2013972118. [PMID: 33692123 DOI: 10.1073/pnas.2013972118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hippocampus's dorsal and ventral parts are involved in different operative circuits, the functions of which vary in time during the night and day cycle. These functions are altered in epilepsy. Since energy production is tailored to function, we hypothesized that energy production would be space- and time-dependent in the hippocampus and that such an organizing principle would be modified in epilepsy. Using metabolic imaging and metabolite sensing ex vivo, we show that the ventral hippocampus favors aerobic glycolysis over oxidative phosphorylation as compared to the dorsal part in the morning in control mice. In the afternoon, aerobic glycolysis is decreased and oxidative phosphorylation increased. In the dorsal hippocampus, the metabolic activity varies less between these two times but is weaker than in the ventral. Thus, the energy metabolism is different along the dorsoventral axis and changes as a function of time in control mice. In an experimental model of epilepsy, we find a large alteration of such spatiotemporal organization. In addition to a general hypometabolic state, the dorsoventral difference disappears in the morning, when seizure probability is low. In the afternoon, when seizure probability is high, the aerobic glycolysis is enhanced in both parts, the increase being stronger in the ventral area. We suggest that energy metabolism is tailored to the functions performed by brain networks, which vary over time. In pathological conditions, the alterations of these general rules may contribute to network dysfunctions.
Collapse
|
22
|
Gong T, Liu Y, Chen Y, Lin L, Lin Y, Wang G. Focal corticarl dysplasia in epilepsy is associated with GABA increase. Neuroimage Clin 2021; 31:102763. [PMID: 34280836 PMCID: PMC8313738 DOI: 10.1016/j.nicl.2021.102763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy; however the underlying epileptogenic mechanisms of FCD metabolism in epilepsy patients remain unclear. The aim of this study is to detect alterations of γ-aminobutyric acid (GABA), glutathione (GSH), and the composite of glutamate and glutamine (Glx) in MRI-typical and neuropathologically confirmed FCD-associated epilepsy using Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy (HERMES). MATERIALS AND METHODS Fourteen epileptic patients suspected to be caused by FCD and 14 healthy controls were enrolled prospectively in this study; all subjects underwent a 3 T MRI scan, including 3D T1 weighted imaging and HERMES. The GABA signal detected by HERMES also contains signals from macromolecules and homocarnosine, so it is referred as GABA+. Signals of GABA+, GSH and Glx detected by HERMES from tumor foci, contralateral cerebral regions, and healthy controls were quantified using Gannet. Fitting errors and signal to noise ratios (SNRs) of GABA + signals were also recorded. Differences of GABA+, GSH, Glx, fitting error and SNR of GABA + among three groups were analyzed using linear mixed effects models. RESULTS Twelve FCD-associated epilepsy patients (7 females, aged 21.9 ± 9.3 years) and 12 matched healthy controls (7 females, aged 22.8 ± 9.8 years) were finally enrolled in this study. ANOVA results indicated that GABA levels were significantly increased in FCD foci compared with contralateral regions (p = 0.008) and with healthy controls (p = 0.003), while no difference was found in GSH and Glx levels. No difference of fitting errors or SNR of GABA + was found among FCD foci, contralateral regions and healthy controls. CONCLUSIONS Increased GABA levels were found in FCD foci that indicated GABA may play a central role in the pathophysiology of FCD patients with epilepsy.
