1
|
He J, Li J, Gao Q, Shen W, Liu W, Xia M, Xiao H, Xiao D. In Vitro Evaluation of Chito-Oligosaccharides on Disappearance Rate of Nutrients, Rumen Fermentation Parameters, and Micro-Flora of Beef Cattle. Animals (Basel) 2024; 14:1657. [PMID: 38891704 PMCID: PMC11170994 DOI: 10.3390/ani14111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS (CON), 0.02% COS, 0.04% COS, and 0.08% COS for an 8-day experiment period, with each treatment comprising six replicates. The disappear rates of DM, CP, EE, and total gas production were quadratically increased with increasing COS levels. The disappear rates of DM, CP, EE, and ADF were greatest, whereas the total gas production was lowest in the 0.08% COS group. The pH, NH3-N, MCP, the content of propionate, isobutyrate, butyrate, valerate, and the A/P were quadratically increased with increasing COS levels, while the A/P were linearly decreased. The pH, MCP, and the content of propionate, and butyrate were highest, whereas the NH3-N and the content of acetate, isobutyrate, valerate, and the A/P were lowest in the 0.08% COS group. Microbiomics analysis showed that the rumen microbial diversity was not altered between the CON and the 0.08% COS group. However, the relative abundance of Methanosphaera, Ruminococcus, Endomicrobium, and Eubacterium groups was increased, and the relative abundance of pathogenic bacteria Dorea and Escherichia-Shigella showed a decrease in the 0.08% COS group. Overall, the 0.08% COS was the most effective among the three addition levels, resulting in an increase in the disappearance rate of in vitro fermented nutrients and improvements in rumen fermentation indexes and microbial communities. This, in turn, led to the maintenance of rumen health.
Collapse
Affiliation(s)
- Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenchang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Min Xia
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Haixiang Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Ju MS, Jo YH, Kim YR, Ghassemi Nejad J, Lee JG, Lee HG. Supplementation of complex natural feed additive containing ( C. militaris, probiotics and red ginseng by-product) on rumen-fermentation, growth performance and carcass characteristics in Korean native steers. Front Vet Sci 2024; 10:1300518. [PMID: 38288378 PMCID: PMC10822911 DOI: 10.3389/fvets.2023.1300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
This study evaluated the effects of a complex natural feed additive on rumen fermentation, carcass characteristics and growth performance in Korean-native steers. In this study, in vitro and in vivo experiment were conducted. Seven different levels of complex natural feed additive (CA) were added to the buffered rumen fluid using AnkomRF gas production system for 12, 24 and 48 h. All experimental data were analyzed by mixed procedure of SAS. Total gas production increased in the CA groups, with the highest response observed in the 0.06% group at 48 h of incubation (linear, p = 0.02; quadratic, p < 0.01). Regarding rumen fermentation parameters, the total volatile fatty acid (TVFA) tended to increase in all the CA groups (p = 0.07). The concentrations of butyrate, iso-butyrate, and iso-valerate significantly increased in all treatment groups (p < 0.05). In the in vivo experiment, 23 Korean-native steers were allocated to two groups: (1) Control and (2) Treatment; control +0.07% CA (DM basis), in a randomized complete-block design and blocked by body weight (ave. body weight = 641.96 kg ± 62.51 kg, p = 0.80) and feed intake (ave. feed intake = 13.96 kg ± 0.74 kg, p = 0.08) lasted for 252 days. Average daily gain decreased in the treatment group (p < 0.01). Backfat thickness significantly decreased in the CA group (p = 0.03), whereas meat color tended to increase (p = 0.07). In conclusion, in the in vitro experiment, the inclusion of complex natural feed additive decreased methane proportion and tended to increase TVFA production, but supplementation to Korean native steers decreased average daily gain and backfat thickness.
