1
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
Li R, Li G, Hai Y, Li T, Bian Y, Ma T. The effect of aerobic exercise on the lipophagy of adipose tissue in obese male mice. Chem Phys Lipids 2022; 247:105225. [PMID: 35810833 DOI: 10.1016/j.chemphyslip.2022.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023]
Abstract
This article explores the obesity state and the changes in the level of lipophagy in adipose tissue after exercise to lose weight, so as to provide direction and basis for theoretical research on obesity prevention and control. We established a high-fat diet model of obese mice, and applied exercise intervention and intraperitoneal injection of chloroquine to inhibit autophagy. Long-term high-fat diet can cause obesity in mice, and the process of lipophagy is inhibited, which may be one of the reasons for fat accumulation. Eight weeks of aerobic exercise can effectively reduce the weight of obese mice and promote lipolysis; this process is mainly completed by lipase decomposition, in addition to require the participation of the lipophagy process.
Collapse
Affiliation(s)
- Rendong Li
- Physical Education Department, Shenyang University of Chemical Technology, Shenyang Economic and Technological Development Zone, Shenyang 110142, PR China.
| | - Guangkuan Li
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Yan Hai
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Tao Li
- Department of Postgraduate, Shenyang Sport University, Shenyang 110102, PR China.
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Tie Ma
- The College of Kinesiology, Shenyang Sport University, Shenyang 110102, PR China.
| |
Collapse
|
3
|
Li J, Yi X, Li T, Yao T, Li D, Hu G, Ma Y, Chang B, Cao S. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr Connect 2022; 11:EC-21-0625.R1. [PMID: 35148278 PMCID: PMC8942313 DOI: 10.1530/ec-21-0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity is a growing problem worldwide, and newer therapeutic strategies to combat it are urgently required. This study aimed to analyze the effect of diet and exercise interventions on energy balance in mice and elucidate the mechanism of the peroxisome proliferator-activated receptor-gamma co-activator-1-alpha-IRISIN-uncoupling protein-1 (PGC-1α-IRISIN-UCP-1) pathway in the beigeization of white adipose tissue. METHODS Four-week-old male C57BL/6 mice were randomly divided into normal (NC) and high-fat diet (HFD) groups. After 10 weeks of HFD feeding, obese mice were randomly divided into obesity control (OC), obesity diet control (OD), obesity exercise (OE), and obesity diet control exercise (ODE) groups. Mice in OE and ODE performed moderate-load treadmill exercises: for OD and ODE, the diet constituted 70% of the food intake of the OC group for 8 weeks. RESULTS Long-term HFD inhibits white adipose tissue beigeization by downregulating PGC-1α-IRISIN-UCP-1 in the adipose tissue and skeletal muscles. Eight weeks of exercise and dietary interventions alleviated obesity-induced skeletal muscle, and adipose tissue PGC-1α-IRISIN-UCP-1 pathway downregulation promoted white adipose tissue beigeization and reduced body adipose tissue. The effects of the combined intervention were better than those of single interventions. CONCLUSIONS Diet and exercise intervention after obesity and obesity itself may affect the beigeization of WAT by downregulating/upregulating the expression/secretion of skeletal muscle and adipose PGC-1α-IRISIN, thereby influencing the regulation of bodyweight. The effects of the combined intervention were better than those of single interventions.
Collapse
Affiliation(s)
- Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Xuejie Yi
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tao Li
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tingting Yao
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Dongyang Li
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yongqi Ma
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
- Correspondence should be addressed to B Chang or S Cao: or
| | - Shicheng Cao
- Department of Sports Medicine, School of Public and Basic Sciences, China Medical University, Shenyang, Liaoning, China
- Correspondence should be addressed to B Chang or S Cao: or
| |
Collapse
|
4
|
CCR2 knockout ameliorates obesity-induced kidney injury through inhibiting oxidative stress and ER stress. PLoS One 2019; 14:e0222352. [PMID: 31498850 PMCID: PMC6733486 DOI: 10.1371/journal.pone.0222352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
CCL2/CCR2 signaling is believed to play an important role in kidney diseases. Several studies have demonstrated that blocking of CCR2 has a therapeutic effect on kidney diseases. However, the effects of CCR2 knockout on obesity-induced kidney injury remain unclear. We investigated the therapeutic effects and the mechanism of CCL2/CCR2 signaling in obesity-induced kidney injury. We used C57BL/6-CCR2 wild type and C57BL/6-CCR2 knockout mice: Regular diet wild type (RD WT), RD CCR2 knockout (RD KO), High-fat diet WT (HFD WT), HFD CCR2 KO (HFD KO). Body weight of WT mice was significantly increased after HFD. However, the body weight of HFD KO mice was not decreased compared to HFD WT mice. Food intake and calorie showed no significant differences between HFD WT and HFD KO mice. Glucose, insulin, total cholesterol, and triglycerides levels increased in HFD WT mice were decreased in HFD KO mice. Insulin resistance, increased insulin secretion, and lipid accumulation showed in HFD WT mice were improved in HFD KO mice. Increased desmin expression, macrophage infiltration, and TNF-α in HFD mice were reduced in HFD KO mice. HFD-induced albuminuria, glomerular hypertrophy, glomerular basement membrane thickening, and podocyte effacement were restored by CCR2 depletion. HFD-induced elevated expressions of xBP1, Bip, and Nox4 at RNA and protein levels were significantly decreased in HFD KO. Therefore, blockade of CCL2/CCR2 signaling by CCR2 depletion might ameliorate obesity-induced albuminuria through blocking oxidative stress, ER stress, and lipid accumulation.