Collapse
Affiliation(s)
- Tao Gong
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; MSunSoft Health Group, Shandong, China
| | - Yubo Liu
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | | | - Youting Lin
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
23
|
Miljanovic N, van Dijk RM, Buchecker V, Potschka H. Metabolomic signature of the Dravet syndrome: A genetic mouse model study. Epilepsia 2021; 62:2000-2014. [PMID: 34223647 DOI: 10.1111/epi.16976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Alterations in metabolic homeostasis can contribute to neuronal hyperexcitability and seizure susceptibility. Although the pivotal role of impaired bioenergetics is obvious in metabolic epilepsies, there is a gap of knowledge regarding secondary changes in metabolite patterns as a result of genetic Scn1a deficiency and ketogenic diet in the Dravet syndrome. METHODS A comprehensive untargeted metabolomics analysis, along with assessment of epileptiform activity and behavioral tests, was completed in a Dravet mouse model. Data sets were compared between animals on a control and a ketogenic diet, and metabolic alterations associated with Dravet mice phenotype and ketogenic diet were identified. RESULTS Hippocampal metabolomic data revealed complex alterations in energy metabolism with an effect of the genotype on concentrations of glucose and several glycolysis and tricarboxylic acid (TCA) cycle intermediates. Although low glucose, lactate, malate, and citrate concentrations became evident, the increase of several intermediates suggested a genotype-associated activation of catabolic processes with enhanced glycogenolysis and glycolysis. Moreover, we observed an impact on the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle with reduced levels of all components along with a shift toward an increased GABA-to-glutamate ratio. Further alterations comprised a reduction in hippocampal levels of noradrenaline, corticosterone, and of two bile acids. SIGNIFICANCE Considering that energy depletion can predominantly compromise the function of GABAergic interneurons, the changes in energy metabolism may contribute to seizure susceptibility and ictogenesis. They may also explain the therapeutic potential of the ketogenic diet, which aims to shift energy metabolism toward a more fat-based energy supply. Conversely, the increased GABA-to-glutamate ratio might serve as an endogenous compensatory mechanism, which can be further supported by GABAergic drugs, representing the mainstay of therapeutic management of Dravet syndrome. In view of a possible neuroprotective function of bile acids, it might be of interest to explore a possible therapeutic potential of bile acid-mediated therapies, already in discussion for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
24
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
25
|
Fei Y, Shi R, Song Z, Wu J. Metabolic Control of Epilepsy: A Promising Therapeutic Target for Epilepsy. Front Neurol 2020; 11:592514. [PMID: 33363507 PMCID: PMC7753014 DOI: 10.3389/fneur.2020.592514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a common neurological disease that is not always controlled, and the ketogenic diet shows good antiepileptic effects drug-resistant epilepsy or seizures caused by specific metabolic defects via regulating the metabolism. The brain is a vital organ with high metabolic demands, and epileptic foci tend to exhibit high metabolic characteristics. Accordingly, there has been growing interest in the relationship between brain metabolism and epilepsy in recent years. To date, several new antiepileptic therapies targeting metabolic pathways have been proposed (i.e., inhibiting glycolysis, targeting lactate dehydrogenase, and dietary therapy). Promising strategies to treat epilepsy via modulating the brain's metabolism could be expected, while a lack of thorough understanding of the role of brain metabolism in the control of epilepsy remains. Herein, this review aims to provide insight into the state of the art concerning the brain's metabolic patterns and their association with epilepsy. Regulation of neuronal excitation via metabolic pathways and antiepileptic therapies targeting metabolic pathways are emphasized, which could provide a better understanding of the role of metabolism in epilepsy and could reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Fei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruting Shi
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Ghiasvand S, Dussourd CR, Liu J, Song Y, Berdichevsky Y. Variability of seizure-like activity in an in vitro model of epilepsy depends on the electrical recording method. Heliyon 2020; 6:e05587. [PMID: 33299935 PMCID: PMC7702014 DOI: 10.1016/j.heliyon.2020.e05587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Hippocampal and cortical slice-based models are widely used to study seizures and epilepsy. Seizure detection and quantification are essential components for studying mechanisms of epilepsy and assessing therapeutic interventions. To obtain meaningful signals and maximize experimental throughput, variability should be minimized. Some electrical recording methods require insertion of an electrode into neuronal tissue, change in slice chemical microenvironment, and transients in temperature and pH. These perturbations can cause acute and long-term alterations of the neuronal network which may be reflected in the variability of the recorded signal. New method In this study we investigated the effect of experimental perturbations in three local field potential (LFP) recording methods including substrate micro-wires (s-MWs), multiple electrode arrays (MEAs), and inserted micro wire electrodes (i-MW). These methods enabled us to isolate effects of different perturbations. We used organotypic hippocampal slices (OHCs) as an in-vitro model of posttraumatic epilepsy. To investigate the effect of the disturbances caused by the recording method on the paroxysmal events, we introduced jitter analysis, which is sensitive to small differences in the seizure spike timing. Results Medium replacement can introduce long-lasting perturbations. Electrode insertion increased variability on a shorter time scale. OHCs also underwent spontaneous state transitions characterized by transient increases in variability. Comparison with existing methods This new method of seizure waveform analysis allows for more sensitive assessment of variability of ictal events than simply measuring seizure frequency and duration. Conclusion We demonstrated that some of the variability in OHC recordings are due to experimental perturbations while some are spontaneous and independent of recording method.