Collapse
Affiliation(s)
- Mun-Su Ju
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yong-Ho Jo
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yoo-Rae Kim
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jalil Ghassemi Nejad
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jang-Gu Lee
- DM Bio Co., Ltd., Jellonam-do, Republic of Korea
| | - Hong-Gu Lee
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Guo YQ, Hu YR, Liu SR, Wang M, Xian ZY, Liu DW, Sun BL, Li YK, Liu GB, Deng M, Hu WF, Liu QS. Effects of the Oat Hay Feeding Method and Compound Probiotic Supplementation on the Growth, Antioxidant Capacity, Immunity, and Rumen Bacteria Community of Dairy Calves. Antioxidants (Basel) 2023; 12:1851. [PMID: 37891930 PMCID: PMC10604343 DOI: 10.3390/antiox12101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.
Collapse
Affiliation(s)
- Yong-Qing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ya-Ru Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Su-Ran Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Meng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Zhen-Yu Xian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - De-Wu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Bao-Li Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Yao-Kun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Guang-Bin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Wen-Feng Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Qing-Shen Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| |
Collapse
|
4
|
Cai H, Luo S, Liu Q, Zhou Q, Yan Z, Kang Z, Liao S, Li J, Lv M, Lin X, Hu J, Yu S, Zhang J, Qi N, Sun M. Effects of a complex probiotic preparation, Fengqiang Shengtai and coccidiosis vaccine on the performance and intestinal microbiota of broilers challenged with Eimeria spp. Parasit Vectors 2023; 16:253. [PMID: 37501177 PMCID: PMC10375739 DOI: 10.1186/s13071-023-05855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Coccidiosis, a prominent intestinal protozoan disease, carries significant economic implications for the poultry industry. The aim of this study was to evaluate the effects of Fengqiang Shengtai (BLES), a probiotics product, and coccidiosis vaccine in modulating the intestinal microbiome and providing insight into mitigating the occurrence and management of avian coccidiosis. METHODS Broilers included in the study were divided into four pre-treatment groups: the Pre-Con group (commercial diet), Pre-BLES group (BLES supplement), Pre-Vac group (coccidiosis vaccination) and Pre-Vac-BLES group (combined vaccination and BLES). Body weight gain, feed consumption and feed conversion ratio were monitored from age 25 to 55 days. Cecum contents were collected at 8 and 15 days of age for comparative analysis of intestinal microbiomes. In the Pre-BLES and Pre-Vac-BLES groups, probiotics were administered at a dose of 0.01 g per chicken between ages 3 to 6 days and 10-13 days. At 3 days of age, chickens in the Pre-Vac and Pre-Vac-BLES groups were vaccinated with 1700 sporulated oocysts of the live coccidiosis vaccine per chicken. At the age of 25 days, Eimeria spp. challenge experiments were performed based on the aforementioned immunization strategy, and the oocysts per gram (OPG) in the feces, intestinal lesion score and intestinal pathological characteristics were evaluated. Specifically, 30 chickens were randomly selected from each group and orally administered 34,000 sporulated oocysts of Eimeria spp. per chicken, re-defined as Eimeria group, BLES-Eimeria group, Vac-Eimeria group and Vac-BLES-Eimeria group, respectively. Additionally, 30 chickens were randomly selected from the Pre-Con group and included as negative control without Eimeria spp. CHALLENGE Intestinal microbiota was sequenced and analyzed when the broilers were 32 days old. RESULTS A significant improvement was observed in body weight gain of the broilers in the Pre-BLES and Pre-Vac-BLES group at 45 days of age. Analysis of the intestinal microbiota revealed a positive correlation between the experimental groups receiving BLES and coccidiosis vaccines at 8 and 15 days of age with the Enterococcus genus and Lachnospiraceae NK4A136 group, respectively. In addition to the reduced lesion score and OPG values, the combination of coccidiosis vaccine and BLES also reduced the intestinal epithelial abscission induced by coccidiosis vaccines. The results of intestinal microbial function prediction demonstrated that N-glycan biosynthesis and ferroptosis were the prominent signal pathways in the Vac-BLES-Eimeria group. CONCLUSIONS Taken together, the results of the present study suggest that supplementation of BLES with coccidiosis vaccine represents a promising strategy for improving growth performance, alleviating clinical manifestations and inducing favorable alterations to the intestinal microbiota in broiler chickens affected by coccidiosis.