Collapse
|
5
|
Silveira LS, Batatinha HAP, Castoldi A, Câmara NOS, Festuccia WT, Souza CO, Rosa Neto JC, Lira FS. Exercise rescues the immune response fine-tuned impaired by peroxisome proliferator-activated receptors γ deletion in macrophages. J Cell Physiol 2018; 234:5241-5251. [PMID: 30238979 DOI: 10.1002/jcp.27333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Exercise is a powerful tool for prevention and treatment of many conditions related to the cardiovascular system and also chronic low-grade inflammation. Peroxisome proliferator-activated receptors γ (PPARγ) exerts an import role on the regulation of metabolic profile and subsequent inflammatory response, especially in macrophages. PURPOSE To investigate the effects of 8-week moderate-exercise training on metabolic and inflammatory parameters in mice with PPARγ deficiency in myeloid cells. METHODS Twelve-week old mice bearing PPARγ deletion exclusively in myeloid cells (PPARγlox/lox Lys Cre -/+ , knockout [KO]) and littermate controls (PPARγlox/lox Lys Cre -/- , wild type [WT]) were submitted to 8-week exercise training (treadmill running at moderate intensity, 5 days/week). Animals were evaluated for food intake, glucose homeostasis, serum metabolites, adipose tissue and peritoneal macrophage inflammation, and basal and stimulated cytokine secretion. RESULTS Exercise protocol did not improve glucose metabolism or adiponectin concentrations in serum of KO mice. Moreover, the absence of PPARγ in macrophages exacerbated the proinflammatory profile in sedentary mice. Peritoneal cultured cells had higher tumor necrosis factor-α (TNF-α) secretion in nonstimulated and lipopolysaccharide (LPS)-stimulated conditions and higher Toll-4 receptor (TLR4) gene expression under LPS stimulus. Trained mice showed reduced TNF-α content in adipose tissue independently of the genotype. M2 polarization ability was impaired in KO peritoneal macrophages after exercise training, while adipose tissue-associated macrophages did not present any effect by PPARγ ablation. CONCLUSION Overall, PPARγ seems necessary to maintain macrophages appropriate response to inflammatory stimulus and macrophage polarization, affecting also whole body lipid metabolism and adiponectin profile. Exercise training showed as an efficient mechanism to restore the immune response impaired by PPARγ deletion in macrophages.
Collapse
Affiliation(s)
- Loreana Sanches Silveira
- Department of Physical Education, Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), São Paulo, Brazil.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Willian T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Oliveira Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - José Cesar Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fábio Santos Lira
- Department of Physical Education, Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
6
|
El Akoum S, Haddad Y, Couture R. Impact of pioglitazone and bradykinin type 1 receptor antagonist on type 2 diabetes in high-fat diet-fed C57BL/6J mice. Obes Sci Pract 2017; 3:352-362. [PMID: 29071111 PMCID: PMC5598024 DOI: 10.1002/osp4.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/01/2017] [Accepted: 05/19/2017] [Indexed: 01/24/2023] Open
Abstract
Aim Type 2 diabetes (T2D) is a major complication of obesity and a leading cause of morbidity and mortality. Antagonizing bradykinin type 1 receptor (B1R) improved body and tissue fat mass and reversed vascular and adipose tissue inflammation in a rat model of insulin resistance. This study aimed at evaluating further the role of B1R in a mouse model of T2D by comparing the antidiabetic and anti‐inflammatory effects of the B1R antagonist SSR240612 (SSR) in adipose tissue with those of pioglitazone (TZD), an activator of peroxisome proliferator‐activated receptor gamma. Methods C57BL/6J mice were fed with high‐fat diet (HFD) or standard diet (control) for 20 weeks. Yet, during the last 4 weeks, HFD‐fed mice were administered SSR and TZD (10 mg kg−1 d−1 each) as monotherapy or combined therapy subcutaneously. The impact of treatments was measured on metabolic hormones levels (ELISA), adipose tissue inflammatory status and the expression of candidate genes involved in T2D (quantitative real‐time polymerase chain reaction and western blot). Results SSR240612 and TZD treatments improved hyperglycaemia, hyperinsulinaemia, insulin resistance, adipose tissue inflammation (expression of B1R, chemokine ligand 2, F4/80 and tumour necrosis factor) and modulated adipogenesis (peroxisome proliferator‐activated receptor gamma, adipocytes' protein 2 and CD40 expressions) in HFD‐fed mice. Yet, SSR was more effective than TZD to reduce visceral fat mass and resistin. TZD/SSR combined treatment had an additive effect to improve insulin sensitivity and glucose intolerance. Conclusion Bradykinin type 1 receptor antagonism could represent a promising therapeutic tool in combination with TZD for the treatment of T2D, obesity and insulin resistance.