Collapse
Affiliation(s)
| | | | - Jing Liu
- Electrical Engineering Lehigh University, United States
| | - Yu Song
- Bioengineering Lehigh University, United States
| | - Yevgeny Berdichevsky
- Bioengineering Lehigh University, United States.,Electrical Engineering Lehigh University, United States
| |
Collapse
|
27
|
Zilberter Y, Zilberter T. Glucose-Sparing Action of Ketones Boosts Functions Exclusive to Glucose in the Brain. eNeuro 2020; 7:ENEURO.0303-20.2020. [PMID: 33168619 PMCID: PMC7768283 DOI: 10.1523/eneuro.0303-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) has been successfully used for a century for treating refractory epilepsy and is currently seen as one of the few viable approaches to the treatment of a plethora of metabolic and neurodegenerative diseases. Empirical evidence notwithstanding, there is still no universal understanding of KD mechanism(s). An important fact is that the brain is capable of using ketone bodies for fuel. Another critical point is that glucose's functions span beyond its role as an energy substrate, and in most of these functions, glucose is irreplaceable. By acting as a supplementary fuel, ketone bodies may free up glucose for its other crucial and exclusive function. We propose that this glucose-sparing effect of ketone bodies may underlie the effectiveness of KD in epilepsy and major neurodegenerative diseases, which are all characterized by brain glucose hypometabolism.
Collapse
Affiliation(s)
- Yuri Zilberter
- Institut de Neurosciences des Systèmes, Aix-Marseille Universite, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1106, Marseille 13385, France
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | | |
Collapse
|
28
|
Farrell JS, Colangeli R, Dudok B, Wolff MD, Nguyen SL, Jackson J, Dickson CT, Soltesz I, Teskey GC. In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Sci Rep 2020; 10:14992. [PMID: 32929133 PMCID: PMC7490395 DOI: 10.1038/s41598-020-71935-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Colangeli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah L Nguyen
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Expression analysis of NNT and NNT-AS1 in epileptic patients. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Binder DK, Boison D, Eid T, Frankel WN, Mingorance A, Smith BN, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Curr 2020; 20:14S-22S. [PMID: 31937124 PMCID: PMC7031802 DOI: 10.1177/1535759719895274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Area II of the 2014 Epilepsy Research Benchmarks aims to establish goals for preventing the development and progression of epilepsy. In this review, we will highlight key advances in Area II since the last summary of research progress and opportunities was published in 2016. We also highlight areas of investigation that began to develop before 2016 and in which additional progress has been made more recently.
Collapse
Affiliation(s)
- Devin K Binder
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Neurosurgery and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Bret N Smith
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
Gallagher MJ. Mom Controls the Thermostat: Mitochondria Influence the Neuronal Firing Set Point. Epilepsy Curr 2019; 19:336-338. [PMID: 31448631 PMCID: PMC6864575 DOI: 10.1177/1535759719868181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility Styr B, Gonen N, Zarhin D, Ruggiero A, Atsmon R, Gazit N, Braun G, Frere S, Vertkin I, Shapira I, Harel M, Heim LR, Katsenelson M, Rechnitz O, Fadila S, Derdikman D, Rubinstein M, Geiger T, Ruppin E, Slutsky I. Neuron. 2019. pii: S0896-6273(19)30334-4. doi:10.1016/j.neuron.2019.03.045. [Epub ahead of print] PMID: 31047779. Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bidirectional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3–CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.
Collapse
|
32
|
Shao LR, Habela CW, Stafstrom CE. Pediatric Epilepsy Mechanisms: Expanding the Paradigm of Excitation/Inhibition Imbalance. CHILDREN-BASEL 2019; 6:children6020023. [PMID: 30764523 PMCID: PMC6406372 DOI: 10.3390/children6020023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Mechanisms underlying seizures and epilepsy have traditionally been considered to involve abnormalities of ion channels or synaptic function. Those considerations gave rise to the excitation/inhibition (E/I) imbalance theory, whereby increased excitation, decreased inhibition, or both favor a hyperexcitable state and an increased propensity for seizure generation and epileptogenesis. Several recent findings warrant reconsideration and expansion of the E/I hypothesis: novel genetic mutations have been identified that do not overtly affect E/I balance; neurotransmitters may exert paradoxical effects, especially during development; anti-seizure medications do not necessarily work by decreasing excitation or increasing inhibition; and metabolic factors participate in the regulation of neuronal and network excitability. These novel conceptual and experimental advances mandate expansion of the E/I paradigm, with the expectation that new and exciting therapies will emerge from this broadened understanding of how seizures and epilepsy arise and progress.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Christa W Habela
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|