Collapse
Affiliation(s)
- Haiming Cai
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Shengjun Luo
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Qihong Liu
- Jiangsu HFQ Biotechnology Co., Ltd., Haimen, Jiangsu Province, People's Republic of China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Zhen Kang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, Shandong Province, People's Republic of China
| | - Shenquan Liao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Juan Li
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Minna Lv
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Xuhui Lin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Junjing Hu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Shuilan Yu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Jianfei Zhang
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Nanshan Qi
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
- Laboratory of Parasitology, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Mingfei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
- Laboratory of Parasitology, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Fu L, Wang L, Liu L, Zhang L, Zhou Z, Zhou Y, Wang G, Loor JJ, Zhou P, Dong X. Effects of inoculation with active microorganisms derived from adult goats on growth performance, gut microbiota and serum metabolome in newborn lambs. Front Microbiol 2023; 14:1128271. [PMID: 36860489 PMCID: PMC9969556 DOI: 10.3389/fmicb.2023.1128271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of inoculation with adult goat ruminal fluid on growth, health, gut microbiota and serum metabolism in lambs during the first 15 days of life. Twenty four Youzhou dark newborn lambs were selected and randomly distributed across 3 treatments (n = 8/group): autoclaved goat milk inoculated with 20 mL sterilized normal saline (CON), autoclaved goat milk inoculated with 20 mL fresh ruminal fluid (RF) and autoclaved goat milk inoculated with 20 mL autoclaved ruminal fluid (ARF). Results showed that RF inoculation was more effective at promoting recovery of body weight. Compared with CON, greater serum concentrations of ALP, CHOL, HDL and LAC in the RF group suggested a better health status in lambs. The relative abundance of Akkermansia and Escherichia-Shigella in gut was lower in the RF group, whereas the relative abundance of Rikenellaceae_RC9_gut_group tended to increase. Metabolomics analysis shown that RF stimulated the metabolism of bile acids, small peptides, fatty acids and Trimethylamine-N-Oxide, which were found the correlation relationship with gut microorganisms. Overall, our study demonstrated that ruminal fluid inoculation with active microorganisms had a beneficial impact on growth, health and overall metabolism partly through modulating the gut microbial community.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liaochuan Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| |
Collapse
|
6
|
Wang L, Sun H, Gao H, Xia Y, Zan L, Zhao C. A meta-analysis on the effects of probiotics on the performance of pre-weaning dairy calves. J Anim Sci Biotechnol 2023; 14:3. [PMID: 36597147 PMCID: PMC9811714 DOI: 10.1186/s40104-022-00806-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Probiotics have been used in livestock production for many years, but information on their benefits during the early life of calves is inconsistent. This study aimed to assess the effects of probiotics on the performance of pre-weaning dairy calves and identify the factors influencing their effect sizes. RESULTS Forty-nine studies were selected for meta-analysis based on the inclusion and exclusion criteria. The study qualities were evaluated using a predefined risk assessment tool following GRADE guidelines. Meta-analysis results showed that probiotics increased the growth performance (body weight by 1.988 kg and average daily gain by 40.689 g/d), decreased digestibility and feed efficiency (feed conversion rate by 0.073), altered rumen parameter (decreased acetate by 2.815 mmol/L and increased butyrate by 0.788 mmol/L), altered blood parameter (decreased AST by 4.188 U/L, increased BHBA by 0.029 mmol/L and IgG by 0.698 g/L), increased faecal parameter (faecal bacteria counts by 0.680 log10 CFU/g), based on the strict criteria (PSMD < 0.05, I2 < 50%). Additionally, probiotics increased digestibility and feed efficiency (starter dry matter intake by 0.034 kg/d and total dry matter intake by 0.020 kg/d), altered blood parameter (increased IgA by 0.313 g/L, IgM by 0.262 g/L, and total antioxidant capacity by 0.441 U/mL, decreased MDA by 0.404 nmol/mL), decreased faecal parameter (faecal score by 0.052), based on the loose criteria (PSMD < 0.05, I2 > 50%). Regression and sub-group analyses showed that probiotic strains, supplementation dosage, and methods significantly affected the performance of calves. The probiotics supplied with more than 9.5 log10 CFU/d significantly increased IgA and IgM contents (PSMD < 0.05). Additionally, the compound probiotics significantly increased TDMI, IgA, and IgM (PSMD ≤ 0.001). Furthermore, probiotics supplemented in liquid (whole milk or milk replacer) significantly increased TDMI and decreased faecal score (PSMD < 0.05), while in whole milk, they significantly increased body weight, IgA, and IgM (PSMD < 0.001). CONCLUSIONS Probiotics could improve the growth performance, feed intake and efficiency, rumen fermentation, immune and antioxidant capacity, and health of pre-weaning calves. However, the effect sizes were related to the dosage, composition, and supplementation methods of probiotics.