Collapse
Affiliation(s)
- S El Akoum
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Canada.,CHUM Research Center Montréal Canada
| | - Y Haddad
- Département de Pharmacologie et Physiologie, Faculté de Médecine Université de Montréal Montréal Canada
| | - R Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine Université de Montréal Montréal Canada
| |
Collapse
|
7
|
Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9410954. [PMID: 28168013 PMCID: PMC5266865 DOI: 10.1155/2017/9410954] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/25/2016] [Indexed: 12/15/2022]
Abstract
Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.
Collapse
|
8
|
Cabral-Santos C, Castrillón CIM, Miranda RAT, Monteiro PA, Inoue DS, Campos EZ, Hofmann P, Lira FS. Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front Physiol 2016; 7:509. [PMID: 27867360 PMCID: PMC5095487 DOI: 10.3389/fphys.2016.00509] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to compare the effects of two similar high-intensity intermittent exercises (HIIE) but different volume 1.25 km (HIIE1.25) and 2.5 km (HIIE2.5) on inflammatory and BDNF responses. Ten physically active male subjects (age 25.22 ± 1.74 years, body mass 78.98 ± 7.31 kg, height 1.78 ± 0.06 m, VO2peak 59.94 ± 9.38 ml·kg·min-1) performed an incremental treadmill exercise test and randomly completed two sessions of HIIE on a treadmill (1:1 min at vVO2max with passive recovery). Blood samples were collected at rest, immediately and 60-min after the exercise sessions. Serum was analyzed for glucose, lactate, IL-6, IL-10, and BDNF levels. Blood lactate concentrations was higher immediately post-exercise compared to rest (HIIE1.25: 1.69 ± 0.26-7.78 ± 2.09 mmol·L-1, and HIIE2.5: 1.89 ± 0.26-7.38 ± 2.57 mmol·L-1, p < 0.0001). Glucose concentrations did not present changes under the different conditions, however, levels were higher 60-min post-exercise than at rest only in the HIIE1.25 condition (rest: 76.80 ± 11.14-97.84 ± 24.87 mg·dL-1, p < 0.05). BDNF level increased immediately after exercise in both protocols (HIIE1.25: 9.71 ± 306-17.86 ± 8.59 ng.mL-1, and HIIE2.5: 11.83 ± 5.82-22.84 ± 10.30 ng.mL-1). Although both exercises increased IL-6, level percent between rest and immediately after exercise was higher in the HIIE2.5 than HIIE1.25 (30 and 10%; p = 0.014, respectively). Moreover, IL-10 levels percent increase between immediately and 60-min post-exercise was higher in HIIE2.5 than HIIE1.25 (37 and 10%; p = 0.012, respectively). In conclusion, both HIIE protocols with the same intensity were effective to increase BDNF and IL-6 levels immediately after exercise while only IL-10 response was related to the durantion of exercise indicanting the importance of this exercise prescription variable.
Collapse
Affiliation(s)
- Carolina Cabral-Santos
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Carlos I M Castrillón
- Laboratório de Fisioterapia Desportiva, Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Rodolfo A T Miranda
- Laboratório de Fisioterapia Desportiva, Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Paula A Monteiro
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Daniela S Inoue
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Eduardo Z Campos
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente PrudenteSão Paulo, Brasil; Department of Physical Education, Federal University of PernambucoRecife, Brazil
| | - Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sport Science, University of Graz Graz, Austria
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| |
Collapse
|