Collapse
Affiliation(s)
- Liyun Wang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Honghong Sun
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Haixu Gao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Yaohui Xia
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Linsen Zan
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Chunping Zhao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| |
Collapse
|
7
|
Varada VV, Kumar S, Chhotaray S, Tyagi AK. Host-specific probiotics feeding influence growth, gut microbiota, and fecal biomarkers in buffalo calves. AMB Express 2022; 12:118. [PMID: 36103095 PMCID: PMC9475018 DOI: 10.1186/s13568-022-01460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
The current study is aimed to evaluate the effect of host-specific probiotics on the gut microbiome, performance, and select fecal biomarkers of gut health in preruminant buffalo calves. Eight Murrah buffalo calves (3–5 days old; 32.52 ± 0.43 kg average body weight (BW)) were randomly allocated into two groups as follows; 1) Group I (n = 4) fed basal diet alone (CON); 2) Group II (n = 4) supplemented with a lyophilized probiotic formulation at a dose rate of 1 g/day/head (1 × 109 CFU/g) having Limosilactobacillus reuteri BF-E7 and Ligilactobacillus salivarius BF-17 along with basal diet (PF) for 30 days. Results revealed that final BW (kg), average daily gain (g/day), average dry matter intake (g/day), and structural growth measurements were significantly (P < 0.05) increased in the probiotics supplemented group (PF) compared to the control (CON). Fecal pH, fecal moisture, and fecal score were reduced (P < 0.05) in PF than in CON. Moreover, levels of fecal propionate, lactate, and ammonia altered positively in PF compared with CON. The relative abundance of Firmicutes tended to be higher (P = 0.10) in the probiotics fed group than CON. However, the relative abundance of Proteobacteria was significantly lower (P = 0.03) for calves fed probiotics on day 15. A trend was observed in Bacteroides (P = 0.07) and Lactobacillus (P = 0.08) abundances in the feces of the PF than in CON. Overall, it can be concluded that the administration of probiotic formulations significantly improved the performance and gut health of buffalo calves via modulating the gut microbiota composition.
Collapse
|
8
|
Nalla K, Manda NK, Dhillon HS, Kanade SR, Rokana N, Hess M, Puniya AK. Impact of Probiotics on Dairy Production Efficiency. Front Microbiol 2022; 13:805963. [PMID: 35756055 PMCID: PMC9218901 DOI: 10.3389/fmicb.2022.805963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
There has been growing interest on probiotics to enhance weight gain and disease resistance in young calves and to improve the milk yield in lactating animals by reducing the negative energy balance during the peak lactation period. While it has been well established that probiotics modulate the microbial community composition in the gastrointestinal tract, and a probiotic-mediated homeostasis in the rumen could improve feed conversation competence, volatile fatty acid production and nitrogen flow that enhances the milk composition as well as milk production, detailed changes on the molecular and metabolic level prompted by probiotic feed additives are still not understood. Moreover, as living biotherapeutic agents, probiotics have the potential to directly change the gene expression profile of animals by activating the signalling cascade in the host cells. Various direct and indirect components of probiotic approaches to improve the productivity of dairy animals are discussed in this review.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Naresh Kumar Manda
- Department of Biosensors and Nanotechnology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Santosh R Kanade
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Matthias Hess
- Systems Microbiology and Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|